// // code for Theorem 2.2 for N=26 // C:=SmallModularCurve(26); //gives a modular curve X_0(26) SimplifiedModel(C); //gives C=X_0(26) in the form y^2=f_26(x) A:={}; S:=[0..169]; for m in S do for n in S do if ((m mod 13) ne 0) or ((n mod 13) ne 0) then //because (m,n)=1 f:=m^6-8*m^5*n+8*m^4*n^2-18*m^3*n^3+8*m^2*n^4-8*m*n^5+n^6; //this is n^6d=Ds^2 from (2), obtained by putting x=m/n in SimplifiedModel(C) from above and multiplying with the denominator n^6 A:=A join {f mod 169}; //we put the residues modulo 169 in the set A end if; end for; end for; A; //in the end the set A will contain all possible values of Ds^2 modulo 169=13^2, for Ds^2 from (2) A:={}; S:=[0..128]; for m in S do for n in S do if ((m mod 2) ne 0) or ((n mod 2) ne 0) then //because (m,n)=1 f:=m^6-8*m^5*n+8*m^4*n^2-18*m^3*n^3+8*m^2*n^4-8*m*n^5+n^6; //this is n^6d=Ds^2 from (2), obtained by putting x=m/n in SimplifiedModel(C) from above and multiplying with the denominator n^6 A:=A join {f mod 128}; //we put the residues modulo 128 in the set A end if; end for; end for; A; //in the end the set A will contain all possible values of Ds^2 modulo 128, for Ds^2 from (2)