// // code for Theorem 2.2 for N=40 // C:=SmallModularCurve(40); //gives a modular curve X_0(40) SimplifiedModel(C); //gives C=X_0(40) in the form y^2=f_40(x) A:={}; S:=[0..3]; for m in S do for n in S do if ((m mod 3) ne 0) or ((n mod 3) ne 0) then //because (m,n)=1 f:=m^8+8*m^6*n^2-2*m^4*n^4+8*m^2*n^6+n^8; //this is n^8d=Ds^2 from (2), obtained by putting x=m/n in SimplifiedModel(C) from above and multiplying with the denominator n^8 A:=A join {f mod 3}; //we put the residues modulo 3 in the set A end if; end for; end for; A; //in the end the set A will contain all possible values of Ds^2 modulo 3, for Ds^2 from (2) A:={}; S:=[0..5]; for m in S do for n in S do if ((m mod 5) ne 0) or ((n mod 5) ne 0) then //because (m,n)=1 f:=m^8+8*m^6*n^2-2*m^4*n^4+8*m^2*n^6+n^8; //this is n^8d=Ds^2 from (2), obtained by putting x=m/n in SimplifiedModel(C) from above and multiplying with the denominator n^8 A:=A join {f mod 5}; //we put the residues modulo 5 in the set A end if; end for; end for; A; //in the end the set A will contain all possible values of Ds^2 modulo 5, for Ds^2 from (2)