// // code for Theorem 2.2 for N=50 // C:=SmallModularCurve(50); //gives a modular curve X_0(50) SimplifiedModel(C); //gives C=X_0(50) in the form y^2=f_50(x) A:={}; S:=[0..128]; for m in S do for n in S do if ((m mod 2) ne 0) and ((n mod 2) ne 0) then //because (m,n)=1 f:=m^6-4*m^5*n-10*m^3*n^3-4*m*n^5+n^6; //this is n^6d=Ds^2 from (2), obtained by putting x=m/n in SimplifiedModel(C) from above and multiplying with the denominator n^6 A:=A join {f mod 128}; //we put the residues modulo 128 in the set A end if; end for; end for; A; //in the end the set A will contain all possible values of Ds^2 modulo 128, for Ds^2 from (2)