
Abstract— This paper aims to develop insights into Bayesian Truth Serum 
algorithm from the perspective of Shannon theory. We postulate a natural sequence 
of seven axioms that produce Bayesian Truth Serum scoring rule in such a way that 
it reflects quality of information.  This makes it possible to regard Bayesian Truth 
Serum as a measure of combined information-prediction  quality in situations where 
respondents are asked to choose an alternative from a finite set and provide 
predictions of their peers’ propensities to choose. This is possible for finite and 
infinite sets of respondents. 
 

Index Terms— Bayesian Truth Serum, information entropy, Bayesian game, 
Shannon theory 
 

I. INTRODUCTION 
Bayesian Truth Serum algorithm was developed in [1]. The Bayesian Truth Serum 
requires a single multiple-choice question.  The respondents are asked, in addition to 
providing their personal answer, to predict the percentage distribution of answers in the 
entire sample. The algorithm has applications in studies of public or expert opinions: 
voting intentions, product ratings, expert forecasting, and various crowdsourcing 
applications.  Published studies of Bayesian Truth Serum include application to assess the 
degree of learning in design courses [2], validity of deterrence in criminology [3], 
incentivizing digital pirates’ confession [4], and new product adoption in pharmaceutical 
setting  [5]. 
 

The algorithm has been studied from the economics point of view, its scoring rule 
aspects have been explored, but as far as we know it has not been approached from the 
Shannon theory point of view. The purpose of this paper is to emphasize that there is a 
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connection between the Bayesian Truth Serum algorithm and the Shannon Theory and 
that it lies at the very essence of the algorithm itself. 

 
There are two fundamental features of the Bayesian Truth Serum algorithm. One is that 

it is (truth) incentive-compatible (i.e. assuming that all other respondents tell the truth, it 
is in expectation most profitable for the selected respondent to tell the truth as well). 
Although highly desirable and important from the general point of view, this aspect is not 
of interest here.  

 
The second fundamental feature of the Bayesian Truth Serum algorithm is that its 

scoring rule ranks players according to their posterior probability on the actual percentage 
distribution of answers in the sample [1]. If that distribution is regarded as the ‘true state 
of nature,’ this ranking may be interpreted as a ranking according to domain expertise [6, 
7]. The Bayesian Truth Serum algorithm is not the only incentive-compatible algorithm 
with this ranking property, as shown in [6].  
 

In this paper we focus on rankings, but approach the problem without using Bayesian 
game theory. Instead of having one game where many players provide their one-time 
answers and predictions, we view this situation in terms of pairwise duels between 
players. These duels result in transfer of points between the players according to some 
function P. We use simple simultaneous duels to show that under natural set of axioms 
compatible with Shannon theory we can derive the same scoring rule as [1].  
 In the rest of the paper we present the Bayesian Truth Serum algorithm formally 
in Section II. Our axiomatic system and main results are presented in Section III. We 
conclude the paper with the discussion in Section IV.  
 

II. BAYESIAN TRUTH SERUM ALGORITHM 
 
By 𝑅 we denote the set of players (respondents). We assume that 𝑅  is not empty, not a 

singleton, and at most countable (i.e. the cardinal number of the set 𝑅 satisfies 2 ≤
𝑐𝑎𝑟𝑑(𝑅) ≤ ℵ!). Suppose that the players are presented with a multiple choice question, 
offering a choice of 𝑚 ∈ ℕ ∖ {1} answers (we use the standard mathematical notation 
where ℕ  is the set of natural numbers, ℝ  is the set of real numbers, and 
ℝ = ℝ {−∞} {+∞} ). Each player picks a simple answer (the one s/he thinks is the 
correct one) and gives a prediction in terms of probabilities on the distribution of m 
answers within 𝑅.5 More precisely, we present the answer of a player 𝑟 ∈ 𝑅 as a pair of 
ordered m-tuples 

 
((𝑥!! ,… , 𝑥!!  ); (𝑦!! ,… ,𝑦!!  ))                                                (1) 

 
where 𝑥!! ,… , 𝑥!!  ∈ 0,1 , and 𝑦!! ,… ,𝑦!! ∈ [0,1] such that 𝑥!!!

!!! = 1 and 𝑦!!!
!!! = 1. 

                                                             
5 The latter question is usually asked in the following way: “please estimate the percentage of your peers who will choose answer 

k”, the question is repeated for each k=1,..,m. 



Exactly one of 𝑥!! is equal to one (the non-zero term which corresponds to the selected 
answer), while (𝑦!! ,… ,𝑦!! ) is a probability distribution on {1,2,… ,𝑚}. As a consequence, 
a complete data containing the answers of all players can be presented as a (finite or 
infinite) matrix (𝑋;𝑌); it is of the order 𝑐𝑎𝑟𝑑(𝑅)×2𝑚 and its rth row, 𝑟 ∈ 𝑅, is given by 
(1). 
 

Based on (𝑋;𝑌) we want to assign a numerical score for each player, say  
 

𝑢! = 𝑢! 𝑋;𝑌                                                       (2) 
 

for player 𝑟 ∈ 𝑅. Eventually we expect our scores to be real-valued, but here at the outset 
we shall not restrict ourselves and in principle we allow even for infinite values, i.e. 
 

𝑢!  𝑋,𝑌 ∈    ℝ                                                                   (3) 
 

A. Classic definition of the score in Bayesian Truth Serum 
 
Before stating our axioms we present how the score is defined by the Bayesian Truth 

Serum.  
 
We shall use the notation  !∈!  in both finite and infinite case. If 𝑅 is finite, then 

 !∈!  has its usual meaning of the sum over all elements of 𝑅. If 𝑅 is infinite, then we 
consider 𝑅 = 𝑅!!∈ℕ  , where  𝑐𝑎𝑟𝑑 𝑅! = 𝑛, and the meaning of   !∈!   is in the sense 
of lim!→!  !∈!! ; the notation comes together with an assumption that the limit exists 
within  ℝ .  Similarly, the meaning of  (𝑎𝑣)  !∈!   is !

!"#$(!)
 !∈!   in the case of a finite 

R, while in the case of an infinite R it is lim!→!
!
!

 !∈!! . With this notation in mind, we 
consider 𝑥 := (𝑥!,… , 𝑥!) where, for k=1,…,m 

 

𝑥!:=  (𝑎𝑣) 𝑥!!

!∈!

 

 
i.e. arithmetic means of X-columns, and 𝑦 ∶= (𝑦!,… ,𝑦!) where, for k=1,…,m 
 

ln 𝑦! ≔ (𝑎𝑣) ln (𝑦!!

!∈!

) 

i.e. geometric means of Y-columns. 
 
Using the notation above, the algorithm in [1] is given as  
 

𝑢! X,Y ∶=  𝑥!!!
!!!  ln !!

!!
+  𝑥!!

!!!  ln !!
!

!!
                          (4) 

 



where 𝑟 ∈ 𝑅. The first part of the sum is the information score, while the second one is 
the prediction score [1].  

III. AXIOMATIC SYSTEM 
 

Our goal in this paper is develop an axiomatic system for (4) that is compatible with 
Shannon theory. In our approach players choose an expert among themselves via 
simultaneous conceptual duels. Each duel has a “challenger”, say player 𝑟 ∈ 𝑅, and an 
“offender”, say player 𝑠 ∈ 𝑅.6 We denote such duel as 𝑟 → 𝑠. Each respondent plays a 
duel with every other respondent, including oneself. 

 
Each duel 𝑟 → 𝑠 ends with a transfer of points from player r to player s. We denote the 

number of transferred points by 
 

𝑇!→! = 𝑇!→! 𝑋;𝑌 ∈ ℝ    .                                   (5) 
 
We can think of positive 𝑇!→! as the winning case for the offender, while negative 

𝑇!→! means that the challenger prevails. All the possible duels are to be performed 
(including the duel with oneself) in order to determine scores 𝑢! for all respondents 
𝑟 ∈ 𝑅. In particular, if R is finite, there will be [𝑐𝑎𝑟𝑑(𝑅)]! duels.  

Let us introduce the basic rule for a duel. For every 𝑟 ∈ 𝑅 the score 𝑢! equals the 
number of received points minus the number of given points, i.e. 

 
𝑢! = 𝑢! X,Y = 𝑇!→!  𝑋;𝑌!∈!  -  𝑇!→! 𝑋;𝑌!∈!                (6) 

 
There are two immediate important consequences of (6). First, assuming that all the 

sums are finite-valued (which is the only interesting case), the duel is a zero-sum game, 
 

𝑢!!∈! = 𝑇!→!!∈!!∈! −  𝑇!→!!∈!!∈! = 0                     (7) 
 
The second consequence of (6) is that the description of 𝑢! reduces to the description 

of 𝑇!→!. Hence, we present a set of axioms about 𝑇!→! that generate the Bayesian Truth 
Serum algorithm (4). For each axiom we give an intuitive justification (which may 
include some ideas from statistics) and a formal statement (which is always going to be 
deterministic). 

Our first axiom is very much in the spirit of medieval duels. We can interpret it as “the 
offender chooses the playground for the duel”.  

 
Axiom 1. The challenger r will transfer points to the offender s, based on the x answer 

of the offender s. More precisely, for every 𝑟, 𝑠 ∈ 𝑅 and for every 𝑘 ∈ {1,… ,𝑚}  there is 
𝑃!!"(𝑋;𝑌) ∈ ℝ such that  

 
                                                             

6 We use traditional duel terminology, where one player (offender) offends the other (challenger), who in turn challenges the first 
player to a duel  



𝑇!→! 𝑋;𝑌 = 𝑥!!!
!!!  𝑃!!"(𝑋;𝑌)                                     (8) 

 
Observe that, among others, Axiom 1 reduces our analysis from  𝑇!→! to 𝑃!!". Observe 

also that, for every 𝑠 ∈ 𝑅, there is exactly one 𝑘 ∈ {1,… ,𝑚} such that 𝑥!! = 1. Hence, 
we can think of that 𝑘 as being the function of s, i.e. 𝑘 = 𝑘(𝑠). It follows then that (8) 
becomes 

 
𝑇!→! 𝑋;𝑌 = 𝑃!(!)!" (𝑋;𝑌)          (9) 

 
In order to understand the second axiom, we introduce the following partition of R 
 

𝑅! ∶= {𝑠 ∈ 𝑅 | 𝑥!! = 1},     𝑘 = 1,… ,𝑚                                 (10) 
 
Obviously, the partition 𝑅 = 𝑅! … . 𝑅! is a function of X. Fix k for a moment and 

consider 𝑅!, which is a subset of players who choose the same answer 𝑘. In general, the 
number of points 𝑃!!" may vary as s changes within 𝑅!. The purpose of our second axiom 
is to prevent this from happening, i.e. that axiom can be thought of as “the egalitarian 
principle within 𝑅! . "  

 
Axiom 2. Given 𝑟 ∈ 𝑅 and 𝑘 ∈  {1,… ,𝑚} we have  
 

(𝑠, 𝑠! ∈ 𝑅!  ⇒  𝑃!!" 𝑋;𝑌 = 𝑃!!!
!(𝑋;𝑌) ). 

 
Axiom 2 says that if the offenders 𝑠, 𝑠! ∈ 𝑅 choose the same answer, then in a duel 

with every challenger they will receive the same number of points. Observe that Axiom 2 
includes even the cases when for some k the set 𝑅! may be an empty set; in this case the 
implication in Axiom 2 is true, since the premise of the implication is never true. Using a 
slight abuse of notation (think of k=k (s)), Axiom 2 implies that 

 
 𝑃!!" 𝑋;𝑌 = 𝑃!!(𝑋;𝑌)                            (11) 

 
In order to understand the third axiom, observe that by choosing the answer k, the 

offender s decides (given that r is known) on a type of function 𝑃!! that will be used in the 
duel 𝑟 → 𝑠. However, the 𝑃!! will in general still depend on (𝑋;𝑌). Our next axiom can 
be thought of as strengthening the Axiom 1. The offender s chooses the playground k, 
and in doing so it reduces the variable dependence accordingly. 

 
Axiom 3.  For every 𝑟 ∈ 𝑅 and for every 𝑘 ∈  {1,… ,𝑚},  
 

𝑃!! 𝑋;𝑌 = 𝑃!!((𝑥!
!)!∈!; (𝑦!

!)!∈!) 
 
Next we turn to Axiom 4 which has deterministic form, and which can be justified 

using some ideas from statistics. One of the main problems in statistical analysis is to 



make inference about some unknown parameter 𝜃 . The inference is based on the 
information given in a sample 𝑋!,… ,𝑋!. In most cases the observed sample 𝑥!,… , 𝑥! is 
just a long list of numbers, which can be difficult to interpret directly. Therefore, we 
employ the principle of data reduction to obtain some statistic 𝑡 = 𝑇(𝑋!,… ,𝑋!) which 
simplifies our analysis. There are various data reduction principles: among others these 
are sufficiency principle, the equivariance principle and the likelihood principle. In this 
paper we are particularly interested in the sufficiency principle, which relies on the notion 
of sufficient statistic for 𝜃. If t is such a statistic, then whenever we have two sample 
points 𝑥 = (𝑥!,… , 𝑥!) and 𝑥′ = (𝑥′!,… , 𝑥!′) with the property 𝑇 𝑥 = 𝑇(𝑥!), then the 
inference about 𝜃 is the same regardless whether 𝑥 or 𝑥′ is observed. Typical example is 
a Bernoulli sample from which we infer about the “probability of success”, p. It is well 
known and easy to understand intuitively that 𝑋 ∶=  !

!
𝑋!!

!!!  is an example of a 
sufficient statistic regarding p.  

We would argue here that the X-part of our data is akin to the Bernoulli sample set-up. 
We are interested in 𝜔 = (𝜔!,… ,𝜔!) , where 𝜔!  gives the actual fraction of the 
population that thinks k is the correct answer to the original question. Hence, since we are 
interested in 𝜔!, then the average value gives as much information about 𝜔! as the entire 
k-th column of the matrix X, i.e. (𝑥!

!)!∈!. Therefore, we term our fourth axiom “the data 
reduction principle for X”.  

 
Axiom 4. For every 𝑟 ∈ 𝑅 and for every 𝑘 ∈  {1,… ,𝑚},  
 

𝑃!! 𝑥!
!

!∈!
; 𝑦!

!
!∈!

= 𝑃!!(𝑥!; (𝑦!
!)!∈!) 

 
Our second data reduction principle deals with Y. Our axioms so far provided the 

offender s with the advantage to “choose the playground” k. In the next axiom we give an 
advantage to the challenger r by giving him/her an option to “choose the weapon”. We 
can think of it as allowing the challenger to select some information from the kth column 
of Y in order to predict 𝜔!. We assume that the challenger is very self-confident and 
always keeps with his/her own choice i.e. 𝑦!! . This gives us the data reduction principle 
for Y. 

 
Axiom 5. For every 𝑟 ∈ 𝑅 and for every 𝑘 ∈  {1,… ,𝑚},  
 

𝑃!!(𝑥!; (𝑦!
!)!∈!) = 𝑃!!(𝑥!;𝑦!!) 

 
Observe that our axioms have reduced a function defined on a matrix (𝑋;𝑌)  to a 

function defined on a pair of numbers   (𝑥!;𝑦!!) which are between 0 and 1. However, on 
this level of generality we still allow the form of the function to change with r or with k 
(i.e. the function can vary with the choice of different players or answers). A system that 
would allow for such level of generality would not be very practical, as for every k and 
every r we would have a different function 𝑃!!. Hence we opt for a more robust selection 
and introduce the following “universality axiom”. 



 
Axiom 6. There exists a function 𝑃: 0,1 ×[0,1] → ℝ such that for every 𝑟 ∈ 𝑅 and for 

every 𝑘 ∈ {1,… ,𝑚} we have 𝑃!! = 𝑃. 
 
In other words, Axiom 6 insures that function 𝑃!! is the same for every player r and for 

every answer k.  
 
We believe that the first six axioms are natural and easy to accept. Their combined 

effect is that, for every 𝑟, 𝑠 ∈ 𝑅 
 

𝑇!→! 𝑋;𝑌 = 𝑥!!!
!!!  𝑃(𝑥!;𝑦!!)                  (12) 

 
Let us now turn our attention to the last and the most demanding axiom. In order to 

justify it, we borrow ideas from information theory7. We employ again a comparison with 
the Bernoulli probabilistic model; we think of both 𝑥!  and 𝑦!!  as estimates of the 
probability of success, say 𝑝!.  

Intuitively speaking, let us think of 𝑃(𝑥!;𝑦!!) as an estimate of some function  ℎ(𝑝!) , 
where ℎ awards points with the intention of measuring the uncertainty of the associated 
Bernoulli model. If we have two independent Bernoulli random variables U (with success 
probability p) and V (with success probability q), then the probability of joint success is 
pq. Following the same argument as in [8], page 6, it is natural to require ℎ 𝑝𝑞 =
ℎ 𝑝 + ℎ 𝑞 . By translating this requirement to the language of P, we obtain 

 
𝑃 𝑥 𝑝 ∙ 𝑥 𝑞 ;  𝑦 𝑝 ∙ 𝑦 𝑞 = 𝑃 𝑥 𝑝 ;  𝑦 𝑝 + 𝑃 𝑥 𝑞 ;  𝑦 𝑞  

 
As in [8] we exclude the case of zero and treat it separately (see also [1]). Hence, we 

introduce the additivity property axiom in the following form. 
 
 
Axiom 7. The restriction 𝑃| !,!]× !,!] of the function P given in (12) is a continuous 

function such that, for every 𝑢 ∈ 0, 1], 𝑃 𝑢,𝑢 = 0, and for every 𝑢!,𝑢!, 𝑣!, 𝑣! ∈ 0, 1],  
 

𝑃(𝑢!𝑢!, 𝑣!𝑣!)= 𝑃(𝑢!, 𝑣!) + 𝑃(𝑢!, 𝑣!). 
 
Observe that if the selected “playground information” of the offender results in the 𝑥! 

which is exactly equal to the “challenger information”, then the natural outcome is “a 
draw”, i.e. 𝑃 𝑢,𝑢 = 0. Obviously, as in the Shannon theory, the consequence of the 
Axiom 7 is that one can rely on one of the well-known functional equations from 
mathematics. More precisely, the following result is standard and well-known. 

 
Lemma. If ℎ: 0, 1] → ℝ  is continuous and such that, for every 𝑢, 𝑣 ∈  0, 1], ℎ 𝑢𝑣 =

ℎ 𝑢 + ℎ 𝑣 , then ℎ 𝑢 = 𝑎 ∙ 𝑙𝑛(𝑢), where 𝑎 = −ℎ(𝑒!!). 

                                                             
7 In particular, one may consult a chapter on a measure of information in [8] with the emphasis on section 1.2. 



 
Recall that the additivity property is very strong. The conclusion of the Lemma follows 
even with much milder requirements than continuity on function h; for example it is 
sufficient to require monotonicity or measurability. Although this would allow us to 
reduce the requirement on continuity given in Axiom 7, in order to avoid unnecessary 
mathematical intricacies we presented the Axiom 7 in the above form. Namely, to 
construct non-measurable additive functions one needs to go into details about “the 
axiom of choice” and we think that from the point of view of various applications it is 
perhaps not necessary to go into such “axiom minimization” issues further.  
 

Using Lemma it is not difficult to see that Axiom 7 reduces function P to a particular 
form. 

 
Corollary. If a function 𝑃: 0, 1]× 0, 1] → ℝ satisfies Axiom 7, then there exists 𝑎 ∈  ℝ 

such that, for every 𝑢, 𝑣 ∈  0, 1], 
 

𝑃 𝑢, 𝑣 = 𝑎 ∙ 𝑙𝑛 (𝑢/𝑣) 
  
Proof. Take 𝑢! = 𝑢,  𝑢! = 1, 𝑣! = 𝑣,  𝑣! = 1  in Axiom 7. We obtain 𝑃 𝑢, 𝑣 =

𝑃 𝑢, 1 + 𝑃 1, 𝑣 . We start with the function 𝑢 → 𝑃(𝑢, 1). If we apply Axiom 7 with 
𝑣! = 𝑣! = 1, 
we obtain 

𝑃 𝑢!𝑢!, 1 = 𝑃 𝑢!, 1 + 𝑃 𝑢!, 1 . 
 
Hence, 𝑢 → 𝑃(𝑢, 1) satisfies the requirement of the Lemma. We conclude that there 
exists 𝑎 ∈  ℝ such that 𝑃 𝑢, 1 = 𝑎 ∙ 𝑙𝑛 (𝑢) . 
 
Consider now the function 𝑣 → 𝑃(1, 𝑣). If we apply Axiom 7 with 𝑢! = 𝑢! = 1, we 
obtain  
 

𝑃 1, 𝑣!𝑣! = 𝑃 1, 𝑣! + 𝑃 1, 𝑣! . 
 

Again, using Lemma, we conclude that there exists 𝑏 ∈  ℝ such that 𝑃 1, 𝑣 = 𝑏 ∙ 𝑙𝑛 (𝑣) 
. 
 

Finally, using 𝑃 𝑢,𝑢 = 0 and 𝑃 𝑢,𝑢 = 𝑃 𝑢, 1 + 𝑃 1,𝑢 =  𝑎 ∙ 𝑙𝑛 (𝑢)+  𝑏 ∙ 𝑙𝑛 (𝑢),  
we obtain 𝑏 = −𝑎.  Hence, for every 𝑢, 𝑣 ∈  0, 1], it follows 𝑃 𝑢, 𝑣 = 𝑎 ∙ 𝑙 𝑛 !

!
.   

 
                                         

    Q.E.D. 
 

 
Remark. We need to decide on a particular choice of the normalizing constant 𝑎 ∈  ℝ 



from the previous Corollary. Suppose for the moment that the challenger r has selected 
𝑦!! = 1,  for some k. This implies 𝑦!! = 0 for all 𝑙 ≠ 𝑘, i.e. the challenger has put his 
entire trust on k. If, in this case, “the playground chosen by the offender” is indeed k, then 
it is the challenger who should earn points in this duel. More precisely, if  0 < 𝑢 < 1, 
then 𝑃 𝑢, 1 < 0, and it follows that 

 
 𝑎 > 0     (13) 

 
What is then the natural choice for the constant a? This is now just the matter of 

normalization. Suppose for the moment that all offenders have chosen playground k. In 
that case the challenger would receive in total8 −𝑎 ∙ 𝑐𝑎𝑟𝑑(𝑅) ∙ 𝑃(𝑥!; 1) points in the 
finite case, and lim!→!−𝑎(𝑅!) ∙ 𝑐𝑎𝑟𝑑(𝑅!) ∙ 𝑃(𝑥!; 1) points in the infinite case. It is 
natural to normalize so that the total is −𝑃(𝑥!; 1) points. Hence we define the constant a 
to be 

     𝑎 = !
!"#$(!)

     in finite case, or 

               𝑎(𝑅!) =
!

!"#$(!!)
   in the infinite case.   (14) 

         
 
Theorem. If the scoring system satisfies Axioms 1-7 and condition (14), then the 

resulting system is the Bayesian Truth Serum algorithm, i.e. 𝑢! satisfies (4). 
 
Proof.  Without loss of generality we present the proof for the finite case. In the infinite 

case we can use exactly the same proof under the limit sign lim!→!
!
!

 !∈!! , so we do 
not consider the infinite case separately. We proceed with the proof in the finite case. 

 
Using (12) and the Corollary, we obtain 
 
𝑢! = 𝑢! X,Y = 𝑇!→!  𝑋;𝑌!∈!  -  𝑇!→! 𝑋;𝑌 =!∈!     
 

= 𝑥!!
!

!!!!∈!

1
𝑐𝑎𝑟𝑑 𝑅 ln

𝑥!
𝑦!!

− 𝑥!!
!

!!!!∈!

1
𝑐𝑎𝑟𝑑 𝑅 ln

𝑥!
𝑦!!

 

 
The first sum becomes 
 

𝑥!!
!

!!!!∈!

1
𝑐𝑎𝑟𝑑 𝑅 ln 𝑥! − ln 𝑦!! = 

 

= 𝑥!!
!

!!!

1
𝑐𝑎𝑟𝑑 𝑅 ln 𝑥! −

!∈!

1
𝑐𝑎𝑟𝑑 𝑅 ln 𝑦!!

!∈!

 

                                                             
8 In total here means from all the offenders. 



 
 
Since the choice of k depends on r (not on s), we obtain 
 

1
𝑐𝑎𝑟𝑑 𝑅 ln 𝑥! =

!∈!

ln 𝑥!  

 
On the other hand, 

1
𝑐𝑎𝑟𝑑 𝑅 ln 𝑦!!

!∈!

= 𝑎𝑣 ln 𝑦!!

!∈!

= ln 𝑦!  

 
It follows that the first sum equals 𝑥!!!

!!!  ln !!
!!

, i.e. equals the information score in 

(4). For the second sum we obtain  

− 𝑥!!
!

!!!!∈!

1
𝑐𝑎𝑟𝑑 𝑅 ln

𝑥!
𝑦!!

= 𝑥!!
!

!!!!∈!

1
𝑐𝑎𝑟𝑑 𝑅 ln

𝑦!!

𝑥!
= 

 
 

= ln
𝑦!!

𝑥!
 

1
𝑐𝑎𝑟𝑑 𝑅  𝑥!!

!

!!!

!

!!!

= 𝑥!ln
𝑦!!

𝑥!
 

!

!!!

 

 
 
This is equal to prediction score in (4).  
            

        Q.E.D. 
 
 

IV. CONCLUSION 
 
Formula (6) describes a large class of ranking systems which are all based on totality of 

the points players receive after the sequence of duels is performed. Every player performs 
two duels against every other player: one time as an offender and one time as a 
challenger. These duels are deterministic and in principle they work in the same way for 
the finite and the infinite number of players. 

As in the Shannon theory, the key function involved is the logarithm. Hence, it seems 
plausible that the Bayesian Truth Serum may be somewhat connected to the notion of 
entropy. The connection is rather subtle, and it exists only in the infinite case where we 
take into account full Bayesian stochastic approach together with the exchangeability 
assumption on the set of players (respondents). The de Finetti theorem guarantees that 
there is an underlying governing random variable (we call the outcomes of this variable 
“states of nature”), which represents various possible belief systems within the 
population. For each 𝑘 ∈ {1,… ,𝑚} and for every state of nature, say i, we consider 



conditional probabilities 𝑧!! = 𝑃𝑟𝑜𝑏 𝑠𝑡𝑎𝑡𝑒 𝑖  𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑘) , so called posteriors. It is 
shown in [1] 9 that for the true state of nature, assuming that 𝑥!! = 1, we have that the 
Bayesian Truth Serum scoring rule is given by  

 
𝑢! = ln 𝑧!! + 𝐴 

 
The term A does not reflect ranking and ensures that the zero-sum property is satisfied. 
Let us denote 𝑍! = {𝑧!! ∶ 𝑖 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑛𝑎𝑡𝑢𝑟𝑒}. Hence, the conditional expectation can be 
expressed as 
 

𝐸 𝑢! 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑘) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑍! + 𝐴 
 
Observe however that the 𝑢! ranking is not based on entropy, but rather on 𝑧!!  itself. 

Thus it more resembles the maximum likelihood estimator based on posteriors.  
 
Observe that an essential feature of the BTS algorithm is that it simultaneously 

measures the quality of information and prediction. We emphasize that the system of 
axioms in this paper does not use the zero-sum property as the distinguishing one among 
various algorithms of the form (6) (compare this to the characterization of BTS in [6]). 

 
So far Bayesian Truth Serum bas been successfully tested for human respondents, 

hence the importance of incentive-compatibility. By setting aside incentive-compatibility 
and focusing on the ranking system, we believe that the algorithm can be applied in the 
context where players are machines instead of humans. One application would be 
measuring information-prediction capability in such various fields as meteorology, 
finance, medicine, etc. 
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