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Abstract

The theory of wavelets has been thoroughly studied by many authors; stan-
dard references include books by I. Daubechies, by Y. Meyer, by R. Coifman and Y.
Meyer, by C.K. Chui, and by M.V. Wickerhauser. In addition, the development of
wavelets influenced the study of various other reproducing function systems. Inter-
estingly enough, some open questions remained unsolved or only partially solved for
more than twenty years even in the most basic case of dyadic orthonormal wavelets
in a single dimension. These include issues related to the MRA structure (for ex-
ample, a complete understanding of filters), the structure of the space of negative
dilates (in particular, with respect to what is known as the Baggett problem), and
the variety of resolution structures that may occur. In this article we offer a com-
prehensive, yet technically fairly elementary approach to these questions. On this
path, we present a multitude of new results, resolve some of the old questions, and
provide new advances for some problems that remain open for the future.

In this study, we have been guided mostly by the philosophy presented some
twenty years ago in a book by E. Hernandez and G. Weiss (one of us), in which
the orthonormal wavelets are characterized by four basic equations, so that the
interplay between wavelets and Fourier analysis provides a deeper insight into both
fields of research. This book has influenced hundreds of researchers, and their effort
has produced a variety of new techniques, many of them reaching far beyond the
study of one-dimensional orthonormal wavelets. Here we are trying to close the
circle in some sense by applying these new techniques to the original subject of
one-dimensional wavelets. We are primarily interested in the quality of new results
and their clear presentations; for this reason, we keep our study on the level of a
single dimension, although we are aware that many of our results can be extended
beyond that case.

Given ψ, a square integrable function on the real line, we want to address the
following question: What sort of structures can one obtain from the affine wavelet
family {2j/2ψ(2jx − k) : j, k ∈ Z} associated with ψ? It may be too difficult
to directly attack this problem via the function ψ. We argue in this article that
the appropriate object to study is the principal shift invariant space generated
by ψ (these spaces were introduced by H.Helson decades ago and applied very
successfully in the approximation theory by C. de Boor, R.A. DeVore, and A. Ron,
with more recent applications to wavelets introduced by A. Ron and Z. Shen).
With this goal in mind, in Chapter 1, we present a very detailed study of principal
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vi ABSTRACT

shift invariant spaces and their generating families. These include the relationships
between principal shift invariant spaces, various basis-like and frame-like properties
of their generating families, their classifications based on additional translation
invariances, convergence properties of various reproducing families with emphasis
on the case of unconditional convergence, and the special properties of maximal
principal shift invariant spaces.

Given a principal shift invariant space V and the dyadic dilation D, our ap-
proach is that the entire theory can be developed by considering two basic rela-
tionships between V and D(V ). Chapter 2 is devoted to the first of these two
cases, the one in which the space V is contained within D(V ). In this chapter, we
completely resolve this case via an emphasis on generalized filter studies. We show
that the entire generalized MRA theory is a natural consequence of this approach,
with a detailed classification of all the special cases of what we term as Pre-GMRA
structures. Special attention is devoted to the analysis of the general form of a
filter associated with the space V . The theory splits into two subcases, based on
the filter properties with respect to dyadic orbits; we distinguish the “full-orbit”
case and the “non full-orbit” case. In both cases we introduce new Tauberian con-
ditions which provide complete characterizations of “usable” filters. This approach
further splits into the analysis of low frequencies versus high frequencies. There
is a fundamental new result here which shows that, based on the “ergodic prop-

erties” of ψ̂, the two frequency regimes exhibit radically different behavior; low
frequencies allow completely localized adjustments while high frequencies can only
be treated in a global sense. Various known results, like the Smith-Barnwell con-
dition, the Cohen condition and its generalizations, the Lawton condition and its
generalizations, are extracted naturally from our general approach. A multitude
of new technical results are presented, with many examples and counter-examples
exhibited to illustrate various subtle points of the theory.

The third and final chapter is devoted to the second case, i.e., when the space V
is not contained in D(V ). This naturally leads to the space of negative dilates, and
the theory again splits into two subcases, based on whether the original function
ψ is contained within the space of its negative dilates or not. This is very much
in the spirit of the Baggett problem, and we find it somewhat striking that the
entire theory can be built based on such a simple property. We end the article with
a partial resolution of the Baggett problem, but the problem remains open when
taken in its full scope.



CHAPTER 1

Principal Shift-Invariant Spaces: Preliminaries
and Auxiliary Results

1. Basic Notions and Set Inclusion

Let L2(R) denote the usual space of square-integrable, complex-valued func-
tions on R. We denote the usual inner product and norm on L2(R) by 〈·, ·〉 and
‖ · ‖, respectively. For a general Hilbert space X, we denote the inner product and
norm by 〈·, ·〉X and ‖ · ‖X , respectively. For a measurable subset A of R, we use |A|
to denote the Lebesgue measure of A.

For a function ψ ∈ L2(R), we study reproducing function systems built from
ψ using translations and dilations. We begin with the study of translations. For
a ∈ R, we denote by Ta : L2(R)→ L2(R) the unitary operator defined pointwise by
(Taf)(x) := f(x−a). For the majority of existing applications, one is only interested
in a discrete family of translations, and so we focus on the integer translations first;
write

(1.1) Bψ := {Tkψ : k ∈ Z}.

The family Bψ generates a closed subspace of L2(R) defined by

(1.2) 〈ψ〉 := spanBψ,

where the closure is with respect to the usual norm topology on L2(R). The space
〈ψ〉 is obviously invariant under integer translations in the sense that Tk〈ψ〉 ⊆ 〈ψ〉
for each integer k. We shall say that, for a general closed subspace V of L2(R) is
a shift-invariant space (or SIS for short) if TkV ⊆ V for every integer k. Clearly,
spaces of the form 〈f〉 represent the “smallest” non-trivial shift-invariant spaces,
and so we call 〈ψ〉 the principal shift-invariant space generated by ψ. These spaces
have been studied by many authors over the last several decades: for early devel-
opments of these spaces, see [Hel64]; for applications in approximation theory see
[dBDR94]; for more recent connections with wavelet theory, see [RS95], [Bow00],
[WW01], [HŠWW10b], [HŠWW10a].

A principal shift-invariant space 〈ψ〉 is a closed subspace of L2(R); hence, 〈ψ〉
is a Hilbert space and Bψ is its generating set. In the trivial case when ψ ≡ 0, we

have Bψ = {0} = 〈ψ〉. If ψ 6≡ 0, then Bψ is linearly independent (see [ŠS07] for a
simple argument). It follows then that 〈ψ〉 is an infinite-dimensional subspace of
L2(R) when ψ 6≡ 0. However, the standard notion of dimension is not the most
suitable one for the study of shift-invariant spaces. As we discuss below, there is
a natural notion of “SIS dimension” such that the principal shift-invariant spaces
are “one-dimensional”. We need the Fourier transform to describe it. We will use
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2 1. PRINCIPAL SHIFT-INVARIANT SPACES: PRELIMINARIES AND AUXILIARY RESULTS

the standard version of the Fourier transform, i.e., for f ∈ L1(R) ∩ L2(R),

f̂(ξ) =

∫
R
f(x)e−2πixξdx.

The Plancherel formula guarantees that ·̂ is an isometry on L2(R) and (f̂)∨ = f ,
where ·∨ denotes the inverse Fourier transform.

Recall that T̂af(ξ) = e−2πiaξ f̂(ξ). For a = k ∈ Z, we denote the function
ξ 7→ e2πikξ by ek. Observe that ek : R → C is a 1-periodic function and, as
such, can be also considered as a function on the one-dimensional torus, T := R/Z
(we shall employ such “dual” treatment whenever we are dealing with 1-periodic
functions on R).

Given an SIS V ⊆ L2(R) and a countable generating set Φ for V , there is a
measurable, 1-periodic function dimV,Φ : R→ N ∪ {∞} whose value at ξ is defined
to be the dimension of the subspace of `2(Z) spanned by {(ϕ̂(ξ+k))k∈Z : ϕ ∈ Φ}. It
is not hard to show that, actually, dimV,Φ is independent of the choice of Φ; that is,
if Φ and Φ′ are both countable generating sets for V , then dimV,Φ = dimV,Φ′ almost
everywhere. Thus we define1 dimV , the dimension function of V , to be dimV,Φ for
some choice of countable generating set Φ:

(1.3) dimV := dimV,Φ which is independent of the choice of Φ

It is of interest to consider the following “1-periodic” sets (most of our formulae
are in the a.e. sense, and we shall omit the “a.e.” to simplify the notation):

ZV := {ξ ∈ R : dimV (ξ) = 0}
UV := ZcV = {ξ ∈ R : dimV (ξ) 6= 0}
IV := {ξ ∈ R : dimV (ξ) =∞}.

Obviously, for V = {0}, we have ZV = R, while for V = L2(R), we have IV = R.
It is well known (see [ŠSW08] for example) that I〈ψ〉 = ∅ and

(1.4) dim〈ψ〉 = χU〈ψ〉 ,

i.e. dim〈ψ〉 takes only the values 0 and 1. This shows that principal shift-invariant
spaces are “one-dimensional” in the sense of dimV — and, in particular, 〈ψ〉 is
“much smaller” than L2(R).

Example 1.5. For a measurable set E ⊆ R, we denote by L2(E)∨ the space
defined by

L2(E)∨ := {f ∈ L2(R) : the support of f̂ ⊆ E}.
Since T̂kf = e−kf̂ for each k ∈ Z, it is easy to see that L2(E)∨ is an SIS. For
E = [a, b] with a, b ∈ R such that a < b and b− a ∈ N,

(1.6) dimL2([a,b])∨(ξ) ≡ b− a.
In particular, if a < b ∈ R with a < b and b−a ≤ 1, then L2([a, b])∨ = L2((a, b])∨ =
L2([a, b))∨ = L2((a, b))∨ is a principal shift-invariant space. If b − a = 1, then
dimL2([a,b])∨ ≡ 1. Observe also that we have the following orthogonal sum

L2(R) :=
⊕
n∈Z

L2([n, n+ 1))∨.

♦

1For an alternative definition of the dimension function, see the end of Remark 2.9
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It follows from Equation (1.4) that the analysis of the function dim〈ψ〉 is essen-
tially the analysis of the set Z〈ψ〉. Although this is helpful, it is often “too crude” a
tool for the analysis of the finer properties of 〈ψ〉. With this purpose in mind, we go
back to some ideas from [dBDR94] (see also [HŠWW10a] for general properties).
We consider the bracket product which introduces an “inner-product like” structure
into an SIS. For ϕ,ψ ∈ L2(R), we make the following definition:

(1.7) [ϕ,ψ](ξ) :=
∑
k∈Z

ϕ̂(ξ + k)ψ̂(ξ + k) for ξ ∈ R.

It is well known that [ϕ,ψ] is a 1-periodic function, belongs to L1(T) and exhibits
many properties analogous to inner products, although the bracket product is now
function-valued in the sense that [·, ·] : L2(R)× L2(R)→ L1(T).

We now take a moment to suggest a replacement “scalar multiplication” for
this bracket product. For ϕ ∈ L2(R) and m ∈ L∞(T), we define m • ϕ via

m • ϕ = (mϕ̂)∨.

The above formula actually makes sense for m in a larger class of 1-periodic func-
tions; it is not hard to see that if m is 1-periodic, the function m • ϕ will be well
defined if and only if m ∈ L2(T, [ϕ,ϕ]), which is the collection of functions on T
which are square-integrable with respect to the measure [ϕ,ϕ](ξ)dξ (see [LWW15]
for more details). In this context, a shift-invariant space can be viewed as a mod-
ule over L∞(T) (or some potentially larger collection of functions), with the scalar
multiplication given by this • operation. Many computations point to the utility
of this point of view; for example, consider that for m ∈ L∞(T)

(1.8) [m • ϕ,ψ] = m[ϕ,ψ]

and

(1.9) [ϕ,m • ψ] = m[ϕ,ψ].

We emphasize that these two identities make sense for m in spaces larger than
L∞(T) — the first identity holds precisely when m ∈ L2(T, [ϕ,ϕ]), and the second
identity holds when m ∈ L2(T, [ψ,ψ]).

Since [ϕ,ψ] ∈ L1(R), it has well-defined Fourier coefficients. In fact, for each
k ∈ Z,

(1.10) [ϕ,ψ]∧(k) = 〈ϕ, T−kψ〉L2(R).

We will often use [ψ,ψ] and so we introduce the following special notation for
it: pψ := [ψ,ψ] whenever ψ ∈ L2(R) and we call it the periodization function for ψ

(see [ŠSW08] for several basic properties).

Remark 1.11. There is a natural question to ask here regarding the relation-
ship of 〈ψ〉 and pψ. On the one hand, we will see many examples of ϕ and ψ such
that 〈ϕ〉 = 〈ψ〉 and pϕ 6= pψ as well as examples of ϕ and ψ so that pϕ = pψ but
〈ϕ〉 6= 〈ψ〉.

On the other hand, however, it is well known (e.g. [WW01], for example) that
there exists an isometric isomorphism I = Iψ : L2(T, pψ)→ 〈ψ〉 given by

(1.12) I(m) = m • ψ;
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L2(T, pψ) is the class of square integrable functions with respect to the measure
pψ(ξ)dξ. Furthermore, for every k ∈ Z,

(1.13) Iψ(e−k) = Tkψ.

Hence the analysis of Bψ within 〈ψ〉 is equivalent to the analysis of the exponentials
{ek : k ∈ Z} within weighted space L2(T, pψ). For more details, generalizations, and

some extensions, one may consult [HŠWW10b], [HŠWW10a], [MŠWW13]. �

Observe that, despite the previous remark, we do have some precise connections
between dim〈ψ〉 and pψ in the sense that

(1.14) Z〈ψ〉 = {ξ ∈ R : pψ(ξ) = 0}.

Beyond that, dim〈ψ〉 and pψ may differ substantially; for example, the first function
is integer-valued while the second need not be.

We now turn our attention to set inclusion properties of principal SIS. Observe
that

({〈ψ〉 : ψ ∈ L2(R)},⊆)

forms a partially ordered set. There is a single minimal element, 〈0〉 = {0}, but
there are many maximal elements. Recall 〈ψ〉 is a maximal principal SIS if the
following is valid:

(1.15) if ϕ ∈ L2(R) and 〈ψ〉 ⊆ 〈ϕ〉, then 〈ψ〉 = 〈ϕ〉.

It follows directly from [HŠWW10b] that it is easy to characterize the maximal
principal SIS:

Proposition 1.16. The following are equivalent:

(1) 〈ψ〉 is a maximal principal SIS;
(2) dim〈ψ〉 ≡ 1;
(3) pψ(ξ) > 0 for almost every ξ ∈ R.

The following example shows that the conclusion of Zorn’s Lemma is trivially
fulfilled in this partially ordered set.

Example 1.17. Given ψ ∈ L2(R), define ϕ ∈ L2(R) via

ϕ̂(ξ) :=

{
1 if ξ ∈ [0, 1) ∩ Z〈ψ〉
ψ̂(ξ) otherwise.

It follows that 〈ψ〉 ⊆ 〈ϕ〉, that 〈ϕ〉 is maximal and that 〈ψ〉 = 〈ϕ〉 if and only if 〈ψ〉
is a maximal principal SIS. Observe that, in any case, if we take m(ξ) := χU〈ψ〉(ξ),
then we have m • ϕ = ψ. ♦

Regarding set inclusions, we need to first characterize when it is that 〈ϕ〉 ⊆ 〈ψ〉
for ϕ,ψ ∈ L2(R). In essence, the answer is given already in [dBDR94], and we
provide a brief sketch with some additional details.

Obviously, given ϕ,ψ ∈ L2(R), one has that 〈ϕ〉 ⊆ 〈ψ〉 if and only if ϕ ∈ 〈ψ〉,
i.e. if and only if there exists an m ∈ L2(T, pψ) such that ϕ = m •ψ. Furthermore,
it is not difficult to find m in terms of ϕ and ψ. Using (1.8) we have

[ϕ,ψ] = [m • ψ,ψ] = mpψ.

This directly proves the following lemma.



1. BASIC NOTIONS AND SET INCLUSION 5

Lemma 1.18. If ϕ,ψ ∈ L2(R) and 〈ϕ〉 ⊆ 〈ψ〉, then ϕ = m•ψ, where m is given
by

m :=
[ϕ,ψ]

pψ
χU〈ψ〉 .

We would like to emphasize a small (but somewhat subtle) issue regarding how
m depends on our knowledge of ψ. Suppose that ψ ∈ L2(R) is given. If we want to
construct functions ϕ within 〈ψ〉, then, as described above, we have to make sure
that we consider 1-periodic functions m which belong to L2(T, pψ) and then apply
the formula ϕ := m • ψ. If, however, the function ϕ ∈ L2(R) is also given, then we
observe that we can always calculate the right hand side in Lemma 1.18. Hence we

can produce a 1-periodic, measurable function m such that m = [ϕ,ψ]
pψ

χU〈ψ〉 . First

of all, it is not a priori clear whether this m actually belongs to L2(T, pψ) or not.
In order to understand this issue we apply the Cauchy-Schwarz inequality for the
bracket product: ∣∣∣∣ [ϕ,ψ]

pψ
χU〈ψ〉

∣∣∣∣2 pψ = |[ϕ,ψ]|2 1

pψ
χU〈ψ〉 ≤ pϕ.

Since pϕ ∈ L1(T), we deduce that, for every ϕ,ψ ∈ L2(R),

(1.19) m :=
[ϕ,ψ]

pψ
χU〈ψ〉 ∈ L

2(T, pψ).

In particular, m • ψ ∈ 〈ψ〉. Observe, though, that m • ψ may not equal ϕ. Thus
in order to understand whether ϕ belongs to 〈ψ〉 we first ask whether there is a

1-periodic, measurable function m̃ such that ϕ̂ = m̃ψ̂, and, if the answer to this
question is positive, then we would like to know if this is enough to deduce that ϕ
belongs to 〈ψ〉. Actually, it is since∫

T
|m̃|2pψ =

∫
R
|m̃|2|ψ̂|2 =

∫
|ϕ̂|2 = ‖ϕ‖L2(R) <∞.

In particular, it has to be that m̃χU〈ψ〉 = mχU〈ψ〉 , while the values of m̃ on
Z〈ψ〉 are irrelevant.

To this short analysis, we add a discussion of what one can conclude in the case
of equality in the Cauchy–Schwarz inequality.

Proposition 1.20. If ϕ,ψ ∈ L2(R), then the following are equivalent:

(a) 〈ϕ〉 ⊆ 〈ψ〉;
(b) ϕ ∈ 〈ψ〉;
(c) There exists a 1-periodic, measurable function m : R→ C such that ϕ̂ = mψ̂;
(d) U〈ϕ〉 ⊆ U〈ψ〉 and |[ϕ,ψ]|2 = pϕpψ.

The case of equality, when 〈ϕ〉 = 〈ψ〉, is then an easy consequence of this
proposition:

Corollary 1.21. If ϕ,ψ ∈ L2(R), then the following are equivalent:

(a) 〈ϕ〉 = 〈ψ〉;
(b) U〈ϕ〉 = U〈ψ〉 and there exists a 1-periodic, measurable function m : R→ C such

that ϕ̂ = mψ̂;
(c) U〈ϕ〉 = U〈ψ〉 and |[ϕ,ψ]|2 = pϕpψ.
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Let us briefly comment on the function m which appears in 1.21b. Using
Lemma 1.18 we obtain that, for ξ ∈ U〈ψ〉 = U〈ϕ〉, we have m(ξ) 6= 0 and

m(ξ) =
[ϕ,ψ](ξ)

pψ(ξ)
and

1

m(ξ)
=

[ψ,ϕ](ξ)

pϕ(ξ)
.

Since ϕ = m • ψ and ψ = 1
m • ψ, for ξ ∈ U〈ψ〉 = U〈ϕ〉, we obtain

ϕ̂(ξ)ψ̂(ξ)

[ϕ,ψ](ξ)
=
|ψ̂(ξ)|2

pψ(ξ)
and

ψ̂(ξ)ϕ̂(ξ)

[ψ,ϕ](ξ)
=
|ϕ̂(ξ)|2

pϕ(ξ)
.

Observe that on the right sides of these two equalities we have real values and that,
using [ψ,ϕ] = [ϕ,ψ], we obtain

|ψ̂(ξ)|2

pψ(ξ)
=
|ϕ̂(ξ)|2

pϕ(ξ)
.

In other words, we have proved the following result.

Lemma 1.22. If ϕ,ψ ∈ L2(R) satisfy 〈ϕ〉 = 〈ψ〉, then for every ξ ∈ U〈ϕ〉 = U〈ψ〉,

|ψ̂(ξ)|2

pψ(ξ)
=
ϕ̂(ξ)ψ̂(ξ)

[ϕ,ψ](ξ)
=
ψ̂(ξ)ϕ̂(ξ)

[ψ,ϕ](ξ)
=
|ϕ̂(ξ)|2

pϕ(ξ)
.

In particular, ssuppϕ̂ = ssuppψ̂, where by ssupp we denote the set support,
defined by

ssuppf := {ξ ∈ R : f(ξ) 6= 0}.

It follows from Lemma 1.22 that both ssuppψ̂ and the function ξ 7→ |ψ̂(ξ)|2
pψ(ξ) χU〈ψ〉(ξ)

really only depend on the principal shift-invariant space 〈ψ〉 rather than the func-
tion ψ. This relationship has been employed by several authors, including, for
example, [dBDR94], [BMM99], [Rze00], and [BR05]. Using the notation from
[Rze00] and [BR05], for ψ ∈ L2(R), we denote the spectral function of 〈ψ〉 by σ〈ψ〉
and define it by

(1.23) σ〈ψ〉(ξ) :=
|ψ̂(ξ)|2

pψ(ξ)
χU〈ψ〉(ξ) for ξ ∈ R.

Observe that σ〈ψ〉 : R→ [0,∞), that σ〈ψ〉 ∈ L1(R), and

(1.24)
∑
k∈Z

σ〈ψ〉(ξ + k) = χU〈ψ〉(ξ) = dim〈ψ〉(ξ).

One can also check some of the basic properties of the spectral function (see
[BR05] for details). If ϕ,ψ ∈ L2(R), then

(1.25) 〈ϕ〉 ⊆ 〈ψ〉 implies that σ〈ϕ〉 ≤ σ〈ψ〉;
furthermore, if, for some ξ ∈ R, one has σ〈ϕ〉(ξ) < σ〈ψ〉(ξ), then σ〈ϕ〉(ξ) = 0.
Using the spectral function we can also test the inclusion property for principal
shift-invariant spaces. More precisely, if ϕ,ψ ∈ L2(R), then 〈ϕ〉 ⊆ 〈ψ〉 if and only
if

{ξ ∈ R : ψ̂(ξ) = 0} ∪ {ξ ∈ R : [ϕ,ψ](ξ) = 0} ⊆ {ξ ∈ R : ϕ̂(ξ) = 0}, and

for every ξ ∈ R such that [ϕ,ψ](ξ) 6= 0, one has
ϕ̂(ξ)ψ̂(ξ)

[ϕ,ψ](ξ)
= σ〈ψ〉(ξ).(1.26)
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Similarly, we can test the equality case as well. If ϕ,ψ ∈ L2(R), then 〈ϕ〉 = 〈ψ〉 if
and only if

U〈ϕ〉 =U〈ψ〉 = {ξ ∈ R : [ϕ,ψ](ξ) 6= 0}, and for every ξ ∈ U〈ψ〉

one has σ〈ϕ〉(ξ) =
ϕ̂(ξ)ψ̂(ξ)

[ϕ,ψ](ξ)
= σ〈ψ〉(ξ).(1.27)

If we already have an inclusion, then the equality case is very easy to check.
More precisely, if ϕ,ψ ∈ L2(R) are such that 〈ϕ〉 ⊆ 〈ψ〉, then

(1.28) 〈ϕ〉 = 〈ψ〉 if and only if σ〈ϕ〉 = σ〈ψ〉 if and only if U〈ϕ〉 = U〈ψ〉.

Observe also that if ϕ,ψ ∈ L2(R) and 〈ϕ〉 = 〈ψ〉, then

(1.29) ssuppϕ̂ = ssuppψ̂ = ssuppσ〈ψ〉;

we denote any of the above equal sets by ssupp〈ψ〉. Obviously,

(1.30) ξ ∈ U〈ψ〉 if and only if there exists a k ∈ Z such that ξ + k ∈ ssupp〈ψ〉.
Although these properties are often very useful, one must be careful in applying

them properly. Consider the following example.

Example 1.31. Take ψ ∈ L2(R) and define ϕ ∈ L2(R) so that ϕ̂ = |ψ̂|. It is
easy to see that, for many choices of ψ, we will have 〈ϕ〉 6= 〈ψ〉. On the other hand
it is obvious that for any choice of ψ, this choice of ϕ satisfies pϕ = pψ, U〈ϕ〉 = U〈ψ〉,
and σ〈ϕ〉 = σ〈ψ〉. Observe also that

ϕ ∈ 〈ψ〉 if and only if 〈ϕ〉 = 〈ψ〉 if and only if ψ ∈ 〈ϕ〉.
♦

2. Relationship Between Two Principal Shift-Invariant Spaces

In this section we analyze the relationship between a pair of principal shift-
invariant spaces, 〈ϕ〉 and 〈ψ〉, generated by ϕ,ψ ∈ L2(R). We begin by studying
the intersection of two such spaces. Recall that if V and W are shift-invariant
spaces, then V ∩W is a shift-invariant space as well. In particular, 〈ϕ〉 ∩ 〈ψ〉 is a
shift-invariant space, and

dim〈ϕ〉∩〈ψ〉 ≤ min{dim〈ϕ〉,dim〈ψ〉} ≤ 1.

It follows that 〈ϕ〉 ∩ 〈ψ〉 is a principal shift-invariant space. It makes sense to
consider U〈ϕ〉∩〈ψ〉. Using this approach we can describe 〈ϕ〉∩〈ψ〉 completely, as the
following theorem shows.

Theorem 2.1. If ϕ,ψ ∈ L2(R), then

(a) U〈ϕ〉∩〈ψ〉 = {ξ ∈ R : 0 6= |[ϕ,ψ](ξ)|2 = pϕ(ξ) · pψ(ξ)}.
(b) 〈ϕ〉 ∩ 〈ψ〉 = 〈χU〈ϕ〉∩〈ψ〉 • ϕ〉 = 〈χU〈ϕ〉∩〈ψ〉 • ψ〉.

Proof. Let us denote by H = H(ϕ,ψ) the set

H(ϕ,ψ) = {ξ ∈ R : 0 6= |[ϕ,ψ](ξ)|2 = pϕ(ξ) · pψ(ξ)}.
Obviously, this is a measurable and 1-periodic set. Keeping in mind the fact that
〈ϕ〉 ∩ 〈ψ〉 is a principal shift-invariant space, observe that, in order to prove the
entire theorem, it is enough to establish that

〈ϕ〉 ∩ 〈ψ〉 = 〈χH • ϕ〉
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since one can freely interchange the roles of ϕ and ψ and U〈ϕ〉∩〈ψ〉 is precisely the
set where the periodization function of 〈ϕ〉 ∩ 〈ψ〉 is positive (here by periodization
function of 〈ϕ〉 ∩ 〈ψ〉, we mean pα, where 〈ϕ〉 ∩ 〈ψ〉 = 〈α〉, keeping in mind the
comment immediately preceding the statement of the theorem).

Using Proposition 1.20d, we obtain 〈χH • ϕ〉 ⊆ 〈ϕ〉 ∩ 〈ψ〉. For the reverse
inclusion, consider η ∈ 〈ϕ〉 ∩ 〈ψ〉, and, without loss of generality, we may assume
η 6= 0. By Lemma 1.18, there exist ν ∈ L2(T, pϕ) and µ ∈ L2(T, pψ) such that
η = ν • ϕ = µ • ψ. It follows that

pη = |ν|2pϕ = |µ|2pψ.

Hence, if pη(ξ) > 0, then pϕ(ξ) > 0 and pψ(ξ) > 0, and, by Lemma 1.18, we also
obtain

0 6= µ(ξ) =
[η, ψ](ξ)

pψ(ξ)
=
ν(ξ)[ϕ,ψ](ξ)

pψ(ξ)
=

[η,ϕ](ξ)
pϕ(ξ) [ϕ,ψ](ξ)

pψ(ξ)

= µ(ξ)
[ψ,ϕ](ξ)[ϕ,ψ](ξ)

pϕ(ξ)pψ(ξ)
= µ(ξ)

|[ϕ,ψ](ξ)|2

pϕ(ξ)pψ(ξ)
.

Thus if pη(ξ) > 0, then ξ ∈ H. It follows that if pη(ξ) > 0, then

|[η, χH • ϕ](ξ)|2 = |µ(ξ)|2|[ψ, χH • ϕ](ξ)|2

= |µ(ξ)|2χ2
H |[ψ,ϕ](ξ)|2

= |µ(ξ)|2pψ(ξ)pϕ(ξ) (by definition of H)

= pη(ξ)pϕ(ξ)

= pη(ξ)pχH•ϕ(ξ) (since ξ ∈ H).

By Proposition 1.20d, we conclude that η ∈ 〈χH • ϕ〉.
�

Corollary 2.2. If ϕ,ψ ∈ L2(R), then one has 〈ϕ〉 ∩ 〈ψ〉 = {0} if and only if
|U〈ϕ〉∩〈ψ〉| = 0.

Remark 2.3. (i) Obviously, one always has U〈ϕ〉∩〈ψ〉 ⊆ U〈ϕ〉 ∩ U〈ψ〉. The
reverse inclusion is not necessarily true (see the example in (iii), below). We
will discuss some special cases when the reverse inclusion is true later in this
section.

(ii) The spectral function does not seem particularly helpful in characterizing the
intersection, 〈ϕ〉 ∩ 〈ψ〉. It is easy to see that ξ ∈ U〈ϕ〉∩〈ψ〉 implies σ〈ϕ〉(ξ) =
σ〈ψ〉(ξ). However, the reverse implication is not necessarily true; see (iii),
below.

(iii) Consider ϕ,ψ ∈ L2(R) such that

ϕ̂ =
1√
2

(
χ[0,1/2) + χ[1,3/2)

)
and

ψ̂ =
1√
2

(
χ[0,1/2) − χ[1,3/2)

)
.

It follows that pϕ = pψ = χ[0,1/2), that [ϕ,ψ] ≡ 0, that σ〈ϕ〉 = σ〈ψ〉 =
1
2

(
χ[0,1/2) + χ[1,3/2)

)
, and that U〈ϕ〉 = U〈ψ〉 =

⋃
k∈Z([0, 1/2) + k). Nonethe-

less, one also has U〈ϕ〉∩〈ψ〉 = ∅.
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(iv) Considering the other extreme, observe that we obtain easily the following:
U〈ϕ〉∩〈ψ〉 = R if and only if both 〈ϕ〉 and 〈ψ〉 are maximal and 〈ϕ〉 = 〈ψ〉.

(v) Furthermore, it is also easy to see that 〈ϕ〉 6= 〈ψ〉 implies |Z〈ϕ〉∩〈ψ〉| > 0. In
particular, unless both 〈ϕ〉 and 〈ψ〉 are maximal and equal, it is impossible
for 〈ϕ〉 ∩ 〈ψ〉 to be a maximal principal shift-invariant space.

�

Consider now a very special case, where ϕ,ψ, η ∈ L2(R), and 〈ϕ〉 ⊆ 〈η〉 and
〈ψ〉 ⊆ 〈η〉. Then there exist ν, µ ∈ L2(T, pη) such that ϕ = ν • η and ψ = µ • η. It
follows that

|[ϕ,ψ]|2 = |νµ[η, η]|2 = |ν|2pη|µ|2pη = pϕpψ.

Hence, in this special case, the expression above is non-zero if and only if both pϕ
and pψ are positive. Furthermore, if pϕ(ξ) > 0 and pψ(ξ) > 0, then ξ ∈ U〈ϕ〉∩〈ψ〉.
In other words, we have proven the following:

Proposition 2.4. Suppose that ϕ,ψ, η ∈ L2(R) satisfy 〈ϕ〉 ⊆ 〈η〉 and 〈ψ〉 ⊆
〈η〉. Then

U〈ϕ〉∩〈ψ〉 = U〈ϕ〉 ∩ U〈ψ〉.

Moving beyond the intersection relationship, one should study another impor-
tant relationship between principal shift-invariant spaces: orthogonality. The con-
dition for orthogonality in the setting of principal shift-invariant spaces has been
known for a long time (see, for example, [dBDR94]): 〈ϕ〉 ⊥ 〈ψ〉 if and only if
[ϕ,ψ] ≡ 0 almost everywhere. Using this, we abuse notation somewhat and denote,
for ϕ,ψ ∈ L2(R), the set

(2.5) U〈ϕ〉⊥〈ψ〉 := {ξ ∈ R : [ϕ,ψ](ξ) = 0}.
Obviously, U〈ϕ〉⊥〈ψ〉 is measurable, 1-periodic, and satisfies

(2.6) U〈ϕ〉⊥〈ψ〉 ∩ U〈ϕ〉∩〈ψ〉 = ∅;
moreover, 〈ϕ〉 and 〈ψ〉 are orthogonal to one another if and only if U〈ϕ〉⊥〈ψ〉 = R.
Using this criterion, it is straightforward to prove that

(2.7) 〈χU〈ϕ〉⊥〈ψ〉 • ϕ〉 ⊥ 〈ψ〉 and 〈χU〈ϕ〉⊥〈ψ〉 • ψ〉 ⊥ 〈ϕ〉,
and

(2.8) 〈χU〈ϕ〉⊥〈ψ〉 • ϕ〉 ⊥ 〈ϕ〉 ∩ 〈ψ〉 ⊥ 〈χU〈ϕ〉⊥〈ψ〉 • ψ〉.

Remark 2.9. Orthogonality is often used in the theory of shift-invariant spaces.
It is crucial that the bracket product, [·, ·], has many properties analogous to the
inner product — this enables one to apply the Gram–Schmidt process. We illustrate
this briefly here. Given shift-invariant spaces V,W ⊆ L2(R), it is obvious that an
ordinary sum V +W (we will use ⊕ to denote the orthogonal sum) of these spaces
is again a shift-invariant space. In particular, for ϕ,ψ ∈ L2(R) we have

〈ϕ〉+ 〈ψ〉 = 〈ϕ,ψ〉,
where, for any E ⊆ L2(R), we denote by 〈E〉 the intersection of all shift-invariant
spaces which contain E . We define η1, η2 ∈ L2(R) by

η1 := ϕ+ χZ〈ϕ〉∩U〈ψ〉 • ψ
and

η2 := χ(U〈ϕ〉∩U〈ψ〉)\U〈ϕ〉∩〈ψ〉 •
(
ψ − [ψ,ϕ]

pϕ
• ϕ
)
,
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and obtain the following properties:

(1) η1 ⊥ η2;
(2) 〈ϕ〉+ 〈ψ〉 = 〈ϕ,ψ〉 = 〈η1, η2〉 = 〈η1〉 ⊕ 〈η2〉.
(3) U〈η2〉 ⊆ U〈η1〉 = U〈ϕ〉 ∪ U〈ψ〉.
The dimension function is particularly suitable for orthogonal sums of shift-invariant
spaces. If V,W ⊆ L2(R) are orthogonal shift-invariant spaces, then (see, for exam-
ple [Bow00])

(2.10) dimV⊕W ≡ dimV + dimW .

In particular,
dim〈ϕ,ψ〉 = dim〈η1〉⊕〈η2〉 = dim〈η1〉+ dim〈η2〉,

and it follows easily that

(2.11) dim〈ϕ,ψ〉(ξ) =


0 if ξ ∈ Z〈ϕ〉 ∩ Z〈ψ〉;
1 if ξ ∈

(
Z〈ϕ〉 ∩ U〈ψ〉

)
∪
(
U〈ϕ〉 ∩ Z〈ψ〉

)
∪
(
U〈ϕ〉∩〈ψ〉

)
;

2 if ξ ∈
(
U〈ϕ〉 ∩ U〈ψ〉

)
\ U〈ϕ〉∩〈ψ〉

Orthogonal sums may also be used to extend the spectral function from princi-
pal shift-invariant spaces to general shift-invariant spaces. Recall (see, for example
[Bow00]) that, for every shift-invariant space V ⊆ L2(R), there exists a countable
family F ⊂ L2(R) such that

(2.12) V =
⊕
f∈F

〈f〉.

We may then define the spectral function, σV , by

(2.13) σV =
∑
f∈F

σ〈f〉.

For example, by selecting θ1 and θ2 via

θi :=

(
1
√
pηi

χU〈ηi〉

)
• ηi for i = 1, 2,

we obtain

(2.14) σ〈ϕ,ψ〉 = σ〈η1〉⊕〈η2〉 = σ〈θ1〉⊕〈θ2〉 = |θ̂1|2 + |θ̂2|2.
This same structure provides us an alternative definition for the dimension

function. Suppose that, as above, V =
⊕

f∈F 〈f〉. We assume that |F| = ∞; the
case when F has finite cardinality is handled the same way with minor changes in
notation. Let (fi)

∞
i=1 denote an enumeration of F . We define the family G = {gi :

i = 1, 2, ...} via the formula

gi :=

(
1
√
pfi

χ〈fi〉

)
• fi.

Then

dimV =

∞∑
i=1

pgi .

In the specific case when V = 〈ϕ,ψ〉, one obtains

(2.15) dim〈ϕ,ψ〉 = pθ1 + pθ2 .

We can think of {θ1, θ2} as being something like a “shift-invariant space analog of
an orthonormal basis” for 〈ϕ,ψ〉. �
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With the above discussion in mind, it is straightforward to prove the following
list of results:

Corollary 2.16. If ϕ,ψ ∈ L2(R) are such that 〈ϕ〉 and 〈ψ〉 are both maximal
principal shift-invariant spaces, then

dim〈ϕ,ψ〉(ξ) =

{
1 if ξ ∈ U〈ϕ〉∩〈ψ〉;
2 otherwise

.

Corollary 2.17. If ϕ,ψ ∈ L2(R), then 〈ϕ,ψ〉 is a principal shift-invariant
space if and only if

U〈ϕ〉∩〈ψ〉 = U〈ϕ〉 ∩ U〈ψ〉

Compare the above result to Proposition 2.4

Corollary 2.18. If ϕ,ψ ∈ L2(R) are such that 〈ϕ,ψ〉 is a principal shift-
invariant space, then 〈ϕ,ψ〉 = 〈η〉, where

η = ϕ+ χZ〈ϕ〉∩U〈ψ〉 • ψ.

Furthermore, in this case the following are equivalent:

(a) 〈η〉 = 〈ϕ〉 ⊕ 〈ψ〉;
(b) 〈ϕ〉 ⊥ 〈ψ〉;
(c) 〈ϕ〉 ∩ 〈ψ〉 = {0};
(d) U〈ϕ〉 ∩ U〈ψ〉 = ∅.

As the last step of our analysis, consider the 1-periodic, measurable set given
by

R \
(
U〈ϕ〉∩〈ψ〉 ∪ U〈ϕ〉⊥〈ψ〉

)
=
(
U〈ϕ〉 ∩ U〈ψ〉

)
\
(
U〈ϕ〉∩〈ψ〉 ∪ U〈ϕ〉⊥〈ψ〉

)
= {ξ ∈ R : 0 < |[ϕ,ψ](ξ)|2 < pϕ(ξ) · pψ(ξ)}.(2.19)

We shall say that the set in Equation (2.19) contains those points ξ at which
the spaces 〈ϕ〉 and 〈ψ〉 are “at an angle” and denote this set with the following
suggestive notation:

(2.20) U〈ϕ〉∠〈ψ〉 := R \
(
U〈ϕ〉∩〈ψ〉 ∪ U〈ϕ〉⊥〈ψ〉

)
.

Clearly, we have

(2.21) 〈ϕ〉 = 〈χU〈ϕ〉∩〈ψ〉 • ϕ〉 ⊕ 〈χU〈ϕ〉⊥〈ψ〉 • ϕ〉 ⊕ 〈χU〈ϕ〉∠〈ψ〉 • ϕ〉,

and a similar formula holds for ψ. For generic functions ϕ,ψ ∈ L2(R), there
will be sets of positive measure at which the spaces 〈ϕ〉 and 〈ψ〉 are “parallel”
(ξ ∈ U〈ϕ〉∩〈ψ〉), “perpendicular” (ξ ∈ U〈ϕ〉⊥〈ψ〉), and “at an angle” (ξ ∈ U〈ϕ〉∠〈ψ〉).
It is sometimes helpful to think of principal shift-invariant spaces as analogs of
vectors in a vector space, but one must be careful: unlike vectors in a vector space,
principal shift-invariant spaces can, in some sense, be parallel, perpendicular, and
at an angle simultaneously. This fact underlies many of the difficulties related
to the analysis of shift-invariant spaces. We provide the following diagram as a
visualization tool to aid in understanding these relationships — technically, it would
be more accurate to draw this scheme in 4-dimensional space, but we must settle
for a 3-dimensional approximation.
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〈χU〈ϕ〉⊥〈ψ〉 • ϕ〉

〈χU〈ϕ〉∩〈ψ〉 • ϕ〉

〈χU〈ϕ〉∠〈ψ〉 • ϕ〉

〈χU〈ϕ〉⊥〈ψ〉 • ψ〉
〈χU〈ϕ〉∩〈ψ〉 • ψ〉

〈χU〈ϕ〉∠〈ψ〉 • ψ〉

3. Three Types of Principal Shift-Invariant Spaces

It is sometimes useful to consider translations other than translations by in-
tegers. One natural question to ask is, given a ψ ∈ L2(R) and an α ∈ R, when
will Tαψ ∈ 〈ψ〉? In other words, when will 〈ψ〉 be invariant under Tα? With-
out loss of generality, since 〈ψ〉 is invariant under integer translations already and
TkTα = TαTk, we may restrict our attention to those α ∈ (0, 1). The aforemen-
tioned question was first treated in [ACH+10]. Extensions and generalizations to
groups and lattices can be found in [ACP11], [ACP10], and [ŠW11] (see also
[Ive15] and [BHP15] and the references therein). We shall follow the approach
given in [ŠW11], including the notation. For example, if L ⊆ R is a countable
lattice, then we make the following definition:

〈ψ〉L := span{T`ψ : ` ∈ L}.
This space obviously satisfies T`〈ψ〉L = 〈ψ〉L, and so we refer to 〈ψ〉L as the princi-
pal L-invariant subspace generated by ψ. In particular, 〈ψ〉 = 〈ψ〉Z, and principal
shift-invariant spaces are principal Z-invariant spaces in this context.

Suppose that ψ ∈ L2(R) and that α = m/n, with m,n positive integers such

that m < n. Since, in this case, Tα =
(
T1/n

)m
, it is really enough to consider the

case where α = 1/n with n > 1. First, observe that the question under consid-
eration depends on the principal shift-invariant space rather than the generator;
in particular, if 〈ψ〉 = 〈ϕ〉, then Tαϕ ∈ 〈ϕ〉 if and only if Tαψ ∈ 〈ψ〉. Second,
notice that our present analysis requires understanding the relationship between
the lattice Z and the “super-lattice” 1

nZ. Obviously, it is always true that

(3.1) 〈ψ〉 = 〈ψ〉Z ⊆ 〈ψ〉 1
nZ.

Furthermore, T1/nψ ∈ 〈ψ〉 if and only if 〈ψ〉 = 〈ψ〉 1
nZ.

Following [ŠW11], for a function ψ ∈ L2(R), we define the following set:

(3.2) T〈ψ〉 :=
{
n ∈ {2, 3, 4, ...} : T1/nψ ∈ 〈ψ〉

}
.

Based on the properties of this set, we distinguish three types of principal shift-
invariant spaces:

• Type 1: T〈ψ〉 = ∅;
• Type 2: T〈ψ〉 6= ∅, with T〈ψ〉 a finite set;
• Type 3: T〈ψ〉 is an infinite set.

There is a complete characterization of these three types given in [ŠW11] as well
as techniques for constructing examples of each type. Let us emphasize only a few
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details. If ssupp 〈ψ〉 contains the interval [0, 2) (recall that ssupp 〈ψ〉 is defined to

be ssupp ψ̂), then 〈ψ〉 is a Type 1 space. In particular,

(3.3) ssupp 〈ψ〉 = R implies 〈ψ〉 is of Type 1,

so that, for example, 〈χ[0,1]〉 is of Type 1 since χ̂[0,1] = sinc(x). It turns out that
〈ψ〉 is of Type 2 if and only if there exists an integer n > 1 such that

(3.4) T〈ψ〉 = {m ∈ {2, 3, 4, ...} : m|n},
where m|n is the usual notation for “n is divisible by m”. Let us also point out
that 〈ψ〉 is of Type 3 if and only if

(3.5) Tαψ ∈ 〈ψ〉 for every α ∈ R.
it is particularly simple to construct ψ so that 〈ψ〉 is of Type 3. For example, take
an arbitrary f ∈ L2(R) and suppose that {Ak : k ∈ Z} forms a partition of [0, 1).
Define the set H by

H :=
⋃
k∈Z

(Ak + (k − 1)).

Then if we let ψ := χH • f , one has that 〈ψ〉 is of Type 3.

Remark 3.6. The characterization of these three types of behavior depends
on the properties of ssupp 〈ψ〉. However, it is not possible to distinguish the type
of a space 〈ψ〉 based solely on the properties of pψ or U〈ψ〉. For example, it is not
hard to construct square-integrable functions ψ1, ψ2, and ψ3 so that U〈ψi〉 = R and
pψi ≡ 1 for i = 1, 2, 3 but so that

• ssupp 〈ψ1〉 = [0, 2) so that 〈ψ1〉 is of Type 1.
• ssupp 〈ψ2〉 = [0, 1/2) ∪ [3/2, 5/2) so that 〈ψ2〉 is of Type 2.
• ssupp 〈ψ3〉 = [0, 1) so that 〈ψ3〉 is of Type 3.

The fact that the type of a shift-invariant space 〈ψ〉 cannot be distinguished solely
on the basis of pψ may seem counterintuitive, particularly when we think of 〈ψ〉 in
terms of its image under the isometry with L2(T, pψ). Observe, however, that, for
a non-integer α, the function Tαψ might not lie within 〈ψ〉. The best one can do,
at least a priori, is to attempt to understand 〈ψ〉 in the wider context of L2(R), in
which case pψ is very likely to be insufficient. �

Let us at this point rephrase the necessary and sufficient condition under which
one has 〈ψ〉Z = 〈ψ〉 1

2Z
. As before, we follow the terminology and notation from

[ŠW11].

Lemma 3.7. If ψ ∈ L2(R), then 〈ψ〉Z = 〈ψ〉 1
2Z

if and only if for almost every

ξ ∈ R and for every m ∈ 2Z+ 1 one has ψ̂(ξ) · ψ̂(ξ +m) = 0.

Proof. Observe that our condition in this lemma requires that the set A :=
{ξ ∈ R : there exists m ∈ 2Z + 1 so that ξ, ξ + m ∈ ssupp 〈ψ〉} has Lebesgue
measure zero. We recall some terminology from [ŠW11]. For each integer j, we let

Ej1 := ssupp 〈ψ〉 ∩ ([0, 1) + 2j)

and
Ej2 := ssupp 〈ψ〉 ∩ ([0, 1) + 2j + 1).

We define F1 and F2 via

F1 :=
⋃
j∈Z

(Ej1 − 2j)
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and

F2 :=
⋃
j∈Z

(Ej2 − (2j + 1))

In the terminology of [ŠW11], ssupp 〈ψ〉 is called a 1
2 -translation system if F1∩F2

has Lebesgue measure zero, and, moreover, it was proven that 〈ψ〉Z = 〈ψ〉 1
2Z

is

equivalent to ssupp 〈ψ〉 being a 1
2 -translation system.

So, suppose first that ssupp 〈ψ〉 is a 1
2 -translation system and consider ξ ∈

ssupp 〈ψ〉. Then, this ξ belongs either to some set Ej01 or to some set Ej02 but not

both. Without loss of generality, suppose ξ ∈ Ej01 . In particular, ξ − 2j0 ∈ F1.
Consider m ∈ 2Z+ 1, i.e. m = 2k0 + 1 for some k0 ∈ Z. If ξ+m ∈ ssupp 〈ψ〉, then

ξ+m ∈ Ej0+k0

2 , i.e. ξ+m− (2(j0 +k0)+1) ∈ F2. Since we are assuming ssupp 〈ψ〉
is a 1

2 -translation system, the set F1 ∩ F2 has Lebesgue measure zero, and 2Z + 1
is a countable set, whence A must have Lebesgue measure zero.

Now, suppose that |F1∩F2| has nonzero measure. Take u ∈ F1∩F2. Then there
exist integers j0 and k0 so that u + 2j0 ∈ ssupp 〈ψ〉 and u + 2k0 + 1 ∈ ssupp 〈ψ〉.
Let ξ = u + 2j0 and observe that u + 2k0 + 1 − ξ = 2(k0 − j0) + 1 ∈ 2Z + 1. It
follows that ξ ∈ A. As F1 ∩ F2 was assumed to have positive measure, it follows
that A has positive measure as well.

�

Certainly, if 〈ψ〉Z = 〈ψ〉 1
2Z

, then T〈ψ〉 is nonempty; thus 〈ψ〉 must be either of

Type 2 or Type 3. Using the ideas from [ŠW11], it is straightforward to see that
for every ϕ,ψ ∈ L2(R), one has

(3.8) 〈ϕ〉 ⊆ 〈ψ〉 implies T〈ϕ〉 ⊇ T〈ψ〉;
in particular, taking a shift-invariant subspace of a principal shift-invariant space
can only increase the type or keep the type the same. Various possibilities occur,
as the following example indicates.

Example 3.9. In the following, we always have non-trivial ϕi, ψi ∈ L2(R) with
〈ϕi〉 ⊆ 〈ψi〉. Let ε be any element of the interval (0, 1/2]. We only give the relevant
support sets, but the construction of the generating functions follows directly from
them.

1. • ssupp 〈ψ1〉 = [0, ε]∪ [1 + ε, 1 + 2ε]∪ [2, 2 + ε]∪ [3 + ε, 3 + 2ε]∪ [4 + ε, 4 + 2ε],
with T〈ψ1〉 = ∅.

• ssupp 〈ϕ1〉 = [0, ε] ∪ [2, 2 + ε], with T〈ϕ1〉 = {2}.
2. • ssupp 〈ψ2〉 = [0, ε] ∪ [1, 1 + ε] ∪ [2 + ε, 2 + 2ε], with T〈ψ2〉 = ∅.

• ssupp 〈ϕ2〉 = [2 + ε, 2 + 2ε], with T〈ϕ2〉 = R.
3. • ssupp 〈ψ3〉 = [0, ε]∪ [1+ε, 1+2ε]∪ [3+ε, 3+2ε]∪ [6, 6+ε], with T〈ψ3〉 = {2}.

• ssupp 〈ϕ3〉 = [0, ε] ∪ [6, 6 + ε], with T〈ϕ3〉 = {2, 3, 6}.
4. • ssupp 〈ψ4〉 = [0, ε] ∪ [1 + ε, 1 + 2ε] ∪ [2, 2 + ε], with T〈ψ4〉 = {2}.

• ssupp 〈ϕ4〉 = [1 + ε, 1 + 2ε], with T〈ϕ4〉 = R.

♦

Observe also that (3.8) implies that for every ϕ,ψ ∈ L2(R), one has

(3.10) T〈ϕ〉∩〈ψ〉 ⊇ T〈ϕ〉 ∪ T〈ψ〉.

Let us also recall a useful tool for analyzing larger lattices; see [ŠW11] for a
detailed account and further generalizations. For a function ψ ∈ L2(R), consider
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an integer n > 1 and the nZ-periodization of |ψ̂|2, i.e.

(3.11) Pψ, 1
nZ(ξ) :=

∑
k∈Z
|ψ̂(ξ + nk)|2 for ξ ∈ R.

Obviously,

(3.12) pψ(ξ) =

n−1∑
j=0

Pψ, 1
nZ(ξ + j) for ξ ∈ R.

Furthermore (see [ŠW11]), T 1
n
ψ ∈ 〈ψ〉 if and only if for almost every ξ ∈ R and

for every j ∈ {1, ..., n− 1} one has that

(3.13) Pψ, 1
nZ(ξ) · Pψ, 1

nZ(ξ + j) = 0.

For the special case n = 2, compare (3.13) to Lemma 3.7.
Finally, (see [ŠW11]), observe that for 〈ψ〉 of Type 3, we have that, for almost

every ξ ∈ R, there exists exactly one k = k(ξ) ∈ Z such that

(3.14) pψ(ξ) = |ψ̂(ξ + k)|2;

in other words, for j ∈ Z \ {k}, we have ψ̂(ξ + j) = 0.

4. Coefficients

In the analysis-synthesis approach to the study of functions, it is important to
understand the representation of a function ϕ ∈ 〈ψ〉 in terms of the elements of
Bψ. With this point of view, it is then natural and essential to study the corre-

sponding coefficients. Here we follow results from [HŠWW10b] with some simple
modifications (see also the historical remarks in Section 4 of [HŠWW10b]).

Let ψ ∈ L2(R) and consider a function ϕ ∈ 〈ψ〉. There is then a sequence
(ϕn)n∈N ⊆ span Bψ such that ϕn converges to ϕ in the L2(R) topology. Certainly,
then, for each n ∈ N, there is a finite set Cϕ,n ⊆ Z such that ϕn is a linear
combination of the elements of {Tkψ : k ∈ Cϕ,n}. In this analysis we shall always
impose a particular structure on these sets Cϕ,n: we will impose the standard
symmetric ordering from Fourier series. More precisely, we consider the following
ordering of Z given by

(4.1) 0, 1,−1, 2,−2, 3,−3, ...

It is not difficult to see that we can always modify the sequence (ϕn) so that
Cϕ,n = {−n,−n + 1, ...,−1, 0, 1, ..., n − 1, n}, allowing some coefficients to be zero
if necessary. Hence for ϕ ∈ 〈ψ〉, there are coefficients cnk = cnk (ϕ) for n ∈ N and
−n ≤ k ≤ n such that

(4.2) ϕn =
∑
|k|≤n

cnkTkψ.

Among such partial sums, we shall pay special attention to the case when the
coefficients (cnk ) do not depend on n; we shall see that this is enough to cover all
the interesting cases. More precisely, we consider the special case where there is a
sequence ck = ck(ϕ) such that, for every n ∈ N,

(4.3) ϕn =
∑
|k|≤n

ckTkψ.
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Remark 4.4. There is a subtle issue concerning the convergence of (4.3) which
should be resolved before proceeding further. Let (f`)`∈N be an enumeration of Bψ
according to the ordering given in (4.1). If (ck)k∈Z denotes a sequence of coefficients
for Bψ, let (c̃`)`∈N denote the enumeration of this sequence according to (4.1). Our
question now is whether the convergence of the sums in (4.3) is equivalent to the

convergence of the sums
∑N
`=1 c̃`f`. Obviously, the sequence of sums in (4.3) forms

a subsequence of the sums
∑N
`=1 c̃`f`, and thus convergence of the latter implies

convergence of the former. However, the fact that convergence of the former implies
convergence of the latter requires a short argument.

The result is obvious when ψ is the zero function, so assume ψ 6≡ 0. Suppose
that the sums (ϕn)n∈N in (4.3) converge to a function ϕ. It is worth stressing here
that we are not imposing any summability criterion on the coefficients (ck)k∈Z;
we only require the convergence in L2(R) of the partial sums from (4.3) for some

fixed ψ. In order to show that
(∑L

`=1 c̃`f`

)
L∈N

also converge to ϕ, it is sufficient

to prove that limn→±∞ |cn| = 0 (this follows from the fact that ‖Tkψ‖ = ‖ψ‖
since translations are unitary). Without loss of generality, we establish only that
limn→∞ |cn| = 0. Suppose to the contrary that |cn| does not converge to 0. Then
there exists some ε > 0 and some subsequence (|cnk |) such that |cnk |2 ≥ ε. Using
(4.3), one obtains

0←
∫
T
|cnke−2πinkξ + c−nke

2πinkξ|2pψ(ξ)dξ

=

∫
T
|cnk |2|e−2πinkξ|2

∣∣∣∣1 +
c−nk
cnk

e4πinkξ

∣∣∣∣2 pψ(ξ)dξ

≥ ε
∫
T

∣∣∣∣1 +
c−nk
cnk

e4πinkξ

∣∣∣∣2 pψ(ξ)dξ.

Hence there is a subsequence (pn) and coefficients (apn) with the property that∫
T

∣∣1− apne2πipnξ
∣∣2 pψ(ξ)dξ → 0.

Using the mapping Iψ, this means that apnTpnψ → ψ in L2(R). Taking norms,
this guarantees that |apn | → 1, and, in particular, that (apn) is bounded. Since
pψ ∈ L1(T), one can use Fourier series to deduce that∫

T

∣∣1− apne2πipnξ
∣∣2 pψ(ξ)dξ = (1 + |apn |2)p̂ψ(0)− apn p̂ψ(−pn)− apn p̂ψ(pn).

Since |pn| → ∞, the Riemann–Lebesgue Lemma guarantees that p̂ψ(±pn) → 0,
and, since (apn) is bounded, this means that apn p̂ψ(−pn) and apn p̂ψ(pn) both tend
to zero. Using this and the fact that |apn |2 → 1, it follows that

0 = 2p̂ψ(0) = 2

∫
pψ(ξ)dξ = 2‖ψ‖2L2(R),

which implies that ψ ≡ 0, contradicting our initial assumption.
Based on the above observation, whenever we have a sum ordered by (4.1), we

shall denote it by

(4.5) lim
n→∞

∑
|k|≤n

ckTkψ.
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�

Observe that the sum in (4.5) depends on a particular ordering of the vectors
Tkψ. Of particular importance in the present work are those sums for which the
ordering is irrelevant. More precisely, if ϕ = limn→∞

∑
|k|≤n ckTkψ exists and

the convergence is unconditional (see [HW96] and [Sin70] for more details on
unconditional convergence), we shall write

(4.6) ϕ =
∑
k∈Z

ckTkψ.

The following result shows that such unconditional convergence is only possible for
a special class of coefficients.

Lemma 4.7. If
∑
k∈Z ckTkψ converges unconditionally and ψ 6≡ 0, then (ck) ∈

`2(Z).

Proof. Since 〈ψ〉 is a Hilbert space, we may apply the Orlicz theorem on the
unconditional sum

∑
k∈Z ckTkψ to obtain

∞ >
∑
k∈Z
‖ckTkψ‖2L2(R) = ‖ψ‖2L2(R)

∑
k∈Z
|ck|2.

Since ‖ψ‖L2(R) > 0, the result follows.
�

This leads to the following natural question. Given 0 6≡ ψ ∈ L2(R) and (ck) ∈
`2(Z), what can be said about the convergence of the sums

∑
|k|≤n ckTkψ? We

observe first that if the limit exists, then it must lie within a particular subset of
〈ψ〉; the precise statement is as follows2:

Lemma 4.8. If (ck) ∈ `2(Z) and the limit limn→∞
∑
|k|≤n ckTkψ = ϕ exists in

the L2 sense, then there is a function f ∈ L2(T) such that fχU〈ψ〉 = I−1
ψ (ϕ)χU〈ψ〉

almost everywhere.3

Now that we have a basic understanding of the limit when it exists, one is
obviously left with the issue of determining when convergence occurs. We begin
by exploring the situation when ψ is such that convergence occurs whenever the
coefficient sequence is in `2(Z). One is lead to the following notion (used already
in [HŠWW10b]) which we borrow from the theory of bases in Banach spaces; see
[Sin70] or [TL77] for numerous results.

Definition 4.9. Suppose that ψ ∈ L2(R). We shall say that Bψ has the
(H)-property4 or has property (H) if (ck) ∈ `2(Z) guarantees that

∑
|k|≤n ckTkψ

converges.

Observe that Lemma 4.8 directly proves the following:

Lemma 4.10. If Bψ satisfies the (H)-property, then L2(T) ⊆ L2(T, pψ); that is,
if f ∈ L2(T), then f ∈ L2(T, pψ).

2This lemma can be proven by a simple modification of a subsequence argument presented

in Theorem 3.10 of [HŠWW10b].
3We know apriori that f must be in the weighted space L2(T, pψ); the lemma guarantees

that f lies in L2(T).
4The letter H here stands for Hilbertian.
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The statement of this lemma makes sense whether we consider elements f
as functions or equivalence classes. More precisely, if g and h are in the same
equivalence class in L2(T), then they belong to the same class in L2(T, pψ). The
converse of this statement is, of course, not necessarily true.

Using Lemma 3.6 from [HŠWW10b], it is easy to obtain the following result:

Lemma 4.11. Suppose that v, w are strictly positive, integrable, and 1-periodic
functions (i.e. v and w are in equivalence classes of elements of L1(T)). If
L2(T, w) ⊆ L2(T, v) as sets (not necessarily with respect to any topologies), then
there exists a constant 0 < C <∞ so that v ≤ Cw almost everywhere (with respect
to Lebesgue measure).

Proof. Observe that 1√
w
∈ L2(T, w). Under our assumptions, we find that

1√
w
∈ L2(T, v), which implies that f := v

w ∈ L
1(T).

It is now enough to prove that f satisfies the requirement of Lemma 3.6 from
[HŠWW10b]. Take 0 ≤ g ∈ L1(T). It follows that

√
g
w belongs to L2(T, w). By

our assumption, this guarantees that
√

g
w ∈ L

2(T, v). Hence

∞ >

∫
T

(√
g

w

)2

v =

∫
T
g
v

w
=

∫
T
gf.

In other words, fg ∈ L1(T).
�

It will be useful to consider the following inclusion operator (see also [HŠWW10b]).
Denote by Mψ the quotient space of classes of measurable functions on T modulo
pψ(ξ)dξ-almost everywhere equivalence. Consider the inclusion operator

Jψ : L2(T)→Mψ

Jψ(f) := f.(4.12)

Observe that the definition makes sense, since, if f = g dξ-almost everywhere,
then f = g pψ(ξ)dξ-almost everywhere. Observe also that when the range of Jψ is
contained in L2(T, pψ), we may also consider Jψ : L2(T) → L2(T, pψ). Combining

the techniques given above with [HŠWW10b], we obtain a somewhat stronger
version of Theorem 3.10 from [HŠWW10b].

Theorem 4.13. Let ψ be a nonzero element of L2(R). Then the following are
equivalent.

(a) There is a constant B with 0 < B <∞ so that pψ(ξ) ≤ B for almost every ξ;
(b) Bψ is a Besselian family;
(c) Bψ satisfies the (H)-property;

(d) (ck) ∈ `2(Z) if and only if
∑
k∈Z

ckTkψ converges unconditionally;

(e) The range of Jψ is contained in L2(T, pψ);
(f) Jψ : L2(R)→ L2(T, pψ) is a bounded, linear operator.

For a discussion of all the above terminology, consult [HŠWW10b].

Remark 4.14. Let us emphasize several details.
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(i) Using Lemma 4.8, we obtain that, for every ψ ∈ L2(R),

{(ck) ∈ `2(Z) : lim
n→∞

∑
|k|≤n

ckTkψ exists}

={(ck) ∈ `2(Z) :
∑
k∈Z

cke
−2πikξ = f in L2(T) and f ∈ L2(T) ∩ L2(T, pψ)}.

Furthermore, from Lemma 4.7, we know that for every nonzero ψ in L2(R)
one has that

{(ck) ∈ CZ :
∑
k∈Z

ckTkψ converges unconditionally}

⊆{(ck) ∈ `2(Z) : lim
n→∞

∑
|k|≤n

ckTkψ exists}.

An open question at this point is whether we have an equality in the last
set inclusion. Obviously, if Bψ satisfies the (H)-property, then the answer is
positive.

(ii) Given a nonzero function ψ ∈ L2(R) such that pψ is not bounded above, we
conclude that the (H)-property is not satisfied. Hence, in this case, there are
sequences (ck) ∈ `2(Z) such that the limit limn→∞

∑
|k|≤n ckTkψ does not

exist.
(iii) Observe that L2(T) ∩ L2(T, pψ) can be considered as a vector space (via dξ-

almost everywhere equivalence classes) which contains all of L∞(T). It can
also be considered as a dense subspace in both L2(T) and L2(T, pψ), with
respect to the norm topologies. Hence we can think of

Jψ
∣∣
L2(T)∩L2(T,pψ)

: L2(T) ∩ L2(T, ψ)→ L2(T, ψ)

as a densely defined linear operator from L2(T) into L2(T, pψ). Obviously, it
can be extended to a bounded operator from L2(T) to L2(T, pψ) if and only
if

Jψ
∣∣
L2(T)∩L2(T,pψ)

is bounded

or

Jψ
∣∣
L∞(T)

is bounded.

�

The above remark suggests that it is of interest to consider the vector space of
coefficients, which we denote by

(4.15) Cofψ := {(ck) : lim
n→∞

∑
|k|≤n

ckTkψ exists}.

Using the standard notation (ck) ∈ c0(Z) if and only if lim|n|→∞ cn = 0, it is easy
to see that

(4.16) `1(Z) ⊆ Cofψ ⊆ c0(Z).

Observe also that Cofψ really depends on pψ only, rather than ψ; in other words,
if ψ1 and ψ2 are functions in L2(R) such that pψ1 = pψ2 , then Cofψ1 = Cofψ2 .

Observe that unconditional convergence occurs for the coefficients within `2(Z)∩
Cofψ (note that `1(Z) ⊆ `2(Z) ∩ Cofψ). Consider (ck) ∈ `2(Z) ∩ Cofψ. Since
(ck) ∈ `2(Z), there exists an f ∈ L2(T) such that f =

∑
k∈Z cke

−2πikx within
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L2(T). Since (ck) ∈ Cofψ, we obtain that f ∈ L2(T) ∩ L2(T, pψ), i.e. that
Jψ(f) ∈ L2(T, pψ). Hence we have a mapping

`2(Z) ∩ Cofψ 3 (ck)→ Jψ(f) ∈ L2(T, pψ).

It is natural to wonder under which conditions such a mapping is a bijection.
Observe that this is equivalent to determining under which conditions the following
property holds:

(4.17) (ck) ∈ `2(Z) and lim
n→∞

∑
|k|≤n

ckTkψ = 0 implies (ck) ≡ 0.

This property is well known (see [Sin70] and [TL77]); it states that Bψ (with the
ordering of Z given in (4.1)) is `2(Z)-linearly independent. The question of the char-
acterization of `2(Z)-linear independence of Bψ proved to be a rather demanding
one. It turns out that

(4.18) Bψ is `2(Z)-linearly independent if and only if pψ > 0 almost everywhere.

This result was conjectured more than ten years ago at the Wavelet Seminar at
Washington University in St. Louis. If Bψ is a Besselian family, then the proof is

quite easy (see [ŠS07]). However, the general case was significantly more difficult
and was proved by Saliani in [Sal13]; she applied the celebrated Carleson theorem
on the almost everywhere convergence of Fourier series and some Menšov-type
techniques. For related results, see also [Pal10] and [ŠS12].

Remark 4.19. (i) Observe that (4.17) is directly related to the question of
redundancy of the family Bψ. Recall that for a nonzero ψ, the set Bψ is al-
ways linearly independent, so finite sums of elements of Bψ have no hope of
achieving redundancy. Under property (4.17), one can achieve redundancy of
countable linear combinations of elements of Bψ only via conditional conver-
gence with coefficients outside `2(Z).

(ii) The condition “pψ > 0” can be rephrased in terms of the measure of Z〈ψ〉,
namely |Z〈ψ〉| = 0. Hence property (4.17) is not just a property of ψ or Bψ
but rather of the space 〈ψ〉. This fact may seem somewhat surprising.

(iii) Obviously, the `2-linear independence of Bψ is equivalent to 〈ψ〉 being a maxi-
mal principal shift-invariant space. As we have already indicated, such spaces
will play a special role in our theory.

�

5. Maximal Principal Shift-invariant Spaces

As we have seen in previous sections, of particular importance is the case of a
principal shift-invariant space 〈ψ〉 which is also maximal, i.e. for which U〈ψ〉 = R.

Again, we mostly follow the discussion from [HŠWW10b] while providing some
additional details. Throughout this section, we assume that ψ ∈ L2(R) so that
pψ > 0. Thinking of pψ as a weight (see [Ste93] or [Gra04] for the basic theory of
weights), this assumption allows us to consider 1/pψ as a (finite-valued) weight as
well. Furthermore, in some cases we may consider a power of 1/pψ, which, when
viewed as a Fourier multiplier, has 〈ψ〉 as an invariant subspace. With this in mind,
observe that, for α ≥ 0, we have

(5.1)
1

pαψ
∈ L2(T, pψ) if and only if p1−2α

ψ ∈ L1(T).
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In particular, one always has, for those α ∈ [0, 1/2],

(5.2)
1

pαψ
• ψ ∈ 〈ψ〉.

For those α > 1/2, one has 1− 2α < 0, so p1−2α
ψ may or may not be in L1(T).

Generally speaking, as properties of 1/pψ “improve”, Bψ has stronger “basis-
like” properties — in particular, it becomes less possible for Bψ to have redundancy.
As we have seen, if 1/pψ <∞ almost everywhere, which is equivalent to the max-
imality of 〈ψ〉, then Bψ is `2-linearly independent. Yet further, if one imposes the
stronger condition

(5.3)
1

pψ
∈ L1(T),

then Bψ is minimal (see [HŠWW10b] and the references therein for definitions
and historical remarks); that is, for every k ∈ Z,

(5.4) Tkψ /∈ span(Bψ \ {Tkψ}).

Observe that (5.4) excludes any practical possibility of redundancy.

Remark 5.5. It is at this point still an open question as to what happens
“between” `2-linear independence and minimality. One possible direction is to
explore other notions of linear independence. Observe that for 2 < p <∞, we have

`2(Z) $ `p(Z) $ c0(Z).

Let ` denote either `p(Z) or c0(Z). Then we say that Bψ is `-linearly independent
if the following condition holds:

(5.6) (ck) ∈ ` and lim
n→∞

∑
|k|≤n

ckTkψ = 0 implies that (ck) ≡ 0.

If Bψ is minimal, then Bψ is `p-linearly independent and c0-linearly independent.
However, the complete characterization of these notions for Bψ is still an open

problem (see [Sla14] and [ŠS12]). �

It is well known that minimality is equivalent to the existence of a biorthogonal
pair (see [HŠWW10b] and the references therein); this means that, if (5.3) holds,

there is a dual function ψ̃ ∈ 〈ψ〉 so that (Bψ,Bψ̃) forms a biorthogonal pair. In

particular, one has

(5.7) ψ̃ =
1

pψ
• ψ.

It is also well known that the following proposition holds (see, e.g. [HŠWW10b]).

Proposition 5.8. If ψ ∈ L2(R) satisfies (5.3), then the dual function ψ̃ given
in (5.7) satisfies the following properties:

(a) ψ̃ = Iψ( 1
pψ

);

(b) 〈ψ̃〉 = 〈ψ〉;
(c) pψ̃ = 1

pψ
;

(d) ψ̃ satisfies (5.3) and
˜̃
ψ = ψ;

(e) ψ̃ = ψ if and only if pψ ≡ 1 if and only if Bψ is an orthonormal basis for 〈ψ〉.
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Remark 5.9. Minimal systems do not allow for any redundancy. On the other
hand, they allow for much better control of the coefficients. Suppose that ϕ =
limn→∞

∑
|k|≤n ckTkψ, for some sequence of scalars (ck). Obviously, ϕ ∈ 〈ψ〉, and

we also have ck = 〈ϕ, Tkψ̃〉L2(R). �

Hence, for minimal Bψ it is of interest to study the convergence of the sequence
of partial sums,

(5.10)
∑
|k|≤n

〈ϕ, Tkψ̃〉Tkψ,

for a given ϕ ∈ 〈ψ〉. It is easy to see that if the sequence converges, then its limit
must be ϕ. Since ϕ = Iψ(g) for some unique element g ∈ L2(T, pψ), it makes sense
to consider the problem at the level of weighted spaces. Observe also that, for every
k ∈ Z,

(5.11) Tkψ̃ = Iψ
(
e−2πikξ

pψ

)
For the following lemma, it is useful to notice that, under our assumptions, the
three measures, dξ, pψ(ξ)dξ, and 1

pψ
dξ, all generate the same family of null sets.

Lemma 5.12. Let ψ ∈ L2(R) satisfy (5.3). If f belongs to one of the three
spaces, L2(T), L2(T, pψ), and L2(T, 1

pψ
), then f belongs to L1(T), as well. In

particular, f has well-defined Fourier coefficients via the usual integral formula.

Proof. Without loss of generality, consider the case f ∈ L2(T, pψ). It follows
that |f |√pψ ∈ L2(T). By (5.3), we have that 1√

pψ
∈ L2(T). Hence

|f | = |f |√pψ
1
√
pψ
∈ L1(T).

�

Suppose now that ψ ∈ L2(R) satisfies (5.3) and consider g ∈ L2(T, pψ). By
Lemma 5.12, the kth Fourier coefficient of g exists for every k ∈ Z and is given by

ĝ(k) =

∫
T
g(ξ)e−2πikξ 1

pψ(ξ)
pψ(ξ)dξ

=

〈
g,
e2πikξ

pψ

〉
L2(T,pψ)

= 〈Iψ(g), T−kψ̃〉L2(R).(5.13)

Thus

Iψ
(
ĝ(−k)e−2πikξ

)
= ĝ(−k)Tkψ =

〈
Iψg, Tkψ̃

〉
Tkψ.

From this it immediately follows that the question of convergence of the sequence
(5.10) is actually a question about the convergence of

(5.14) lim
n→∞

∑
|k|≤n

ĝ(−k)e−2πikξ = lim
n→∞

∑
|k|≤n

ĝ(k)e2πikξ

within L2(T, pψ), where g = I−1
ψ (ϕ). In particular, under the assumption (5.3) we

have
(5.15)

Cofψ = {(〈ϕ, Tkψ̃〉)k∈Z : ϕ ∈ 〈ψ〉, g = I−1
ψ (ϕ), and the limit in (5.14) exists}.
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Furthermore, the unconditional convergence of (5.10) occurs if and only if

(5.16) (ĝ(k))k∈Z ∈ Cofψ ∩ `2(Z).

Such considerations show that it is natural to consider the following notion,
which is well known (see [You01]). The (RF) in the definition stands for “Riesz–
Fischer”.

Definition 5.17. Given ψ ∈ L2(R), we shall say that Bψ satisfies the (RF)-
property if for every (ck) ∈ `2(Z), there exists a ϕ ∈ 〈ψ〉, such that for every k ∈ Z,
ck = 〈ϕ, Tkψ〉L2(R).

It is well known (see [You01]) that for biorthogonal systems, the original se-
quence is a Besselian family if and only if the dual sequence satisfies the (RF)-
property. Hence, using this result (or proving it directly since this is not so difficult
within this framework) we obtain that, for every ψ ∈ L2(R) which satisfies (5.3),

(5.18) Bψ is a Besselian family if and only if Bψ̃ satisfies the (RF)-property.

Furthermore, if any of the properties in (5.18) holds, then

(5.19) `2(Z) ⊆ Cofψ.

Remark 5.20. (i) Observe that, even for a minimal and Besselian family Bψ,
we have, in principle, Cofψ \ `2(Z) 6= ∅, and this set contains precisely those
coefficients for which we have only conditional convergence.

(ii) Observe also that under the condition that Bψ is minimal and Besselian, we
still have functions (unless Bψ is a basis) ϕ ∈ 〈ψ〉 such that the limit

lim
n→∞

∑
|k|≤n

〈ϕ, Tkψ̃〉Tkψ

does not exist.
�

Let us now reverse our point of view and consider the (RF)-property for Bψ.
Using (5.18) and the fact that, for minimal systems, we have pψ̃ = 1

pψ
, we obtain

the following result. If ψ ∈ L2(R) satisfies (5.3), then Bψ satisfies the (RF)-property
if and only if

(5.21) there exists an A with 0 < A <∞ such that pψ ≥ A almost everywhere.

Remark 5.22. Observe that the last statement makes sense even without as-
suming (5.3). It is natural to wonder whether this statement is true without as-
sumption (5.3). As we shall see, we have a positive answer here. Observe however,
that (5.21) implies (5.3), so we do end up eventually within the framework of min-
imal Bψ. �

Theorem 5.23. If ψ ∈ L2(R) is such that Bψ satisfies the (RF)-property, then
pψ satisfies (5.21).

Proof. We divide the proof into two steps. First, we reformulate the (RF)-
property. Observe that having (ck) ∈ `2(Z) is equivalent to having an f ∈ L2(T)

with f̂(k) = c−k. Observe also that ϕ ∈ 〈ψ〉 is equivalent to g = I−1
ψ (ϕ) ∈

L2(T, pψ). Using the isometry Iψ we also have

ck = 〈ϕ, Tkψ〉L2(R) = 〈g, e−2πikξ〉L2(T,pψ).
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Hence the (RF)-property can be reformulated as follows:

for every f ∈ L2(T), there exists a g ∈ L2(T, pψ) so that,

for every k ∈ Z, one has f̂(k) = 〈g, e2πikξ〉L2(T,pψ).(5.24)

Since

〈g, e2πikξ〉L2(T,pψ) =

∫
T
g(ξ)e−2πikξpψ(ξ)dξ,

and g ∈ L2(T, pψ) implies that g ∈ L1(T, pψ), since pψ(ξ)dξ is a finite measure;

thus we obtain that gpψ ∈ L1(T). Moreover, we have that f̂(k) = ĝpψ(k) for
all k ∈ Z, and so f and gpψ are L1(T) functions with equal Fourier coefficients,
which guarantees that f = gpψ almost everywhere. This then proves that the
(RF)-property implies that

For every f ∈ L2(T), there exists g ∈ L2(T, pψ)

such that f = gpψ dξ-almost everywhere.(5.25)

There are several consequences of (5.25). We claim that (5.25) implies that
pψ > 0 dξ-almost everywhere. To see this, suppose, to the contrary, that |Z〈ψ〉| > 0

and let f := χZ〈ψ〉 . It follows that f is a nonzero function in L2(T). By (5.25),

we would get a g ∈ L2(T, pψ) such that f = gpψ dξ-almost everywhere. It follows
that gχU〈ψ〉 ≡ 0 dξ-almost everywhere, and, as a consequence, we obtain that
f = gpψ = 0 dξ-almost everywhere, which is a contradiction.

Since we have proved that pψ > 0 dξ-almost everywhere, it makes sense to
consider the function 1

pψ
on T. Take f ≡ 1 ∈ L2(T) and apply (5.25) to obtain

a g ∈ L2(T, pψ) such that 1 = gpψ dξ-almost everywhere. It follows that 1
pψ
∈

L2(T, pψ) and, by (5.1), that 1
pψ
∈ L1(T).

Thus we have proved that Bψ is a minimal system. We can now apply (5.18)
to conclude the proof; however, in the name of completeness, we give a short proof
using the techniques from these notes. Start with f ∈ L2(T) and use (5.25) to

conclude that f
pψ
∈ L2(T, pψ), which implies that f ∈ L2(T, 1

pψ
). Thus we have

proved that w :≡ 1 and v := 1
pψ

are both strictly positive, integrable, 1-periodic

weights such that L2(T, w) ⊆ L2(T, v). By Lemma 4.11, we conclude that there
exists a constant C with 0 < C < ∞ so that v ≤ Cw. Hence (5.21) follows with
A := 1

C .
�

This result essentially completes the characterization of the (RF)-property. It
is easy to see that we have the following list of results.

Corollary 5.26. If ψ ∈ L2(R), then the following are equivalent:

(a) Bψ satsfies the (RF)-property;
(b) There exists a constant A ∈ (0,∞) so that pψ ≥ A;
(c) L2(T, pψ) ⊆ L2(T) (in the set sense);
(d) 1

pψ
∈ L1(T) and L2(T) ⊆ L2(T, 1

pψ
) (in the set sense);

(e) Bψ is a minimal system and Bψ̃ satisfies the (H)-property.

Remark 5.27. Observe that a certain “asymmetry” exists between the (RF)-
property and the (H)-property. The (H)-property may hold even in a non-maximal
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principal shift-invariant space, 〈ψ〉 — in particular, also for non-minimal Bψ. By
comparison, the (RF)-property is possible only within the minimal systems Bψ. �

Corollary 5.28. If ψ ∈ L2(R) is such that Bψ is minimal, then the following
are equivalent:

(a) Bψ satisfies the (RF)-property;
(b) Bψ̃ satisfies the (H)-property;

(c) L2(T, pψ) ⊆ L2(T) (in the set sense);
(d) L2(T) ⊆ L2(T, pψ̃) (in the set sense);

(e) `2(Z) ⊆ Cofψ̃.

Let us at this point introduce yet another natural counterpart to the (H)-
property; it is also a well-known notion, see [Sin70] and [HŠWW10b] for more
details.

Definition 5.29. Let ψ ∈ L2(R). We shall say that Bψ satisfies the (B)-
property if, for some sequence (ck) of coefficients, whenever the limit

lim
n→∞

∑
|k|≤n

ckTkψ

exists, one must have that (ck) ∈ `2(Z).

Remark 5.30. Observe that the (B)-property can be expressed in the form

(5.31) Cofψ ⊆ `2(Z);

one may expect this to appear as one of the characterizing statements in Corollary
5.28. However, at this point we do not know if such a result is valid or not. We
know that any of the properties listed in Corollary 5.28 implies the (B)-property,
within the context of minimal systems (see [HŠWW10b] for the proof). We also
know (it is easy to see this directly) that (5.21), by itself, also implies the (B)-
property. The problem lies in the reverse implication. We know that it holds in
the case when Bψ is a Schauder basis (see [Sin70] for the proof). In the more
general situation, we have a couple of open questions. The first one is as follows.
If ψ ∈ L2(R) and Bψ satisfies the (B)-property, does it then follow that pψ > 0
dξ-almost everywhere? The second question is as follows. If ψ ∈ L2(R), is such that
pψ > 0 dξ-almost everywhere and Bψ satisfies the (B)-property, does it then follow
that Bψ is a minimal system? In one special case, we can answer this question; see
the following proposition. �

Proposition 5.32. Let ψ ∈ L2(R) be such that pψ > 0 dξ-almost everywhere
and such that Bψ satisfies the (B)-property. If, for every ϕ ∈ 〈ψ〉 there exists a
sequence (ck) ∈ c0(Z) such that ϕ = limn→∞

∑
|k|≤n ckTkψ, then Bψ is a Schauder

basis for 〈ψ〉, with respect to the ordering of Z according to (4.1), and Bψ̃ satisfies

the (H)-property.

Proof. Consider ϕ ∈ 〈ψ〉. By our assumption, there exists (ck) ∈ c0(Z) such
that ϕ = limn→∞

∑
|k|≤n ckTkψ. By the (B)-property we obtain that (ck) ∈ `2(Z).

Suppose now that another sequence (dk) satisfies ϕ = limn→∞
∑
|k|≤n dkTkψ. By

the (B)-property, we obtain (dk) ∈ `2(Z). Hence we have that (ck − dk)k∈Z ∈ `2(Z)
and 0 ≡ limn→∞

∑
|k|≤n(ck − dk)Tkψ. Since pψ > 0 dξ-almost everywhere implies
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that Bψ is `2-linearly independent (again according to the ordering of Z in (4.1)),
we conclude that ck = dk for every k ∈ Z.

It follows that Bψ, ordered by (4.1) is a basis (and, therefore, a Schauder basis)

for 〈ψ〉. As is well known (see [NŠ07], for example) the dual basis is precisely
Bψ̃ (in particular, (5.3) holds) and by general results on bases (see [Sin70]), Bψ̃
satisfies the (H)-property (which implies that pψ ≥ A > 0 dξ-almost everywhere).

�

Remark 5.33. It is possible to construct ψ ∈ L2(R) such that pψ satisfies
(5.21) but is not an A2-weight in the sense of Muckenhoupt; in other words, Bψ is

not a basis for 〈ψ〉 (see [HŠWW10b] and [NŠ07] for more details). It then follows
that Bψ is a minimal system which satisfies the (B)-property but does not satisfy
the assumption in Proposition 5.32 of every ϕ ∈ 〈ψ〉 being represented as a limit
from Bψ.

This also leads to a third question about the (B)-property. If ψ ∈ L2(R) is
such that 1

pψ
∈ L1(T) and Bψ satisfies the (B)-property, does it then follow that pψ

satisfies (5.21)? �

In the basis case, all of these properties fit nicely together. Recall first that Bψ
is a Schauder basis (in the ordering given in (4.1)) if and only if pψ is an A2-weight

in the sense of Muckenhoupt (see [NŠ07] and [HŠWW10b] for details and further
references). This is equivalent to 1

pψ
being an A2-weight and, indeed, Bψ̃ acts as

a dual basis for Bψ. Using standard results (see [Sin70]) or our discussion above,
one obtains, without much effort, the following result.

Corollary 5.34. If ψ ∈ L2(R) is such that Bψ, ordered according to (4.1), is
a Schauder basis for 〈ψ〉, then the following are equivalent.

(a) Bψ satisfies the (B)-property;
(b) Bψ̃ satisfies the (H)-property;

(c) Cofψ ⊆ `2(Z);

(d) `2(Z) ⊆ Cofψ̃.

In the terminology of Banach space basis theory, these conditions character-
ize when Bψ is a Besselian Schauder basis (not a Besselian family, though; see

[HŠWW10b]), and, at the same time, when Bψ̃ is a Hilbertian Schauder basis.

We assume that our reader is familiar with the notion of a Riesz basis (see
[HW96] for details and further references). It is well known (see, for example,
[HŠWW10b]) that Bψ is a Riesz basis for 〈ψ〉 if and only if there are constants
A and B with 0 < A ≤ B < ∞ so that A ≤ pψ ≤ B almost everywhere. Observe
that in this case all three measures on the torus, dξ, pψ(ξ)dξ, and pψ̃(ξ)dξ, have

exactly the same family of negligible sets. The following result then follows easily
from our discussion.

Corollary 5.35. If ψ ∈ L2(R) is such that Bψ, ordered according to (4.1), is
a Schauder basis for 〈ψ〉, then the following are equivalent:

(a) Bψ is a Riesz basis for 〈ψ〉;
(b) Bψ̃ is a Riesz basis for 〈ψ〉;
(c) Bψ satisfies the (H)-property and the (B)-property;
(d) L2(T) = L2(T, pψ) on the set level;
(e) L2(T) = L2(T, pψ̃) on the set level;
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(f) Cofψ = `2(Z);

(g) Cofψ̃ = `2(Z).

Remark 5.36. As it is well known, when pψ ≡ 1 (or, equivalently, when ψ = ψ̃)
we obtain that Bψ is an orthonormal basis for 〈ψ〉. Observe that, solely on the level
of the set Cofψ, we cannot distinguish this case from the Riesz basis case.

It is, of course, also well known that, for any maximal principal shift-invariant
space 〈ψ〉, it is easy to construct a generating function ϕ such that Bϕ is an or-
thonormal basis for 〈ψ〉; simply take

ϕ :=
1
√
pψ
• ψ.

�

6. Direct Analysis Sum

As we have seen in the previous section, it is natural to consider the limits of

the sums with coefficients 〈ϕ, Tkψ̃〉L2(R), i.e.

(6.1) lim
n→∞

∑
|k|≤n

〈ϕ, Tkψ̃〉L2(R)Tkψ,

assuming the dual function ψ̃ exists, of course.
Observe, however, that from the point of view of applications, this may not be

so useful. First of all, the dual function ψ̃ does not exist for many interesting choices
ψ. Secondly, even when it does exist, it may not be easy to determine whether this
is true or not (assuming that ψ is not given explicitly to us). Thirdly, the limit
in (6.1) may not exist, and, even if it does exist, we may only have conditional
convergence to this limit.

One way to simplify this approach may be by using a kind of “direct method”
in selecting “analysis coefficients”, i.e. to consider

(6.2) lim
n→∞

∑
|k|≤n

〈ϕ, Tkψ〉L2(R)Tkψ.

Note that in the theory of Parseval frame wavelets, exactly such a choice is being
utilized.

Observe that the nth partial sum in (6.2) exists for every ψ ∈ L2(R) (since
one does not need the dual function to exist as one does in (6.1)). Obviously,
there are some basic questions about (6.2). When does it converge? What type of
convergence can one expect? What is the limit? We treat the question of what the
limit is first.

Lemma 6.3. Let ψ ∈ L2(R), ϕ ∈ 〈ψ〉, and g ∈ L2(T, pψ) such that Iψ(g) = ϕ.
If the limit limn→∞

∑
|k|≤n〈ϕ, Tkψ〉L2(R)Tkψ exists, then it must equal pψ • ϕ. (In

particular, this means that pψ • ϕ ∈ 〈ψ〉, i.e. gpψ ∈ L2(T, pψ).)

Proof. If ψ = 0, then the statement is not interesting and trivially true. So,
assume that ψ 6= 0 so that U〈ψ〉 is a set of positive Lebesgue measure. By our
assumptions, the limit

lim
n→∞

∑
|k|≤n

〈g, e2πikξ〉L2(T,pψ)e
2πikξ
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exists in the sense of the norm of L2(T, pψ); let us denote this limit by h.
Since g ∈ L2(T, pψ) and pψ(ξ)dξ is a finite measure on T, we obstain that

g ∈ L1(T, pψ), i.e. gpψ ∈ L1(T). Hence 〈g, e2πikξ〉L(T,pψ) = ĝpψ(k) for every k ∈ Z.
It follows that

hn :=
∑
|k|≤n

〈g, e2πikξ〉L2(T,pψ)e
2πikξ =

∑
|k|≤n

ĝpψ(k) = Sn(gpψ),

where Sn(gpψ) denotes the nth symmetric partial sum of the Fourier series of the
L1(T) function gpψ.

We know that hn converges to h in L2(T, pψ), and so hn
√
pψ converges to

h
√
pψ in L2(T). We also know that hn = Sn(gpψ), but without assuming stronger

integrability conditions on gpψ (Lp(T) for some p ≥ 2), we cannot guarantee that
Sn(gpψ) converges to g in L2(T). It may also be tempting to invoke the Carleson–
Hunt theorem to get almost everywhere pointwise convergence of the Fourier series
of gpψ to gpψ, but Carleson–Hunt also requires stronger integrability conditions
for gpψ (Lp(T) for some p > 1). However, there is a relatively simple technical
workaround for this issue which we describe now.

We recall that the Césaro average of a sequence (fk)∞k=0 is simply the sequence
of the partial averages,

f0 + f1 + ...+ fn−1

n
.

The Césaro averages of the Fourier series of gpψ are given by

S0(gpψ) + S1(gpψ) + ...+ Sn−1(gpψ)

n
= (gpψ) ∗ Fn,

where Fn is the Féjer kernel. Classical Fourier analysis guarantees that not only
does (gpψ) ∗ Fn converge to gpψ in L1(T), but (gpψ) ∗ Fn converges to gpψ almost
everywhere5 (see, e.g., Theorem 3.3.3 from [Gra04]).

Now, since

h0
√
pψ + ...+ hn−1

√
pψ

n
=
S0(gpψ) + ...+ Sn−1(gpψ)

n

√
pψ = ((gpψ) ∗ Fn) · √pψ,

it follows that the Césaro averages of hn
√
pψ converge to gpψ

√
pψ almost every-

where. Since hn
√
pψ converges in L2(T) to h

√
pψ, the Césaro averages of hn

√
pψ

must also converge to h
√
pψ in L2(T). Hence some subsequence of the Césaro av-

erages of hn
√
pψ must converge to h

√
pψ almost everywhere. But this subsequence

must also converge to gpψ
√
pψ almost everywhere. Hence gpψ(ξ) = h(ξ) for almost

every ξ ∈ U〈ψ〉. In particular, we conclude that gpψ ∈ L2(T, pψ) and that

lim
n→∞

∑
|k|≤n

〈ϕ, Tkψ〉Tkψ = Iψ(gpψ) = pψ • ϕ.

�

5The proof of this fact is much, much easier than the Carleson–Hunt theorem — because

the Féjer kernel, unlike the Dirichlet kernel, is an approximate identity, the proof that the Césaro

averages of Fourier series converge almost everywhere is at the level of proving the Lebesgue
Differentiation Theorem from the boundedness of the Hardy–Littlewood maximal function from

L1(T) to weak-L1(T).
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Remark 6.4. It is perhaps worth mentioning that, under the assumption that
Bψ is a minimal system (i.e. (5.3) holds), the proof of Lemma 6.3 is much simpler.
Here is the brief argument, using the same notation as in the previous Lemma.
From our assumption of convergence, it follows that, for every k ∈ Z,

〈Iψ(h), Tkψ̃〉 = 〈ϕ, Tkψ〉.

By Lemma 5.12, since h ∈ L1(T), we have, for every k ∈ Z, the following two
equalities:

〈ϕ, Tkψ〉 = ĝpψ(−k) and

〈I(h), Tkψ̃〉 = ĥ(−k).

Since gpψ ∈ L1(T) as well, we must conclude that gpψ = h almost everywhere. �

Theorem 6.5. If ψ ∈ L2(R), then the following are equivalent:

(a) There is a constant B with 0 < B <∞ so that pψ ≤ B a.e.;
(b) For every ϕ ∈ 〈ψ〉, one has pψ • ϕ ∈ 〈ψ〉;
(c) For every ϕ ∈ 〈ψ〉, one has (〈ϕ, Tkψ〉)k∈Z ∈ `2(Z);
(d) For every ϕ ∈ 〈ψ〉, the following limit exists in L2(R):

lim
n→∞

∑
|k|≤n

〈ϕ, Tkψ〉Tkψ.

Furthermore, if any of these equivalent statements hold, then the sequence in (d)
converges unconditionally.

Proof. First, the theorem is trivial if ψ ≡ 0, so we may assume that ψ 6≡ 0. We
prove that (a) implies (b), (c), (d), and that the convergence in (d) is unconditional.
Let us assume that (a) holds. Consider ϕ ∈ 〈ψ〉 and take g ∈ L2(T, pψ) such that
Iψ(g) = ϕ. Then, by the following trivial calculation, g

√
pψ ∈ L2(T, pψ):∫

T
|g√pψ|2pψ =

∫
T
|g|2pψ · pψ ≤ B

∫
T
|g|2pψ <∞.

Observe now that g
√
pψ ∈ L2(T, pψ) is equivalent to gpψ ∈ L2(T). Since (ck)k∈Z :=

〈ϕ, Tkψ〉 = ĝpψ(−k) and gpψ ∈ L2(T), we conclude that (ck)k∈Z ∈ `2(Z), which
gives (c). Applying Theorem 4.13d, we obtain that∑

k∈Z
ckTkψ =

∑
k∈Z
〈ϕ, Tkψ〉Tkψ

converges unconditionally. We may now apply Lemma 6.3 to conclude that the
limit is pψ • ϕ, and thus (b).

Second, we establish that (d) and (c) independently imply (b). Certainly, (d)
implies (b) by Lemma 6.3. We now prove that (c) implies (a) and therefore (b).
Let us assume (c). Consider ϕ ∈ 〈ψ〉 and take g ∈ L2(T, pψ) such that Iψ(g) = ϕ.
As in the proof of Lemma 6.3, we conclude that gpψ ∈ L1(T) and that, for every
k ∈ Z, one has 〈ϕ, Tkψ〉 = ĝpψ(−k). By (c) it follows that ((ĝpψ(k))k∈Z ∈ `2(Z)
which implies that gpψ ∈ L2(T), i.e. g ∈ L2(T, p2

ψ). Hence we have proved that, in
the set sense,

L2(T, pψ) ⊆ L2(T, p2
ψ).

Now, observe that Lemma 4.11 holds for weights w, v with exactly the same zero sets
(the proof goes verbatim with 1/w considered outside the zero set). Therefore, this
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minor modification of Lemma 4.11 shows that there exists a constant 0 < C < ∞
so that p2

ψ ≤ Cpψ. This obviously implies (a) and thus (b).

Finally, we prove that (b) implies (a). Let us assume that (b) is valid. Consider
g ∈ L2(T, pψ). Since Iψ(g) ∈ 〈ψ〉, it follows by (b) that pψ • Iψ(g) ∈ 〈ψ〉, which
implies that gpψ ∈ L2(T, pψ), i.e. that g ∈ L2(T, p3

ψ). Hence, we have shown that,
at the set level,

L2(T, pψ) ⊆ L2(T, p3
ψ).

Using the same modification of the Lemma 4.11 we used above, we conclude that
there exists a C so that p3

ψ ≤ Cpψ. This then implies that pψ ≤
√
C, which

guarantees (a).
�

It is easy to compute the `2(Z)-norm of the sequence (〈ϕ, Tkψ〉)k∈Z in the
context of the previous theorem. With this purpose in mind, consider ψ ∈ L2(T)
such that pψ ≤ B almost everywhere. Take any ϕ ∈ 〈ψ〉; hence, there is a g ∈
L2(T, pψ) such that Iψ(g) = ϕ (or, equivalently, ϕ = g • ψ). Since the inner
product is continuous, using Theorem 6.5 we obtain

(6.6) 〈pψ • ϕ,ϕ〉L2(R) =
∑
k∈Z
〈ϕ, Tkψ〉〈Tkψ,ϕ〉 =

∑
k∈Z
|〈ϕ, Tkψ〉L2(R)|2.

Observe that the left side of (6.6) can be expressed in several ways:

〈pψ • ϕ,ϕ〉L2(R) =

∫
R
|ϕ̂(ξ)|2pψ(ξ)dξ =

∫
T
pϕ(ξ)pψ(ξ)dξ(6.7)

=

∫
T
|[ϕ,ψ](ξ)|2dξ =

∫
T
|g(ξ)pψ(ξ)|2dξ.

The function ξ 7→ pϕ(ξ)·pψ(ξ) is in L1(T) since pψ is bounded above and pϕ ∈ L1(T).

Remark 6.8. (i) Comparing the sums in (6.1) and (6.2) we can see that the

“natural” choice of coefficients, 〈ϕ, Tkψ̃〉, is actually at a disadvantage. For
convergence of (6.2), the condition pψ ≤ B is sufficient, while for (6.1), one
requires minimality of Bψ which excludes any possibility of redundancy for the
system Bψ. Under the requirement that pψ ≤ B, the sums in (6.2) converge
unconditionally for every ϕ ∈ 〈ψ〉; assuming minimality for Bψ, the sums in
(6.1) may or may not converge for a particular ϕ ∈ 〈ψ〉 and, even if they do
converge, the convergence may only be conditional. For (6.2) (with pψ ≤ B),
the coefficients are always in `2(Z), while, for (6.1), the coefficients may not be
in `2(Z). The price we pay in (6.2) is that the limit may not be ϕ. However,
we do have an explicit form for the limit.

(ii) Observe that (c) in Theorem 6.5 is the “dual property” to the (RF)-property.
(iii) If ψ ∈ L2(R) is a Parseval frame wavelet (see [ŠSW08] for definitions and

details), then pψ ≤ 1.
�

In order to completely understand Theorem 6.5, we need to explore what hap-
pens with various conditions in individual cases (notice that the statements in the
theorem are given in the form “for every ϕ ∈ 〈ψ〉”). So, consider ψ ∈ L2(R) ,
ϕ ∈ 〈ψ〉, and g ∈ L2(T, pψ) such that Iψ(g) = ϕ. As we have seen in Lemma 6.3,
the convergence of the sum in (6.1) immediately implies that pψ •ϕ ∈ 〈ψ〉, i.e., that

(6.9) gpψ ∈ L2(T, pψ).
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Let us explore the implications of the condition (6.9). Observe first that, taken
by itself, this condition will not imply that gpψ ∈ L2(T) — take, for example, ψ

such that pψ > 0 and p−1
ψ /∈ L1(T), then choose g := p

−3/2
ψ to obtain |g|2p3

ψ ∈ L1(T)

and |g|2p2
ψ = p−1

ψ /∈ L1(T). However, if we know, as assumed above, the condition

g ∈ L2(T, pψ) also holds, then (6.9) implies that |g|√pψ ∈ L2(T) and |g|p3/2
ψ ∈

L2(T), which implies that |g|2p2
ψ ∈ L1(T), i.e. that

(6.10) gpψ ∈ L2(T).

Obviously, since 〈ϕ, Tkψ〉 = ĝpψ(−k), one has that (6.10) is equivalent (under the
assumption g ∈ L2(T, pψ)) to the condition

(6.11) (〈ϕ, Tkψ〉)k∈Z ∈ `2(Z).

However, although (6.10) (or, equivalently, (6.11)) will ensure that∑
k∈Z
〈ϕ, Tkψ〉e−2πikξ = gpψ in L2(T),

it will not necessarily ensure the convergence in (6.1). Using Lemma 6.3, this follows
from the fact that (6.10) does not imply (6.9) — take ψ ∈ L2(R) such that pψ > 0

and pψ /∈ L2(T), then consider g := p
−1/2
ψ to conclude that |g|2p2

ψ = pψ ∈ L1(T),

but |g|2p3
ψ = p2

ψ /∈ L1(T).
Let us briefly explore the mapping

(6.12) g 7→ gpψ

within the space L2(T, pψ). First of all, it is not difficult to check that the domain
of the mapping is a subspace of L2(T, pψ) given by

(6.13)

{
h

pψ
χU〈ψ〉 : h ∈ L2(T, pψ) ∩ L2(T, p−1

ψ χU〈ψ〉)

}
.

Observe that the measures pψdξ and p−1
ψ (ξ)χU〈ψ〉(ξ)dξ generate the same family

of null sets (however, the second measure might not be a finite measure). The
following example shows that the subspace given by (6.13) is never a trivial one
(unless ψ itself is trivial).

Example 6.14. Consider ψ 6≡ 0 with ψ ∈ L2(R). Define the function h on T
by

h(ξ) :=

{
1√
pψ(ξ)

if ξ ∈ {pψ > 1}√
pψ(ξ) if ξ ∈ {pψ ≤ 1}

.

Obviously h ≤ 1 and is non-trivial since h(ξ) > 0 for ξ ∈ U〈ψ〉, which is presumed

to be a set of positive Lebesgue measure. The integrals of h2pψ over {pψ ≤ 1} and

of h2p−1
ψ χU〈ψ〉 over {pψ > 1} are obviously finite. Moreover, one has∫

{pψ>1}
h2pψ =

∫
{pψ>1}

1

pψ
pψ ≤

∫
T

1 = 1

and ∫
{pψ≤1}

h2 1

pψ
χU〈ψ〉 =

∫
U〈ψ〉∩{pψ≤1}

pψ
1

pψ
≤
∫
T

1 = 1.

It follows that hp−1
ψ χU〈ψ〉 is a non-trivial element of the subspace given by (6.13).

♦
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Consider any h ∈ L2(T, pψ) ∩ L2(T, p−1
ψ χU〈ψ〉). We obtain∫

T
|h|2χU〈ψ〉 =

∫
{pψ≥1}

|h|2 +

∫
U〈ψ〉∩{pψ<1}

|h|2

≤
∫
{pψ≥1}

|h|2pψ +

∫
U〈ψ〉∩{pψ<1}

|h|2 1

pψ

≤
∫
T
|h|2pψ +

∫
T
|h|2 1

pψ
χU〈ψ〉

<∞.
Hence we always have (in the sense of set containment)

(6.15) L2(T, pψ) ∩ L2(T, p−1
ψ χU〈ψ〉) ⊆ L

2(T, χU〈ψ〉).

Observe that, for a maximal shift-invariant space 〈ψ〉 we have the set on the right
side of (6.15) is L2(T). Using these observations together with Theorem 6.5, parts
(a) and (b), it is easy to see that the following result holds.

Corollary 6.16. The domain given in (6.13) equals the entire space L2(T, pψ)
if and only if there is a constant B ∈ (0,∞) so that pψ ≤ B almost everywhere.
Furthermore, if this is the case, then

L2(T, p−1
ψ χU〈ψ〉) ⊆ L

2(T, χU〈ψ〉) ⊆ L
2(T, pψ).

It is also easy to see that the image of the mapping given in (6.12) is equal to
the following subspace of L2(T, pψ):

(6.17) L2(T, pψ) ∩ L2(T, p−1
ψ χU〈ψ〉).

Obviously then, the image of the mapping in (6.12) is equal to the entire space
L2(T, pψ) (or, in other words, the mapping in (6.12) is surjective) if and only if

(6.18) L2(T, pψ) ⊆ L2(T, p−1
ψ χU〈ψ〉).

Using now the modification of Lemma 4.11 for weights with the same zero sets (as
was already used in the proof of Theorem 6.5) we obtain that (6.18) is equivalent
to
(6.19)

there exists a constant A ∈ (0,∞) so that pψ ≥ AχU〈ψ〉 almost everywhere.

Observe also that if (6.19) holds, then

(6.20) L2(T, pψ) ⊆ L2(T, χU〈ψ〉) ⊆ L
2(T, p−1

ψ χU〈ψ〉).

Since the mapping given in (6.12) is always injective (within L2(T, pψ)), we have
proved the following result.

Corollary 6.21. The mapping given in (6.12) is a bijection from L2(T, pψ)
onto L2(T, pψ) if and only if there exist constants 0 < A ≤ B <∞ so that

(6.22) AχU〈ψ〉 ≤ pψ ≤ BχU〈ψ〉 almost everywhere.

We assume that our reader is familiar with the notion of a frame (see, for
example, [HW96] and [HŠWW10b] for definitions and further references). It is
well-known (see, for example, [HŠWW10b]) that (6.22) is equivalent to Bψ being
a frame for 〈ψ〉. If, moreover, A = B = 1, then Bψ is called a Parseval frame (it is
also fairly common, especially in older literature, for this to be called a normalized
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tight frame; the term tight frame relaxes the condition in a Parseval frame to
only requiring that A = B). Obviously, if 〈ψ〉 is a maximal shift-invariant space,
then (6.22) is equivalent to Bψ being a Riesz basis for 〈ψ〉 (the case A = B = 1
then corresponds to Bψ being an orthonormal basis for 〈ψ〉). In conclusion, using
Theorem 6.5, we can rephrase Corollary 6.21 as follows.

Corollary 6.23. Let ψ ∈ L2(R). Then we have

(i) for every ϕ ∈ 〈ψ〉
pψ • ϕ =

∑
k∈Z
〈ϕ, Tkψ〉Tkψ;

and
(ii) for every η ∈ 〈ψ〉 there exists a unique ϕ ∈ 〈ψ〉 so that

η =
∑
k∈Z
〈ϕ, Tkψ〉Tkψ

if and only if Bψ = {Tkψ : k ∈ Z} is a frame for 〈ψ〉. Furthermore if this is
the case, then (on the set level)

L2(T, p−1
ψ χU〈ψ〉) = L2(T, χU〈ψ〉) = L2(T, pψ).

7. Redundancy Remarks

For non-trivial ψ ∈ L2(R), the set Bψ is linearly independent, so the only way
to achieve redundancy is via infinite sums, i.e.

(7.1) lim
n→∞

∑
|k|≤n

ckTkψ ≡ 0

so that (ck)k∈Z is a non-trivial sequence of scalars. Particularly useful are non-
trivial unconditional sums of the form

(7.2)
∑
k∈Z

ckTkψ ≡ 0.

Observe that such sums can be used “to recover” any coefficients since we have, for
every ` ∈ Z,

(7.3) if lim
n→∞

∑
|k|≤n

dkTkψ = ϕ ∈ 〈ψ〉, then lim
n→∞

∑
|k|≤n

(dk + ck+`)Tkψ = ϕ.

However, the unconditional convergence in (7.2) implies that (ck)k∈Z ∈ `2(Z);
as a consequence non-trivial sums of the form (7.2) are possible only if the Lebesgue
measure of the zero set of pψ is positive, i.e.

(7.4) |Z〈ψ〉| > 0,

i.e. if 〈ψ〉 is not a maximal principal shift-invariant space.

Remark 7.5. As we have seen in Section 5, there is no redundancy of any
kind if Bψ is maximal, i.e. if p−1

ψ ∈ L1(T). In particular, this also shows that the

(B)-property of Bψ is incompatible with the idea of redundancy. The same holds
for the (RF)-property of Bψ.

Let us also mention that for a maximal principal shift-invariant space 〈ψ〉 such
that Bψ is not minimal, we have non-trivial sums of the form (7.1), but the coeffi-
cients (ck)k∈Z /∈ `2(Z). Unfortunately, we cannot say much more about these types
of spaces 〈ψ〉 (see also Remark 5.5).
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�

Remark 7.6. In order to understand redundancy issues for maximal principal
shift-invariant spaces 〈ψ〉, it may be interesting to consider the following open
question. Given ψ ∈ L2(R) such that 〈ψ〉 is a maximal principal shift-invariant
space, is there a non-trivial sequence

(ck)k∈Z ∈
⋂
p>2

`p(Z)

such that
lim
n→∞

∑
|k|≤n

ckTkψ ≡ 0?

�

We turn our attention to the non-maximal case, i.e. to a principal shift-
invariant space 〈ψ〉 such that pψ satisfies (7.4). If there exists a sum of the form
(7.2), i.e. (ck) is non-trivial and

∑
k∈Z ckTkψ ≡ 0, then we must have (ck) ∈ `2(Z).

It follows that there exists f ∈ L2(Z) with (ck)k∈Z being its Fourier coefficients.
By the Carleson theorem, for Lebesgue-almost everywhere ξ ∈ T,

(7.7)
∑
|k|≤n

c−ke
2πikξ → f(ξ).

Since, by (7.2), we have that ∥∥∥∥∥∥
∑
|k|≤n

c−ke
2πikξ

∥∥∥∥∥∥→ 0,

we conclude that f has to satisfy (in the almost everywhere sense)

(7.8) ssupp (f) ⊆ Z〈ψ〉
This means that our candidates for sums of the form (7.2) are to be selected via

functions f ∈ L2(T) such that (7.8) holds. Unfortunately, in general such a function
does not have to generate convergent sums in (7.2). This obviously changes if pψ
is bounded above. In other words, we have the following result.

Proposition 7.9. Let ψ ∈ L2(R) such that ψ 6≡ 0, |Z〈ψ〉| > 0 and there exists

B ∈ (0,∞) so that pψ ≤ B. Then
∑
k∈Z ckTkψ ≡ 0 (in the sense of L2(R)-norm)

with non-trivial coefficients (ck)k∈Z if and only if f ∈ L2(T) such that ssupp (f) ⊆
Z〈ψ〉 and, for every k ∈ Z, f̂(k) = c−k.

Remark 7.10. Despite the fact that Proposition 7.9 completely characterizes
“unconditional redundancy sums” in the case of a bounded pψ, the actual choice of
such sums may be quite limited. It will depend on the properties of the set Z〈ψ〉.

Recall that `2(Z) contains every `p(Z) for 1 ≤ p < 2, but, despite ψ satisfying (7.4)
we may not be able to select our coefficients within some of these spaces. More
precisely (consult Remark 5.5), assuming that pψ is bounded above, we have (see

[ŠS12]) that Bψ is `p(Z)-linearly independent, 1 ≤ p ≤ 2, if and only if Z〈ψ〉 is an

`p(Z)-set of uniqueness (see [ŠS12] and [Kat04] for definitions and details).
Recall (see [Kat04] and [HK65]) that for every p < 2 there are `p-sets of

uniqueness of positive Lebesgue measure. For 1 ≤ q < p ≤ 2, every `p-set of
uniqueness is also an `q-set of uniqueness, and there exists an `q-set of uniqueness
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which is not an `p-set of uniqueness. Furthermore, given ε > 0, there exists a
measurable set E ⊆ T such that 1 − ε < |E| ≤ 1 and E is an `p-set of uniqueness
for every p < 2; in particular, if Z〈ψ〉 is such a set, then candidates for the sum of
the form (7.2) could be selected only among

(ck)k∈Z ∈ `2(Z) \

(⋃
p<2

`p(Z)

)
.

�

Let us also comment on the possibility that every principal shift-invariant space
〈ψ〉 with the property (7.4) can be continuously embedded into infinitely many max-
imal principal shift-invariant space. To simplify matters, we can define a particular
choice via the following function ψmax ∈ L2(R), defined by

(7.11) ψ̂max(ξ) :=

{
1 if ξ ∈ Z〈ψ〉 ∩ [0, 1]

ψ̂(ξ) otherwise
.

Obviously, then, 〈ψ〉 ⊆ 〈ψmax〉 and 〈ψmax〉 is a maximal principal shift-invariant
space. Furthermore, for ϕ ∈ 〈ψmax〉 we define its projection on 〈ψ〉 via

(7.12) χU〈ψ〉 • ϕ;

see [LWW15] for the related idea of the projection. If pψ is bounded above, then
our “redundancy sums” candidates are also given via

(7.13) χZ〈ψ〉 • ϕ,ϕ ∈ 〈ψmax〉.

Particularly nice is the case when Bψ is a frame for 〈ψ〉. In that case, L2(T, pψmax
)

can be identified, in the set sense, with

(7.14) L2(T, χU〈ψ〉)⊕ L
2(T, χZ〈ψ〉).

Every ϕ ∈ 〈ψ〉 can be represented as Iψ(g), for some g ∈ L2(T, χU〈ψ〉), and expanded

in terms of Bψ as an unconditional sum with `2(Z)-coefficients, and every “uncon-
ditional redundancy sum” of the form (7.2) is given via some h ∈ L2(T, χZ〈ψ〉).





CHAPTER 2

MRA Structure

1. Dilations and Shift-invariant Spaces

We shall use D to denote the dyadic dilation operator ; that is, D : L2(R) →
L2(R) is the unitary operator given by Dψ(x) =

√
2ψ(2x) for ψ ∈ L2(R) and x ∈ R.

The operator T = T1 does not commute with D, but the two operators do share
the following relationship:

(1.1) TD = DT 2.

As in the case of T , we shall denote the k-th integer power of D by Dk. Since
the order in which we apply T and D matters, we shall introduce the following
notation. For j, k ∈ Z,

ψjk := DjTkψ(1.2)

ψjk := TkDjψ.

Thus for x ∈ R, we have ψjk(x) = 2j/2ψ(2jx − k) and ψjk(x) = 2j/2ψ(2j(x − k)).
In particular,

(1.3) ψjk = ψj,2jk.

The family {2j/2ψ(2jx − k) : j, k ∈ Z} is the main object of our study. This
family is, of course, fundamentally important in the study of wavelet theory, and
we assume that our readers are familiar with the basic notions from the theory
of wavelets, such as bases, orthonormal wavelets, MRA wavelets, frames, Parseval
frames, Parseval frame wavelets, and the like. The theory of wavelets has been
thoroughly studied by many authors; standard references include the books by I.
Daubechies [Dau92], Y. Meyer [Mey90], R. Coifman and Y. Meyer [MC97], C.K.
Chui [Chu92], and M.V. Wickerhauser [Wic94].

In this section we shall review and further explore the action of D on shift-
invariant spaces. Recall first (see, for example, Theorem 3.3 in [Bow00]) that, for
every shift-invariant space V ⊂ L2(R), there exists a countable family F ⊂ L2(R)
such that V is equal to the following orthogonal sum:

(1.4)
⊕
f∈F

〈f〉.

Given a unitary operator U : L2(R)→ L2(R), we obtain

(1.5) U(V ) =
⊕
f∈F

U(〈f〉).

Hence, U “preserves the shift-invariant space property” if and only if U(〈ψ〉) is a
shift-invariant space for every ψ ∈ L2(R). Since

U(〈ψ〉) = span〈UTkψ : k ∈ Z},

37
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it follows that U(〈ψ〉) is a shift-invariant space if and only if, for every ` ∈ Z,

(1.6) TUT`ψ ∈ span〈UTkψ : k ∈ Z}.

For example, if U = D−1, then TD−1T`ψ = D−1T`+ 1
2
ψ — obviously `+ 1

2 /∈ Z
— and it is not difficult to see that D−1(〈ψ〉) is not necessarily a shift-invariant
space. However, in the case of U = D, we obtain TDT`ψ = DT`+2ψ, which shows
that D(〈ψ〉) is always a shift-invariant space. Consequently, we obtain the well-
known result that, for every shift-invariant space V ⊂ L2(R)

(1.7) D(V ) is a shift-invariant space.

There is the following well-known formula (see, for example, [BR05]) for the di-
mension function:

(1.8) dimD(V )(2ξ) = dimV (ξ) + dimV (ξ + 1/2),

for ξ ∈ R. Indeed, we shall see that a 2-valued mapping

(1.9) ξ 7→ ξ

2
and

ξ

2
+

1

2
,

for ξ ∈ T plays an important role in our analysis.
Let us explore D(〈ψ〉) for ψ ∈ L2(R) in detail. First of all, D(〈ψ〉) is the

shift-invariant space generated by Dψ and DTψ, i.e.

(1.10) D(〈ψ〉) = 〈ψ10, ψ11〉.

Identifying T with [0, 1), we obtain by (1.8) that for 0 ≤ ξ < 1,

(1.11) dimD(〈ψ〉) = χ2U〈ψ〉∩[0,1)(ξ) + χ[2U〈ψ〉∩[1,2)]−1(ξ).

Using the notation UL = UL(〈ψ〉) := 2U〈ψ〉 ∩ [0, 1) and UR = UR(〈ψ〉) :=
[2U〈ψ〉 ∩ [1, 2)]− 1, we obtain, for 0 ≤ ξ < 1,

(1.12) dimD(〈ψ〉)(ξ) =

 0 if ξ /∈ UL ∪ UR
1 if ξ ∈ UL4UR
2 if ξ ∈ UL ∩ UR

Here, 4 denotes the symmetric difference of two sets. As always, the dim function
is 1-periodic and can be extended from (1.12) to R.

Remark 1.13. Observe that one can construct dimD(〈ψ〉) knowing only U〈ψ〉.
Indeed, for 0 ≤ ξ < 1,

dimD(〈ψ〉)(ξ) = 0 if and only if
ξ

2
,
ξ

2
+

1

2
/∈ U〈ψ〉;

dimD(〈ψ〉)(ξ) = 1 if and only if exactly one of
ξ

2
,
ξ

2
+

1

2
is in U〈ψ〉;

dimD(〈ψ〉)(ξ) = 2 if and only if
ξ

2
,
ξ

2
+

1

2
∈ U〈ψ〉.

Some specific cases now follow easily. �

Corollary 1.14. Let ψ ∈ L2(R).

(a) dimD(〈ψ〉) takes only the values 0 and 2 if and only if U〈ψ〉 is 1/2-periodic.
(b) dimD(〈ψ〉) ≡ 2 if and only if U〈ψ〉 = R (which is equivalent to 〈ψ〉 being a

maximal shift-invariant space). In this case, dimDj(〈ψ〉) ≡ 2j, for every j ∈
N ∪ {0}.
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The following examples demonstrate that various other configurations for dimD(〈ψ〉)
are possible.

Example 1.15. Consider ψ ∈ L2(R) such that U〈ψ〉 ∩ [0, 1) = [1/4, 3/4) —

for example, one could take ψ̂ = χ[1/4,3/4). Then one obtains UL = [1/2, 1) and
UR = [0, 1/2), i.e.

dimD(〈ψ〉) ≡ 1.

It follows that D(〈ψ〉) is a maximal principal shift-invariant space. By Corollary
1.14b we obtain, for every j ∈ N,

dimDj(〈ψ〉) ≡ 2j−1

♦

Example 1.16. Consider ψ ∈ L2(R) such that U〈ψ〉 ∩ [0, 1) = [a, b) ∪ [c, d),
where 0 ≤ a ≤ b ≤ 1/2 ≤ c ≤ d ≤ 1. We denote the (essential) range of dimD(〈ψ〉)
by R ⊂ {0, 1, 2}. The following choices of a, b, c, and d provide us with all possible
options for R.

• a = b and c = d yields R = {0} — obviously this means ψ ≡ 0.
• a = 1/4, b = c and d = 3/4 yields R = {1}. This is Example 1.15.
• a = 0, b = c = 1/2, and d = 1 yields R = {2}.
• a = 0, b = 1/3, c = 2/3, and d = 1 yields R = {1, 2}.
• a = 1/8, b = 1/4, c = 3/4, and d = 7/8 yields R = {0, 1}.
• a = 1/4, b = 1/3, c = 3/4, and d = 5/6 yields R = {0, 2}.
• a = 1/4, b = 1/3, c = 2/3, and d = 5/6 yields R = {0, 1, 2}.

♦

Remark 1.17. Recall the notation UV = {ξ ∈ R : dimV (ξ) > 0} for any
shift-invariant space V . In comparing U〈ψ〉 and UD(〈ψ〉), the intuition is that “the
action of D increases the measure of the set UV ”. We give a precise statement here.
Consider the partition of the set U〈ψ〉∩[0, 1) given by {U〈ψ〉∩[0, 1/2), U〈ψ〉∩[1/2, 1)}.
Since UD(〈ψ〉) ∩ [0, 1) = UL ∪ UR, we obtain

|UL ∪ UR| ≥ max{|UL|, |UR|}
= 2 max{|U〈ψ〉 ∩ [0, 1/2)|, |U〈ψ〉 ∩ [1/2, 1)|}
≥ |U〈ψ〉 ∩ [0, 1/2)|+ |U〈ψ〉 ∩ [1/2, 1)|
= |U〈ψ〉 ∩ [0, 1)|.

This shows that, for every ψ ∈ L2(R),

(1.18) |UD(〈ψ〉) ∩ [0, 1)| ≥ |U〈ψ〉 ∩ [0, 1)|.

Let us also observe the extreme case of this inequality. If U〈ψ〉 is 1/2-periodic,
then (1.18) becomes an equality. If dimD(〈ψ〉) ≤ 1, then

(1.19) |UD(〈ψ〉) ∩ [0, 1)| = 2|U〈ψ〉 ∩ [0, 1)|.

�

Recall that (1.10) shows that D(〈ψ〉) contains and is generated (as a shift-
invariant space) by two principal shift-invariant spaces, 〈ψ10〉 and 〈ψ11〉. Our next
task is to describe the relationship between 〈ψ10〉 and 〈ψ11〉. We start with the
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following list of formulas which are well-known or elementary to derive. For all
ψ ∈ L2(R) and almost every ξ ∈ R, we have

D̂ψ(ξ) = ψ̂10(ξ) =
1√
2
ψ̂(ξ/2) = D−1ψ̂(ξ) and(1.20)

D̂Tψ(ξ) = ψ̂11(ξ) = e−πiξ
1√
2
ψ̂(ξ/2) = e−πiξψ̂10.

(1.21) pψ10(ξ) = pψ11(ξ) =
1

2
(pψ(ξ/2) + pψ(ξ/2 + 1/2)) ,

and similar formulae hold for σψ10 and σψ11 .

(1.22) [ψ10, ψ11](ξ) =
eπiξ

2
(pψ(ξ/2)− pψ(ξ/2 + 1/2)) .

|[ψ10, ψ11](ξ)|2 =
1

4
(pψ(ξ/2)− pψ(ξ/2 + 1/2))

2
(1.23)

pψ10 · pψ11 =
1

4
(pψ(ξ/2) + pψ(ξ/2 + 1/2))

2
.

Using these formulae and the notation and results of Section I.2, we obtain the
following characterization of the relationship between 〈ψ10〉 and 〈ψ11〉:

Corollary 1.24. If ψ ∈ L2(R), then

(a)

ZD(〈ψ〉) ⊆ U〈ψ10〉⊥〈ψ11〉

= {ξ : pψ(ξ/2) = pψ(ξ/2 + 1/2)}
= 2{ξ : pψ(ξ) is 1/2-periodic}
⊆ {ξ : dimD(〈ψ〉)(ξ) = 0 or 2};

(b)
U〈ψ10〉∩〈ψ11〉 = {ξ : dimD(〈ψ〉)(ξ) = 1};

(c)

U〈ψ10〉∠〈ψ11〉 = {ξ : 0 6= pψ(ξ/2) 6= pψ(ξ/2 + 1/2) 6= 0}
⊆ {ξ : dimD(〈ψ〉)(ξ) = 2}.

Corollary 1.25. If ψ ∈ L2(R) and 〈ψ〉 is a maximal principal shift-invariant
space, then

|U〈ψ10〉∩〈ψ11〉| = 0

|ZD(〈ψ〉)| = 0

U〈ψ10〉⊥〈ψ11〉 = {ξ : pψ(ξ/2) = pψ(ξ/2 + 1/2)}
U〈ψ10〉∠〈ψ11〉 = {ξ : pψ(ξ/2) 6= pψ(ξ/2 + 1/2)}.

Corollary 1.26. If ψ ∈ L2(R) and Bψ forms a Parseval frame for 〈ψ〉, then

|U〈ψ10〉∠〈ψ11〉| = 0

U〈ψ10〉∩〈ψ11〉 = UL4UR
U〈ψ10〉⊥〈ψ11〉 = {ξ : dimD(〈ψ〉)(ξ) = 0 or 2},
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where 4 denotes the symmetric difference for sets.

Corollary 1.27. If ψ ∈ L2(R), then D(〈ψ〉) = 〈ψ10〉⊕ 〈ψ11〉 if and only if pψ
is 1/2-periodic.

The last result deserves additional attention in the particular case where Bψ
forms a Parseval frame for 〈ψ〉 (or, equivalently, when pψ = χU〈ψ〉). Using (1.21) it
is easy to prove the following result.

Corollary 1.28. If ψ ∈ L2(R) is such that Bψ forms a Parseval frame for
〈ψ〉, then the following are equivalent:

(a) BDψ forms a Parseval frame for 〈Dψ〉;
(b) BDTψ forms a Parseval frame for 〈DTψ〉;
(c) U〈ψ〉 is 1/2-periodic;
(d) D(〈ψ〉) = 〈Dψ〉 ⊕ 〈DTψ〉.
If any of the above equivalent conditions is fulfilled, then BDψ∪BDTψ forms a Parse-
val frame for D(〈ψ〉). If Bψ forms an orthonormal basis for 〈ψ〉 (i.e. U〈ψ〉 = R and
is 1/2-periodic), then BDψ, BDTψ, and BDψ ∪BDTψ are, respectively, orthonormal
bases for 〈Dψ〉, 〈DTψ〉, and D(〈ψ〉) = 〈Dψ〉 ⊕ 〈DTψ〉.

Remark 1.29. In order to understand previous results more completely, we
add several observations.

(i) For every ψ ∈ L2(R) and for every ϕ ∈ 〈ψ〉, we have∑
k∈Z
|〈ϕ, Tkψ〉|2 =

∑
k∈Z
|〈Dϕ,DTkψ〉|2 =

∑
m∈Z
|〈Dϕ, TmDψ〉|2 +

∑
n∈Z
|〈Dϕ, TnDTψ〉|2.

In particular, if Bψ is a Parseval frame for 〈ψ〉, then BDψ∪BDTψ is a Parseval
frame for D(〈ψ〉) (i.e. always, irrespective of the 1/2-periodicity of U〈ψ〉).

(ii) Take 0 < ε < 1/2 and ψ ∈ L2(R) such that ψ̂ = χ[0,ε). It is easy to see
that D(〈ψ〉) = 〈Dψ〉 = 〈DTψ〉, and, in particular, 〈Dψ〉 is not orthogonal to
〈DTψ〉. Moreover, BDψ is not a Parseval frame for 〈Dψ〉, though BDψ is a
tight frame for 〈Dψ〉 (with constant 1/2).

(iii) It is easy to see that if Bψ is a frame for 〈ψ〉 (with frame bounds 0 < A ≤ B),
then BDψ∪BDTψ is a frame for D(〈ψ〉), with the same frame bounds A and B,
while BDψ (or, respectively, BDTψ) is a frame for 〈Dψ〉 (respectively, 〈DTψ〉)
with frame bounds between A/2 < B.

�

Remark 1.30. Regarding the case of a maximal principal shift-invariant space
〈ψ〉, we observe that D is a bounded, invertible operator D : 〈ψ〉 → D(〈ψ〉) and
that most properties of Bψ are preserved.

(i) If Bψ is a Riesz basis for 〈ψ〉, then BDψ ∪ BDTψ = D(Bψ) is a Riesz basis for
D(〈ψ〉). Furthermore, it follows directly from (1.21) that, in this case, BDψ
(respectively, BDTψ) is a Riesz basis for 〈Dψ〉 (respectively, 〈DTψ〉).

(ii) If Bψ (ordering Z as before by Z = {0, 1,−1, 2,−2, ...}) is a Schauder basis
for 〈ψ〉, then BDψ ∪ BDTψ is a Schauder basis for D(〈ψ〉) (with an ordering
of the form {Dψ,DTψ,DT−1ψ = T−1DTψ, TDψ, T−1Dψ, ...}). Using the
fact that the sum of two A2-weights is again an A2-weight, it is easy to see
directly from (1.21) that, in this case, BDψ (with an ordering of the form
{Dψ, TDψ, T−1Dψ, T2Dψ, T−2Dψ, ...}) is a Schauder basis for 〈Dψ〉. The
analogous statement holds for BDTψ.
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(iii) If Bψ is a minimal system (within 〈ψ〉 and with the dual function ψ̃ = p−1
ψ •ψ),

then BDψ, BDTψ, and BDψ ∪ BDTψ are minimal systems within, respectively,

〈Dψ〉, 〈DTψ〉, and D(〈ψ〉). Observe that Dψ̃ may serve as the dual function
in all three cases, but it is not necessarily contained within 〈Dψ〉 (similarly

for 〈DTψ〉), so for BDψ, we have ψ̃10 = p−1
ψ10
• ψ10 (analogously for ψ̃11).

(iv) As in (ii), the property of `2-linear independence is preserved, but with the
proper ordering as described in (ii).

�

Given a function ϕ ∈ 〈ψ〉 such that

pψ • ϕ =
∑
k∈Z
〈ϕ, Tkψ〉Tkψ,

we obtain directly that (observe the Fourier transform of D(pψ•ϕ) is pψ(ξ/2)D̂ϕ(ξ))

D(pψ • ϕ) =
∑
k∈Z
〈Dϕ,ψ1k〉ψ1k(1.31)

=
∑
`∈Z
〈Dϕ, T`Dψ〉T`Dψ +

∑
m∈Z
〈Dϕ, TmDTψ〉TmDTψ,

by splitting the first sum over k into sums over even and odd values of k, respectively.
Let us explore the condition of 1/2-periodicity of pψ. Given ψ ∈ L2(R), it is

easy to find a generator ϕ of 〈ψ〉 such that Bϕ is a Parseval frame for 〈ψ〉; simply
use

(1.32) ϕ :=

(
1
√
pψ
χU〈ψ〉

)
• ψ.

In general, the positions of 〈Dψ〉 and 〈DTψ〉 within D(〈ψ〉) = D(〈ϕ〉) is different
from the positions of 〈Dϕ〉 and 〈DTϕ〉 therein. It is of interest to find out when it
is that this interior structure of D(〈ψ〉) is unchanged.

Lemma 1.33. Let ψ ∈ L2(R) and ϕ be given by (1.32). If pψ is 1/2-periodic,
then 〈Dψ〉 = 〈Dϕ〉. If 〈ψ〉 is a maximal principal shift-invariant space, then

〈Dψ〉 = 〈Dϕ〉 if and only if pψ is 1/2-periodic.

Proof. It is always true that

U〈Dψ〉 = Zc〈Dψ〉

= {ξ : pψ(ξ/2) = 0 = pψ(ξ/2 + 1/2)}c

= {ξ : ξ/2 /∈ U〈ψ〉 and ξ/2 + 1/2 /∈ U〈ψ〉}c

= U〈Dϕ〉.

Observe that, in general, U〈Dψ〉 is not necessarily 1/2-periodic. Comparing D̂ψ and

D̂ϕ, we obtain

D̂ψ(ξ) =
√
pψ(ξ/2)D̂ϕ(ξ).

If pψ is 1/2-periodic, then, by Corollary 1.1.21b, we conclude that 〈Dψ〉 = 〈Dϕ〉.
If 〈ψ〉 is maximal, then U〈Dψ〉 = U〈Dϕ〉 = R (which is, of course, a 1/2-periodic
set). If one also has that 〈Dψ〉 = 〈Dϕ〉, then the same corollary guarantees that√
pψ(ξ/2) must be equal almost everywhere to a 1-periodic function, whence pψ

must be 1/2-periodic. �
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Example 1.34. Consider any ψ ∈ L2(R) so that ssupp (ψ̂) ⊆ [0, 1/2). Then
pψ is not 1/2-periodic; pψ ≡ 0 on [1/2, 1) and pψ is not identically zero on [0, 1/2),
unless ψ is the zero function. However, since U〈Dψ〉 = U〈Dϕ〉, where ϕ is given

by 1.32 from this ψ, and ssupp (D̂ψ) = ssupp (D̂ϕ) ⊆ [0, 1), we obtain, using
Corollary 1.1.21b, that 〈Dψ〉 = 〈Dϕ〉.

♦

Applying now Corollary 1.27 and Lemma 1.33, it is easy to see that in the case
where pψ is 1/2-periodic, transferring from our generator ψ to the one given in
(1.32) does not disrupt the inner structure of D(〈ψ〉). More precisely, we have the
following result.

Theorem 1.35. Let ψ ∈ L2(R) be such that pψ is 1/2-periodic. Let ϕ :=(
p
−1/2
ψ χU〈ψ〉

)
• ψ. Then

(a) 〈ψ〉 = 〈ϕ〉, 〈Dψ〉 = 〈Dϕ〉, and 〈DTψ〉 = 〈DTϕ〉;
(b) D(〈ψ〉) = 〈Dψ〉 ⊕ 〈DTψ〉 = 〈Dϕ〉 ⊕ 〈DTϕ〉;
(c) dimD(〈ψ〉) = 2χ2U〈ψ〉 ;

(d) For every f ∈ 〈ψ〉,
Df =

∑
k∈Z
〈Df,ϕ1k〉ϕ1k

and

f =
∑
k∈Z
〈f, ϕ0k〉ϕ0k.

As much as the case of 1/2-periodicity of pψ is connected to orthogonality of
the spaces 〈ψ10〉 and 〈ψ11〉, the case of “1/2-antiperiodicity” of pψ is connected to
the equality of the spaces 〈ψ10〉 and 〈ψ11〉. Observe first that, by Corollary 1.25,
this case is only possible within non-maximal principal shift-invariant spaces. We
have the following result.

Theorem 1.36. If ψ ∈ L2(R), then the following are equivalent:

(a) 〈Dψ〉 = 〈DTψ〉;
(b) dimD(〈ψ〉) ≤ 1;
(c) D(〈ψ〉) is a principal shift-invariant space;
(d) |[(U〈ψ〉 ∩ [0, 1/2)) + 1/2] ∩ [U〈ψ〉 ∩ [1/2, 1)]| = 0;
(e) |UD(〈ψ〉) ∩ [0, 1)| = 2|U〈ψ〉 ∩ [0, 1)|;
(f) 〈Dψ〉 = D(〈ψ〉);
(g) D(〈ψ〉) ⊆ 〈Dψ〉;
(h) 〈Dψ〉 ⊆ 〈DTψ〉.

Proof. Observe that (1.10) implies (f) ⇔ (g) as well as (a) ⇒ (f) ⇒ (h).
Using Proposition 1.2.4 and the fact that U〈Dψ〉 = U〈DTψ〉 (see (1.21)), we obtain
(h) ⇒ (a). Certainly, (b) ⇔ (c) and (f) ⇒ (c). Remark 1.13 (or (1.12)) explains
why (b) ⇔ (d). Computations similar to those in Remark 1.17 show that (1.19)
(which is the same equality as (e)) is equivalent to

(1.37) |UL ∪ UR| = |UL|+ |UR|,
which in turn is equivalent to (d).

In order to complete the proof, it suffices to prove that (d) ⇒ (a). Assume
(d), and recall that U〈Dψ〉 = U〈DTψ〉. Hence, using Corollary 1.1.21b, in order
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to conclude (a), it is enough to find a 1-periodic, measurable function m so that

ψ11 = m • ψ10. However, by (1.20), we know that ψ̂11(ξ) = e−πiξψ̂10(ξ), and e−πiξ

is 2-periodic, not 1-periodic. Here is where (d) becomes crucial. Choose m : R→ C
to be 1-periodic such that, for 0 ≤ ξ < 1,

(1.38) m(ξ) :=


e−iπξ if ξ ∈ 2U〈ψ〉
e−iπ(ξ+1) if ξ ∈ 2U〈ψ〉 + 1
0 otherwise

This function is only well-defined since (d) holds (if (d) did not hold, the first two
lines of the definition of m(ξ) would conflict on a set of positive measure). Clearly,
m is measurable. Observe also that this choice of m satisfies ψ11 = m •ψ10 — this

is because when ξ/2 /∈ U〈ψ〉, we have ψ̂11(ξ) = ψ̂10(ξ) = 0. �

Remark 1.39. Observe that property (d) in the previous theorem enables
a simple construction of all ψ ∈ L2(R) such that 〈Dψ〉 = 〈DTψ〉. Take any
ϕ ∈ L2(R) and any measurable sets A,B such that A ⊆ [0, 1/2), B ⊆ [1/2, 1),
|(A + 1/2) ∩ B| = 0 and |A| + |B| ≤ 1/2. Take any two families of measurable
sets {An : n ∈ Z} and {Bn : n ∈ Z} so that, for every n ∈ Z, An ⊆ A, Bn ⊆ B,
A =

⋃
n∈ZAn, and B =

⋃
n∈ZBn. Define ψ ∈ L2(R) so that

ψ̂ =
∑
n∈Z

φ̂(χn+An + χn+Bn).

Such ψ has the property that 〈Dψ〉 = 〈DTψ〉, and every ψ with this property can
be constructed using this algorithm. �

Remark 1.40. It is perhaps worth noticing the following difference between
the cases described in Theorem 1.35 and Theorem 1.36. In order to characterize the
first theorem, one needs to know the values of pψ, while, for the second theorem,
it is enough to know the set U〈ψ〉. This is essentially the consequence of the fact
that U〈ψ10〉∩〈ψ11〉 is completely determined by U〈ψ〉, but determining U〈ψ10〉⊥〈ψ11〉
and U〈ψ10〉∠〈ψ11〉 requires knowledge of pψ. �

Finally, let us explore the effect of D on the lattice structure of 〈ψ〉 (recall
Section 1.3). It is easy to see that, for every ψ ∈ L2(R) (see (1.1))

D(〈ψ〉) = 〈Dψ,DTψ〉 = 〈Dψ, T1/2Dψ〉 = 〈Dψ〉(1/2)Z.

Using a simple induction argument, we obtain that, for every j ∈ N ∪ {0},
(1.41) Dj(〈ψ〉) = 〈Djψ, T1/2jDjψ, T2/2jDjψ, ..., , T(2j−1)/2jDjψ〉 = 〈Djψ〉(1/2j)Z.

Remark 1.42. (i) Formula (1.41) provides us with yet another equivalent
condition for Theorem 1.36: 〈Dψ〉 = 〈Dψ〉 1

2Z
(or, in other words, 2 ∈ T〈Dψ〉).

Obviously, in this case 〈Dψ〉 is either of Type-2 or Type-3.
(ii) Obviously, Dj(〈ψ〉) = 〈Djψ〉 if and only if 2j ∈ T〈Djψ〉. Recall that in this

case 2` ∈ T〈Djψ〉 for every ` ∈ {1, 2, ..., j}.
(iii) If there exists j ∈ N ∪ {0} such that 2` ∈ T〈Djψ〉 for every ` ∈ N, then 〈Djψ〉

is of Type-3.
�

The intuition of Remark 1.17 would suggest that the Type of 〈Dψ〉 should be
at most the Type of 〈ψ〉. This is “almost true”, but there are exceptions. We have
the following results.
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Example 1.43. For 0 < ε < 1/2, consider ψ ∈ L2(R) defined by

ψ̂ = χ[0,ε) + χ[1,1+ε).

Using Theorem 2.2 from [ŠW11] it is easy to see that T〈ψ〉 = ∅ (following the

notation in [ŠW11], we have that F1 ∩ F2 = [0, ε), i.e. a set of positive measure

for all n ∈ N \ {1}). Obviously, ssupp D̂ψ = [0, 2ε) ∪ [2, 2 + 2ε), so we obtain that
T〈Dψ〉 = {2}. Hence 〈Dψ〉 is of Type-2 and thus of strictly greater type than 〈ψ〉,
which is of Type-1. ♦

As we show in the next lemma, the number 2 in the previous example does not
appear by mere coincidence.

Lemma 1.44. Let ψ ∈ L2(R) and n ∈ N \ {1} an odd number. If n ∈ T〈Dψ〉,
then n ∈ T〈ψ〉.

Proof. Since n ∈ T〈Dψ〉, we obtain

D(T2/nψ) = T1/n(Dψ) ∈ 〈Dψ〉.
Hence there exists a sequence (ϕm)m∈N ⊆ span(BDψ) such that D(T2/nψ) =
limm→∞ ϕm. Every ϕm is a finite linear combination of the form∑

k

λkTkDψ =
∑
k

λkD(T2kψ) = D

(∑
k

λkT2kψ

)
.

Hence for every m ∈ N, there exists ηm ∈ 〈ψ〉 such that ϕm = D(ηm). It follows
that

T2/nψ = D−1D(T2/nψ) = D−1( lim
m→∞

ϕm) = lim
m→∞

ηm ∈ 〈ψ〉.

Since T2/nψ ∈ 〈ψ〉, it follows that T2/n(〈ψ〉) ⊆ 〈ψ〉. Let us write n = 2` + 1, with
` ∈ N since n ∈ N \ {1} is odd. Observe that

T(2`+2)/nψ = T2/nT2/n...T2/n︸ ︷︷ ︸
`+1 times

ψ ∈ 〈ψ〉.

Since (2`+ 2)/n = 1 + (1/n), we obtain

T1/n(Tψ) ∈ 〈ψ〉 = 〈Tψ〉,
which guarantees that T1/n(〈ψ〉) ⊆ 〈ψ〉. In other words, n ∈ T〈ψ〉.

�

The number 2 plays yet another important role in these considerations.

Lemma 1.45. If ψ ∈ L2(R) is such that 2 ∈ T〈Dψ〉, then 〈ψ〉 is not a maximal
shift-invariant space.

Proof. If 2 ∈ T〈Dψ〉, then (by Remark 1.42i) we have 〈Dψ〉 = 〈DTψ〉 and,
consequently (by Theorem 1.36), dimD(〈ψ〉) ≤ 1. By Corollary 1.14b, the only way
〈ψ〉 could be maximal is if dimD(〈ψ〉) ≡ 2, which is not the case. Hence 〈ψ〉 must
not be maximal.

�

Theorem 1.46. Let ψ ∈ L2(R).

(a) If 〈Dψ〉 is of Type-3, then 〈ψ〉 must also be of Type-3.
(b) If 〈ψ〉 is a maximal shift-invariant space which is of Type-3, then 〈Dψ〉 is either

of Type-1 or of Type-2.
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Proof. (a) If 〈Dψ〉 is of Type-3, then (by 1.3.5), every n ∈ N \ {1} belongs
to T〈Dψ〉. If n is odd, then (by Lemma 1.44) n ∈ T〈ψ〉. It follows that T〈ψ〉 is
infinite, whence 〈ψ〉 must be of Type-3.

(b) We prove this by contrapositive. Suppose that 〈Dψ〉 is of Type-3. Then (by
1.3.5) it must be that 2 ∈ T〈Dψ〉. By Lemma 1.45, it follows that 〈ψ〉 is not a
maximal shift-invariant space.

�

Hence if 〈ψ〉 is of Type-3, then the type of 〈Dψ〉 could be 1, 2, or 3. If, however,
we know that 〈ψ〉 is maximal, then 〈Dψ〉 is either 1 or 2, which is strictly less than
the type of 〈ψ〉. The following examples complete the picture for Type-3 principal
shift-invariant spaces.

Example 1.47. (i) Consider 0 < ε ≤ 1/2 and ψ such that ψ̂ = χ[0,ε). Then

〈ψ〉 is of Type-3, and ssupp (D̂ψ) = [0, 2ε). Hence 〈Dψ〉 is of Type-3 as well.

(ii) Consider 1/2 < ε ≤ 1 and ψ such that ψ̂ = χ[0,ε). Then 〈ψ〉 is of Type-3

— and, in the case that ε = 1, 〈ψ〉 is maximal. Since ssupp (D̂ψ) = [0, 2ε),
which strictly contains the interval [0, 1), it is easy to see that 〈Dψ〉 is of
Type-1: the Fourier transforms of functions in 〈Dψ〉 are simply Fourier series
multiplied by χ[0,2ε) and thus are 1-periodic functions multiplied by χ[0,2ε),

but, for n ≥ 2, the functions e2πix/nχ[0,2ε) are not of this form.

(iii) Take ψ so that ψ̂ = χ[0,1/2)∪[3/2,2). It is easy to check that 〈ψ〉 is a maximal

principal shift-invariant space of Type-3. Since ssupp (D̂ψ) = [0, 1) ∪ [3, 4),
we obtain T〈Dψ〉 = {3}, so that 〈Dψ〉 is of Type-2.

♦

Observe that a consequence of Theorem 1.46 is that, if 〈ψ〉 is of Type-2, then
〈Dψ〉 is of Type-1 or of Type-2. The following example shows that maximality
assumptions does not improve this property (unlike in the case of 〈ψ〉 being Type-
3).

Example 1.48. (i) Take ψ so that ψ̂ = χ[1/2,1)∪[2,5/2)∪[13/2,7). It is not dif-
ficult to check that 〈ψ〉 is maximal and T〈ψ〉 = {2, 3, 6} so that 〈ψ〉 is of

Type-2. Since ssupp (D̂ψ) = [1, 2)∪ [4, 5)∪ [13, 14), it is not difficult to check
that T〈Dψ〉 = {3}. Hence 〈Dψ〉 is of Type-2 and T〈Dψ〉 ( T〈ψ〉.

(ii) Take ψ so that ψ̂ = χ[1/2,1)∪[2,5/2)∪[7/2,4). Again, 〈ψ〉 is maximal and of Type-

2, with T〈ψ〉 = {3}. Since ssupp (D̂ψ) = [1, 2)∪ [4, 5)∪ [7, 8), we conclude that
T〈Dψ〉 = {3}. Thus 〈Dψ〉 is of Type-2 with T〈ψ〉 = T〈Dψ〉.

♦

Example 1.43 shows that Type-1 〈ψ〉 may result in Type-2 〈Dψ〉. However,
this is not possible if 〈ψ〉 is maximal.

Corollary 1.49. If ψ ∈ L2(R) is such that 〈ψ〉 is maximal and of Type-1,
then 〈Dψ〉 is also of Type-1.

Proof. According to the properties of T〈ψ〉 given in 1.3.4, it is enough to show
that p /∈ T〈Dψ〉 for any prime p. If p = 2, then 2 /∈ T〈Dψ〉 by Lemma 1.45. If p 6= 2,
then p is odd. Since T〈ψ〉 = ∅, then, by Lemma 1.45, p /∈ T〈Dψ〉.

�
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2. Dilation Invariances

The basic theme of our approach is to built theories from various relationships
between 〈ψ〉 and D(〈ψ〉). We focus first on the inclusion-type relationship. At the
core of wavelet systems are the combined actions of translations and dilations, so
we find the following well-known result very useful.

Lemma 2.1 ([BRS01]). If E ⊆ R is a measurable, 1-periodic set such that
2E ⊆ E, then either E = R or E = ∅ (modulo sets of measure zero).

We start our analysis with a result that “D-invariance” is “not possible” for
principal shift-invariant spaces.

Proposition 2.2. If ψ ∈ L2(R) is such that D(〈ψ〉) ⊆ 〈ψ〉, then ψ ≡ 0.

Proof. Since both D(〈ψ〉) and 〈ψ〉 are shift-invariant spaces, the inclusion
D(〈ψ〉) ⊆ 〈ψ〉 guarantees that dimD(〈ψ〉) ≤ dim〈ψ〉. Consider the 1-periodic, mea-
surable set U〈ψ〉 ⊆ R. Given ξ ∈ 2U〈ψ〉, we obtain dim〈ψ〉(ξ/2) = 1. By (1.8), it
follows that dimD(〈ψ〉)(ξ) > 0, which implies dim〈ψ〉(ξ) > 0. Hence ξ ∈ U〈ψ〉. Thus
U〈ψ〉 satisfies the hypotheses of Lemma 2.1 and is either R or ∅. If U〈ψ〉 = R, then,
by Corollary 1.14b, dimD(〈ψ〉) ≡ 2 > dim〈ψ〉, which contradicts our assumptions.
Therefore, U〈ψ〉 = ∅ a.e., and ψ ≡ 0.

�

Interestingly enough, taking D−1, instead of D, leads to a rich theory. Many
results are well-known, but we shall revisit them from a somewhat different point
of view. We shall say that a shift-invariant space V ⊆ L2(R) is D−1-invariant if
D−1(V ) ⊆ V . Other authors have used different names for this notion; for example
in [Rze00] the author uses the term refinability.

Here we focus first on the case of a principal shift-invariant space V . For reasons
of tradition, we use ϕ as the notation for our basis function. The following result is
well-known (see, for example, [HW96], [Rze00], and the references therein) and
easily deducible from Proposition 1.1.20.

Proposition 2.3. If ϕ ∈ L2(R), then the following are equivalent:

(a) 〈ϕ〉 is D−1-invariant;
(b) 〈ϕ〉 ⊆ D(〈ϕ〉);
(c) ϕ ∈ D(〈ϕ〉);
(d) D−1ϕ ∈ 〈ϕ〉;
(e) There exists a 1-periodic, measurable function m : R→ C such that

(2.4) ϕ̂(2ξ) = m(ξ)ϕ̂(ξ),

for almost every ξ ∈ R.

Remark 2.5. (i) Observe that D(〈ϕ〉) is always a shift-invariant space, while
D−1(〈ϕ〉) may or may not be a shift-invariant space.

(ii) Observe that Proposition 2.2 implies that whenever we have a D−1-invariant
〈ϕ〉 such that ϕ 6≡ 0, we must have that

(2.6) 〈ϕ〉 ( D(〈ϕ〉).
(iii) Equation (2.4) is known as the “two-scale equation” and has been studied by

numerous authors on various levels of generality. Observe that the function
m which appears in (2.4) is not necessarily uniquely determined by ϕ (see, for
example, [PŠWX01] for more details).
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(iv) Equation (2.4) introduces a “dyadic orbit” as an important element of study.
Hence, for ξ ∈ R \ {0}, we denote the “dyadic orbit” by

(2.7) orb(ξ) := {2jξ : j ∈ Z}.

It is often useful to single out representatives of “dyadic orbits” in an organized
manner. If we let

(2.8) I := [−1, 1) \ [−1/2, 1/2),

we will take our representative of orb(ξ) to be the unique element of orb(ξ)∩I.
�

It follows that the question of characterizing all D−1-invariant principal shift-
invariant spaces 〈ϕ〉 leads to the following problem on functions. Find all pairs
(ϕ,m), where ϕ ∈ L2(R) and m : R → C is measurable and 1-periodic, such that
(2.4) holds; we shall term this the (ϕ,m)-Problem. Various versions of this problem
have been treated by numerous authors (for a start, one could check [Dau92]
or [HW96] and the references therein), mostly from the point of view of scaling
functions and filters of orthonormal and Parseval frame wavelets. Here we take a
slightly more general position. As the following example shows, there are many
(ϕ,m)-Problems with nontrivial solutions.

Example 2.9. Consider any function ϕ ∈ L2(R) with the property that ϕ̂(ξ) 6=
0 for ξ ∈ [0, 1) and ϕ̂(ξ) = 0 for every ξ /∈ [0, 1). Define m on [0, 1) by

m(ξ) :=

{
ϕ̂(2ξ)
ϕ̂(ξ) if ξ ∈ [0, 1/2)

0 if ξ ∈ [1/2, 1)

and extend it 1-periodically to R. Obviously the pair (ϕ,m) satisfies (2.4). ♦

Following ideas from [Con98], [PŠW99], and [PŠWX01], it is often useful
to reduce the problem from the complex field, C, to the positive reals, [0,∞) (in
particular, we get the benefit of a natural ordering of function values). We define
Φ(ξ) := |ϕ̂(ξ)|2 and M(ξ) := |m(ξ)|2. This leads to the following functional equa-
tion problem, which we refer to as the (Φ,M)-Problem: find all pairs (Φ,M), where
Φ : R→ [0,∞) is in L1(R) and M : R→ [0,∞) is measurable and 1-periodic, such
that, for a.e. ξ ∈ R,

(2.10) Φ(2ξ) = M(ξ)Φ(ξ).

Remark 2.11. (i) It is obvious that having a solution to the (ϕ,m)-Problem
gives us solutions to the (Φ,M)-Problem. However, the reverse holds as well
— consult [Con98], [PŠW99], and [PŠWX01] for detailed accounts in the
wavelet case. Let us recall the basics. We shall say a function µ : R → C is
unimodular if it is measurable and, for every ξ ∈ R, |µ(ξ)| = 1. Given any
1-periodic and unimodular function µ, there are infinitely many unimodular
functions ν : R→ C such that, for a.e. ξ ∈ R,

(2.12) ν(2ξ)ν(ξ) = µ(ξ),

where it is worth mentioning that the unimodularity of ν guarantees that
ν(ξ) = 1/ν(ξ). The choice of ν depends entirely on the choice of the values of
ν on I (defined in (2.8)); from I, one extends ν to R \ {0} via (2.12). Observe
that, by taking all solutions (Φ,M) of the (Φ,M)-Problem and all pairs (ν, µ)
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which satisfy (2.12), the family of pairs (ϕ,m) with ϕ̂ = ν
√

Φ and m = µ
√
M

will provide us with all solutions of the (ϕ,m)-Problem.
(ii) One should not deduce too much from part (i) of this remark, though. Suppose

we are given ϕ ∈ L2(R) and we want to check whether there is an m such that

(ϕ,m) satisfies (2.4). Say that we take Φ = |φ̂|2 and find that there is an M
such that (Φ,M) satisfies (2.10). Does it mean that we have a positive answer
for ϕ as well, i.e. that there is an m so that (φ,m) satisfies (2.4)? Actually,
no. We will have a positive answer if and only if there exists a “phase” ν of
ϕ̂ such that ν(2ξ)ν(ξ) is 1-periodic.

(iii) Observe that Φ ≡ 0 satisfies (2.10) for every M .
(iv) If (Φ,M) is a solution to the (Φ,M)-Problem, then

(2.13)

∫
R

Φ(ξ)dξ = 2

∫
R
M(ξ)Φ(ξ)dξ <∞.

�

Both of these problems can be considered from the “position of any member of
the pair.” For example (and more precisely), suppose that Φ ∈ L1(R) is given. Is
there any M such that (Φ,M) satisfies (2.10)? The “direct approach”, i.e. checking
whether Φ(2ξ)/Φ(ξ) is 1-periodic, seems to be the simplest one. We must be careful
about the zeroes of Φ. By a slight abuse of notation, we denote the periodization
of Φ, i.e.

∑
k∈Z Φ(ξ + k), by pΦ(ξ). We also introduce the following notation:

uΦ(ξ) := {k ∈ Z : Φ(ξ + k) 6= 0}

and a function τ(ξ) := ξ − bξc, for ξ ∈ R, where b·c denotes the “largest integer
function”. We believe that our readers can check the proof of the following result
easily for themselves.

Theorem 2.14. Let Φ : R→ [0,∞) be in L1(R). Then

(a) There exists at least one M such that (Φ,M) is a solution to the (Φ,M)-Problem
if and only if, for a.e. ξ ∈ R,

(i) Φ(ξ) = 0⇒ Φ(2ξ) = 0;

(ii) k, ` ∈ uΦ(ξ)⇒ Φ(2ξ + 2k)

Φ(ξ + k)
=

Φ(2ξ + 2`)

Φ(ξ + `)
.

(b) The following are equivalent:
(i) There exists at most one M such that (Φ,M) is a solution of the (Φ,M)-

Problem;
(ii) For a.e. ξ ∈ R, uΦ(ξ) 6= ∅;

(iii) τ(ssupp Φ) = [0, 1) a.e.;
(iv) pΦ > 0 a.e.

Obviously, if (i) and (ii) in Theorem 2.14a are satisfied, we can define M to be
measurable and

(2.15) M(ξ) :=

{
Φ(2ξ+2k)
Φ(ξ+k) for k ∈ uΦ(ξ) if uΦ(ξ) 6= ∅

arbitrary value in [0,∞) if uΦ(ξ) = ∅
,

where, in the case of uΦ(ξ) = ∅ we need only preserve 1-periodicity in our arbitrary
choice (and, of course, not actively try to create a non-measurable function).

It is now trivial to “transfer” Theorem 2.14 from the (Φ,M)-Problem to the
(φ,m)-problem. We emphasize one consequence.
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Corollary 2.16. Let ϕ ∈ L2(R) be such that 〈ϕ〉 is D−1-invariant. Then
there is exactly one m such that (ϕ,m) satisfies (2.4) if and only if 〈ϕ〉 is maximal.

Remark 2.17. Suppose that (Φ,M) is a pair satisfying (2.10). It is useful to
“follow” Φ along the orbits orb(ξ).

(i) For a.e. ξ ∈ R \ {0}, there are three options for orb(ξ):
(A) For every j ∈ Z, Φ(2jξ) = 0;
(B) For every j ∈ Z, Φ(2jξ) 6= 0;
(C) There exists a j0 ∈ Z such that Φ(2jξ) = 0 for j > j0 and Φ(2jξ) 6= 0 for

j ≤ j0.
In case (A), we will say that orb(ξ) is a zero-orbit, while in cases (B) and (C),
we will say that orb(ξ) is a nonzero orbit. Observe that in case (C) we must
have M(2jξ) 6= 0 for j < j0 and M(2j0ξ) = 0.

(ii) Since Φ ∈ L1(R), it is well-known (see, for example, [PŠWX01]) that, for
a.e. ξ ∈ R,

lim
n→∞

Φ(2nξ) = 0.

(iii) For a measurable function f : R→ [0,∞), we have∫
R
f(ξ)dξ =

∑
j∈Z

∫
2jI

f(ξ)dξ =

∫
I

∑
j∈Z

2jf(2ju)du.

Hence f ∈ L1(R) if and only if u 7→
∑
j∈Z 2jf(2ju) is in L1(I). It will be useful

for us to consider a weighted space, L1(I, w), the space of integrable functions
over I with respect to the measure w(ξ)dξ, where w(ξ) =

∑
j∈Z 2jΦ(2jξ).

�

Approaching the (Φ,M)-Problem from “the position of M” is actually more
demanding. We shall provide additional analysis later in a section on filters. For
now, suppose we are given M : R→ [0,∞) which is measurable and 1-periodic; we
introduce

(2.18) SolM :=
{

Φ : R→ [0,∞) : Φ ∈ L1(R) and (Φ,M) satisfies (2.10)
}
.

By Remark 2.11iii, for every M , 0 ∈ SolM 6= ∅.

Example 2.19. Consider M ≡ a ≥ 0. If a = 0, then it is obvious from (2.10)
that SolM = {0}. We claim that the same holds for a > 0. Indeed, for Φ ∈ SolM ,

∑
j∈Z

2jΦ(2jξ) = Φ(ξ)

∑
`∈N

1

(2a)`
+

∑
j∈N∪{0}

(2a)j

 <∞,

for a.e. ξ. However, one of the two sums in the parentheses above will be infinite,
depending on whether 2a ≥ 1 or 2a ≤ 1, so one can only produce a finite expression
if Φ is zero almost everywhere. Hence for M ≡ a ≥ 0, we have SolM = {0}. Observe
that by (2.13) we also have

M > 1/2 a.e.⇒ SolM = {0}(2.20)

M < 1/2 a.e.⇒ SolM = {0}.
Observe that all these restrictions in this example stem from the requirement that
Φ belongs to L1(R). Without this, it would be easy to construct infinitely many Φ
which satisfy (2.10) for any M : simply define Φ arbitrarily on I and use (2.10) to
extend it to R \ {0} (completely analogously to how we used (2.12)). ♦
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Example 2.21. Consider a 1-periodic, measurable function M : R → [0,∞)
such that M |[0,1) = aχ[0,1/2), where a ≥ 0. By (2.20), SolM = {0} for a < 1/2. For
a = 1/2, we obtain from (2.13) that Φ ∈ SolM implies that∫ 1

0

Φ(ξ)dξ =

∫ 1/2

0

Φ(ξ)dξ.

Hence Φ|[1/2,1) ≡ 0. By (2.10) and M > 0 on [0, 1/2), we obtain Φ = 0, which
means SolM = {0}.

For a > 1/2, we have 2a > 1. If Φ ∈ SolM , then Φ|(−∞,0) ≡ 0, since
M |[−1/2,0) = 0, and Φ|[1,∞) ≡ 0, since M |[1/2,1) ≡ 0. Hence ssupp Φ ⊆ [0, 1).

Obviously, we must have
∫ 1

1/2
Φ(ξ)dξ <∞. Take any g : [1/2, 1)→ [0,∞) such that

g ∈ L1([1/2, 1)). Define Φag : [0, 1)→ [0,∞) by

Φag
∣∣
[2−n−1,2−n)

(ξ) =
g(2nξ)

an
, for n ∈ N ∪ {0}.

It is easy to check that Φag (extended to be zero outside [0, 1)) satisfies (2.10).
Furthermore, ∫ 1

0

Φag(ξ)dξ =

∞∑
n=0

∫ 2−n

2−n−1

g(2nξ)

an
dξ

=

∫ 1

1/2

( ∞∑
n=0

1

(2a)n

)
g(u)du

=
1

1− 1
2a

∫ 1

1/2

g(u)du

<∞.

Hence, for every a > 1/2, we have

(2.22) SolM =
{

Φag : g ∈ L1([1/2, 1)), g ≥ 0
}

Observe that for g = χ[1/2,1) and a = 1, we obtain Φag = χ[0,1). ♦

Given Φ ∈ SolM and a measurable set Z ⊆ I, we can redefine Φ so that it is
equal to zero on orb(ξ), when ξ ∈ Z and is left unchanged on orb(ξ) for ξ ∈ I \ Z.
This new function will again be in SolM . Hence, two solutions from SolM may have
different orbit behavior in the sense that for one solution a particular orbit is a
nonzero-orbit while for the other it is a zero-orbit (see Remark 2.17i). However, as
the following result shows, we will have the same behavior on nonzero-orbits.

Lemma 2.23. Suppose Φ1,Φ2 ∈ SolM . For almost every ξ ∈ R the following
holds. If orb(ξ) is a nonzero-orbit for both Φ1 and Φ2, then (using the notation in
Remark 2.17i) either (B) holds for both Φ1 and Φ2 or (C) holds for both Φ1 and
Φ2 (with the same value for j0).

Proof. Observe that in order to prove this lemma, it is enough to show (with-
out loss of generality on the choice of Φ1 and Φ2) that there is no j ∈ Z such that:
Φ1(2jξ) 6= 0 6= Φ1(2j+1ξ) and Φ2(2jξ) 6= 0 = Φ2(2j+1ξ). Indeed, observe that
assumptions on Φ1 lead to M(2jξ) 6= 0 while those on Φ2 lead to M(2jξ) = 0, a
contradiction. �
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The following family of “orbit constant” functions will play a useful role in
describing the set of solutions SolM .

(2.24) OrC+ := {L : R \ {0} → [0,∞) : L measurable and L(2ξ) = L(ξ) a.e.} .
Observe that L ∈ OrC+ is completely determined by L|I .

Let us now describe a basic structural feature of SolM . It is easy to see that it
is a positive cone, i.e. that

(2.25) Φ1,Φ2 ∈ SolM and β1, β2 ≥ 0⇒ β1Φ1 + β2Φ2 ∈ SolM .

In particular, this shows that either SolM = {0} or SolM is infinite.
We introduce the following binary relation on SolM : for Φ1,Φ2 ∈ SolM , we

shall say that

(2.26) Φ1 ≺M Φ2

if, for a.e. ξ ∈ R, the following holds: orb(ξ) is a zero-orbit for Φ2 implies that
orb(ξ) is a zero-orbit for Φ1. It is obvious that ≺M is reflexive and transitive, but
it is not antisymmetric (in particular, ≺M does not generate a partial ordering). It
is easy to see that if Φ1,Φ2 ∈ SolM , then

max(Φ1,Φ2) ∈ SolM(2.27)

Φ1 ≺M max(Φ1,Φ2)

Φ2 ≺M max(Φ1,Φ2).

Observe that 0 ≺M Φ for every Φ ∈ SolM . If Φ ∈ SolM satisfies Φ ≺M 0, then
Φ ≡ 0. If there exists Φ0 ∈ SolM such that, for a.e. ξ ∈ R, orb(ξ) is a nonzero orbit
for Φ0, then Φ ≺M Φ0 for every Φ ∈ SolM (however, as the following result shows,
Φ0 is not unique in this regard).

Theorem 2.28. Let M : R → [0,∞) be measurable and 1-periodic. Let Φ0 ∈
SolM . Then the following hold:

(a) Φ ∈ SolM and Φ ≺M Φ0 if and only if there exists

L ∈ OrC+ ∩ L1(I,
∑
j∈Z

2jΦ0(2ju))

such that Φ = LΦ0.
(b) Φ ∈ SolM and Φ ≺M Φ0 ≺M Φ if and only if there exists L ∈ OrC+ ∩

L1(I,
∑
j∈Z 2jΦ0(2ju)) such that Φ = LΦ0 and, for almost every u ∈ I, L(u) >

0.

Proof. Observe first that, for L ∈ OrC+, we have that LΦ0 ∈ L1(R) if and
only if L ∈ L1(I,

∑
j∈Z 2jΦ0(2ju)); see Remark 2.17iii.

Observe also that, for L ∈ OrC+ and ξ ∈ R \ {0}, L is equal to a constant
a ≥ 0 on orb(ξ). Hence if a = 0, then L(2ξ)Φ0(2ξ) = M(ξ)L(ξ)Φ0(ξ) for any M .
If a > 0, then (again, for every M),

L(2ξ)Φ0(2ξ) =aΦ0(2ξ) = aM(ξ)Φ0(ξ) = M(ξ)L(ξ)Φ0(ξ)(2.29)

⇔ Φ0(2ξ) = M(ξ)Φ0(ξ).

These two observations prove that, if L ∈ OrC+ ∩L1(I,
∑
j∈Z 2jΦ0(2ju)), then

Φ = LΦ0 ∈ SolM . Observe also that if a = 0 in the last two observations, then
orb(ξ) is a zero-orbit for Φ. If a > 0, then orb(ξ) is a nonzero-orbit for Φ. This
completes the proof of sufficiency for both (a) and (b).
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In order to prove necessity for (a), assume that Φ ∈ SolM and Φ ≺M Φ0. If Φ
equals zero on the entire orbit orb(ξ), we define L to be zero on this entire orbit.
If orb(ξ) is a nonzero-orbit for Φ, then, by Φ ≺M Φ0, it is a nonzero-orbit for Φ0

(for a.e. ξ). By Lemma 2.23, orb(ξ) is either in case (B) for both Φ and Φ0 or case
(C) for both Φ and Φ0. Without loss of generality (the other proof is very similar),
consider the latter case, (C). Take u = 2jξ with j < j0 (observe M(u) must be
nonzero) and we obtain

Φ(2u)

Φ0(2u)
=

M(u)Φ(u)

M(u)Φ0(u)
=

Φ(u)

Φ0(u)
.

We define L on orb(ξ) to be Φ(2j0ξ)/Φ0(2j0ξ), and, since Φ(2jξ) = 0 = Φ0(2jξ) for
j > j0, we obtain that Φ(2jξ) = L(2jξ)Φ0(2jξ), for every j ∈ Z. Hence L ∈ OrC+

and Φ = LΦ0. Since Φ ∈ SolM , we have Φ = LΦ0 ∈ L1(R), which completes the
proof of (a).

In order to complete the proof of (b), it is enough to show that Φ ≺M Φ0 ≺M Φ
enables us to choose L so that L > 0 a.e. Indeed, Φ ≺M Φ0 ≺M Φ means that, for
a.e. ξ ∈ R\{0}, orb(ξ) is either a zero-orbit for both Φ and Φ0 or a nonzero-orbit for
both Φ and Φ0. In the former case, we have a lot of freedom, but we may certainly
set L to be identically 1 on these orbits. In the latter case, we set L = Φ/Φ0 as we
did in the preceding paragraph. �

Corollary 2.30. Let M : R → [0,∞) be measurable and 1-periodic. If there
exists Φ0 ∈ SolM such that Φ ≺M Φ0 for every Φ ∈ SolM , then

SolM = {LΦ0 : L ∈ OrC+ ∩ L1(I,
∑
j∈Z2jΦ0(2ju))}.

The following result is a direct consequence of Lemma 2.1 — it has been used
in our circle for many years and, perhaps, could be characterized as “folklore”.

Lemma 2.31. Given a measurable set A ⊆ I and j0 ∈ Z, consider the sets

EA :=
⋃
j,k∈Z

(2jA+ k)

and

E(A,j0) :=
⋃

k∈Z,j≥j0

(2jA+ k).

If |A| = 0 then |EA| = |E(A,j0)| = 0. If |A| > 0, then EA = E(A,j0) = R, up to sets
of measure zero.

Theorem 2.32. Let M : R → [0,∞) be measurable and 1-periodic such that
SolM contains non-trivial solutions. Then either, for every non-trivial Φ ∈ SolM ,
almost every nonzero-orbit is case (B) (from Remark 2.17(i)), or, for every non-
trivial solution Φ ∈ SolM , almost every nonzero-orbit is case (C) (from Remark
2.17(i)). Case (B) occurs if and only if M > 0 almost everywhere.

Proof. For a nontrivial Φ ∈ SolM , we define

A
(2)
Φ := {ξ ∈ I : orb(ξ) is case (B)}

A
(3)
Φ := {ξ ∈ I : orb(ξ) is case (C)}.

Since Φ is non-trivial, their union, A
(2)
Φ ∪ A(3)

Φ , must have positive measure. If

|A(3)
Φ | > 0, then |{ξ ∈ R : M(ξ) = 0}| > 0. If |A(2)

Φ | > 0, then (by Lemma 2.31)
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E
A

(2)
Φ

= R, up to sets of measure zero. Observe that E
A

(2)
Φ

⊆ {ξ ∈ R : M(ξ) > 0},
up to sets of measure zero. Hence, in this case, M > 0 almost everywhere. This

implies the following two statements: if Φ ∈ SolM is nontrivial, then |A(2)
Φ | > 0 if

and only if |A(3)
Φ | = 0; and if Φ1,Φ2 ∈ SolM are both nontrivial, then |A(2)

Φ1
| > 0 if

and only if |A(2)
Φ2
| > 0. This completes the proof of the theorem. �

Remark 2.33. (i) Obviously, we are interested in the class of functionsM for
which SolM contains nontrivial solutions. Theorem 2.32 provides a natural
partition of that class into two subclasses. One subclass contains M such
that M > 0 almost everywhere and is characterized by the property that
nonzero-orbits of its solutions are of case (B), i.e. are “full orbits”. Hence,
we shall say that M is FO (“of full orbit type”) if {0} ( SolM and, for every

nontrivial Φ ∈ SolM , |A(2)
Φ | > 0. The other subclass contains M such that

|{M = 0}| > 0. Hence, we shall say that M is non-FO (“not of full orbit

type”) if {0} ( SolM and, for every nontrivial Φ ∈ SolM , |A(3)
Φ | > 0.

(ii) Suppose that 0 6= ϕ ∈ L2(R) is such that 〈ϕ〉 is D−1-invariant. If m satisfies
(2.4) for ϕ, then M := |m|2 has the property that {0} ( SolM . Hence
M is either FO or non-FO. Therefore, we extend our terminology to m as
well; m could be either FO or non-FO. Observe that if ϕ1 ∈ L2(R) such
that 〈ϕ1〉 = 〈ϕ〉, then ssupp ϕ̂1 = ssupp ϕ̂, which implies that ϕ1 and ϕ
have nonzero-orbits of the same type. As a consequence, we may extend our
terminology to principal shift-invariant spaces as well. More precisely, given
a non-trivial principal shift-invariant space V which is also D−1 invariant, we
have two possibilities: either all of its generating pairs (ϕ,m) belong to the
FO class (in which case we say that V is FO) or all of its generating pairs
(ϕ,m) belong to the non-FO class (in which case we say that V is non-FO).

(iii) In order to completely resolve the (Φ,m)-Problem, it remains to show when
SolM is nontrivial and to find, in such a case, at least one Φ0 ∈ SolM such
that Φ ≺M Φ0 for every Φ0 ∈ SolM . Observe (see Remark 2.11) that this
would also complete the (ϕ,m)-Problem. We shall treat the FO and non-FO
cases separately.

�

Suppose first that M : R → [0,∞) is measurable, 1-periodic, and M > 0
almost everywhere. We define a function T = TM : I → [0,∞] (here T stands for
Tauberian) by

(2.34) T (ξ) :=

∞∑
j=1

[(
j∏

k=1

1

2M(2−kξ)

)
+

(
j−1∏
k=0

2M(2kξ)

)]
for ξ ∈ I,

Observe that T is measurable and may have infinite values. Using the convention
that 1/0 = +∞ and 1/ +∞ = 0, we define a measurable, non-negative function
Φ0 = Φ0,M : R→ [0,∞) by

(2.35) Φ0(u) :=


1 if u = 0;

1
1+T (u) for u ∈ I;(∏j−1

k=0M(2kξ)
)

1
1+T (ξ) for u = 2jξ, ξ ∈ I, j ∈ N;(∏j

k=1
1

M(2−kξ)

)
1

1+T (ξ) for u = 2−jξ, ξ ∈ I, j ∈ N.
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Remark 2.36. (i) Observe that in a measure-theoretic setup, the value at
any single point is irrelevant (since “the point” is of measure zero). Hence,
we can choose Φ0(0) to be any positive number. If, on the other hand, we
can impose some “continuity at 0” condition on Φ0, then this value becomes
important. As we shall see later, the choice Φ0(0) = 1 is quite natural.

(ii) Observe that 1 + T ≥ 1, so 0 ≤ 1
1+T ≤ 1 and 1

1+T ∈ L
1(I).

(iii) Observe that Φ0 = 0 almost everywhere if and only if |{ξ ∈ I : T (ξ) <∞}| =
0.

(iv) It is easy to check directly that Φ0 and M satisfy (2.10).

(v) Observe that A
(2)
Φ0

= {ξ ∈ I : T (ξ) <∞}. �

For a complete understanding of the following result, recall Theorem 2.28 and
Corollary 2.30. The following theorem provides a complete solution of the (Φ,M)-
Problem in the FO case.

Theorem 2.37. If M : R → [0,∞) is measurable and 1-periodic and M > 0
almost everywhere, then

(a) Φ0,M ∈ SolM ;
(b) For every Φ ∈ SolM , one has Φ ≺M Φ0,M ;
(c) ∑

j∈Z
2jΦ0,M (2ju) =

{
0 if T (u) =∞
1 if T (u) <∞;

(d) {0} = SolM ⇔ |{ξ ∈ I : T (ξ) <∞}| = 0.

Proof. The formula in (c) follow directly from (2.35), since, for u ∈ I,

∑
j∈Z

2jΦ0,M (2ju) =
1

1 + T (u)

∑
j∈N

2j

(
j−1∏
k=0

M(2ku)

)
+ 1 +

∑
j∈N

2−j

(
j∏

k=1

1

M(2−ku)

)
=

1

1 + T (u)
(1 + T (u)),

which is equal to 1 if T (u) <∞ and 0 if T (u) =∞.
Since (c) holds, (a) follows by Remark 2.17(iii) and Remark 2.36(iv).
In order to prove (b), suppose to the contrary that there is some Φ ∈ SolM and

set A ⊆ {ξ ∈ I : T (ξ) =∞} such that |A| > 0 and Φ|A > 0. We would then have∫
R

Φ(ξ)dξ ≥
∫
⋃
j∈Z 2jA

Φ(ξ)dξ =
∑
j∈Z

∫
A

2jΦ(2ju)du

=

∫
A

(1 + T (u))Φ(u)du =∞,

which contradicts the requirement that elements of SolM are integrable.
The proof of (d) now follows directly from Remark 2.36(iii). �

Combining Corollary 2.30 with Theorem 2.37, we obtain that in the FO case

(2.38) SolM = {LΦ0,M : L ∈ Orc+ ∩ L1(I, χ{TM<∞})},
and for Φ ∈ SolM with Φ = LΦ0,M ,

(2.39)

∫
R

Φ(ξ)dξ =

∫
{TM<∞}

L(u)du.
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We turn our attention to the non-FO case now. Suppose that M : R→ [0,∞)
is measureable, 1-periodic, and

(2.40) |ZM | > 0, where ZM := {ξ ∈ R : M(ξ) = 0}.

We define, for such an M , the set

(2.41) H = HM := {ξ ∈ R : M(ξ) = 0,M(2−jξ) 6= 0, for every j ∈ N},

and we call H the horizon of M .

Remark 2.42. Observe that some orbits may not have “a horizon point”. One
example is an orbit such that M(2kξ) 6= 0 for every k ∈ Z. Consider a set A ⊆ I,
defined by A := {ξ ∈ I : M(2kξ) 6= 0, for every k ∈ Z}. Since M is 1-periodic,
it follows that EA ⊆ {ξ : M(ξ) 6= 0}. By Lemma 2.31, if |A| > 0, then EA = R
almost everywhere, which is clearly a contradiction to (2.40). Hence, under (2.40),
the set A is negligible.

The other possibility to disrupt “a horizon point” is if there exists a subsequence
{jk} ⊆ N such that M(2−jkξ) = 0. Observe that any solution of (2.10) would have
to be identically zero on such an orbit. Let us denote the generating set for such
orbits by

(2.43) A
(1)
M := {ξ ∈ I : there exists {jk} ⊆ N with M(2−jkξ) = 0, for all k ∈ N}.

Obviously, for ξ ∈ A(1)
M the orbit orb(ξ) does not have a “horizon point”. Observe

that the families {2jA(1)
M : j ∈ Z} and {2jHM : j ∈ Z} consist of disjoint sets.

Furthermore, for a non-FO M , one has∣∣∣∣∣∣
⋃
j∈Z

2jA
(1)
M

 ∩
⋃
j∈Z

2kHM

∣∣∣∣∣∣ = 0

and R =

⋃
j∈Z

2jA
(1)
M

 ∪
⋃
j∈Z

2kHM

(2.44)

Observe that:

M |[−1/2,1/2) = χ[−1/4,1/4) ⇒
⋃
j∈Z

2jHM = R and |A(1)
M | = 0;

M |[−1/2,1/2) = χ[−1/2,−1/4)∪[1/4,1/2) ⇒ |HM | = 0 and A
(1)
M = I;

M |[−1/2,1/2) = χ[0,1/4) ⇒
⋃
j∈Z

2jHM = R+ and
⋃
j∈Z

2jA
(1)
M = R−.

This analysis of the (Φ,M)-Problem in the non-FO case depends essentially only
on HM since any solution of (2.10) must satisfy

(2.45) Φ|⋃
j∈Z 2jA

(1)
M

≡ 0.

Hence, in the non-FO case, without loss of generality, we analyze those M which
satisfy (2.40) and

(2.46) |HM | > 0.

�
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Observe that we always have

(2.47) HM ⊆ ZM ;

so the requirement given in (2.46) implies (2.40). The analysis of the non-FO
case now proceeds following an approach similar to that of the FO case; the main
difference here being that in the non-FO case we can focus on low-frequencies only.
Given M : R → [0,∞) which is measurable, 1-periodic, and whose associated HM

has positive measure, we define T = TM : HM → [0,∞] by

(2.48) TM (ξ) :=

∞∑
j=1

1

2j

(
j∏

k=1

1

M(2−kξ)

)
for ξ ∈ HM .

Observe that we could extend the definition of TM to A
(1)
M , but on A

(1)
M we would

have RM ≡ ∞, and this would be equivalent to (2.45). As an analog to (2.35), we
define Φ0 := Φ0,M : R→ [0,∞) in this case by

Φ0(u) :=


0 for u ∈

⋃
j∈Z 2jA

(1)
M

1 for u = 0
1

1+TM (u) for u = 2jξ, ξ ∈ HM , j ∈ N(∏j
k=1

1
M(2−kξ)

)
1

1+TM (u) for u = 2−jξ, ξ ∈ HM , j ∈ N

(2.49)

Observe that Remark 2.36i–iv apply in this situation as well. Instead of Remark
2.36v we have the following analogous statement:

(2.50) A
(3)
Φ0

= {ξ ∈ I : ∅ 6= orb(ξ) ∩HM = {u}, TM (u) <∞}.

Hence in the non-FO case, the set I is partitioned into three almost everywhere-

disjoint sets, A
(1)
M , A

(3)
Φ0

, and

{ξ ∈ I : ∅ 6= orb(ξ) ∩HM = {u}, TM (u) =∞}.

Furthermore,

(2.51) Φ0(u) > 0⇔ u = 2−jξ, ξ ∈ HM , j ∈ N, orb(u) ∩A(3)
Φ0
6= ∅.

Using an argument analogous to the one in Theorem 2.37, we obtain the following
result.

Theorem 2.52. If M : R→ [0,∞) is measurable, 1-periodic, and has |HM | >
0, then

(a) Φ0,M ∈ SolM ;
(b) For every Φ ∈ SolM , one has Φ ≺M Φ0,M ;
(c) For every u ∈ HM ;∑

j≥0

2−jΦ0,M (2−ju) =

{
0 if TM (u) =∞
1 if TM (u) <∞ ;

(d) {0} = SolM ⇔ |{ξ ∈ HM : TM (ξ) <∞}| = 0.
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3. Filter Analysis, FO Case.

We begin with the (Φ,M)-Problem in the FO case, i.e. we consider a func-
tion M : R → [0,∞) which is measurable and 1-periodic, with M > 0 almost
everywhere. The Tauberian function, T = TM , given in (2.34), is essential for the
analysis of SolM . We consider its “low frequency” part and its “high frequency”
separately. More precisely, we define T− = TM,− : I → [0,∞] by

(3.1) T−(ξ) =

∞∑
j=1

(
j∏

k=1

1

2M(2−kξ)

)
, for ξ ∈ I,

and T+ = TM,+ : I → [0,∞] by

(3.2) T+(ξ) =

∞∑
j=1

(
j−1∏
k=0

2M(2kξ)

)
, for ξ ∈ I.

Obviously, T = T+ + T−.
Consider T− = TM,− first. It is useful to take into account a function r− =

rM,− : I → [0,∞], where, for ξ ∈ I, r−(ξ) is defined as the radius of convergence of
the power series

(3.3) z 7→
∞∑
j=1

zj

(
j∏

k=1

1

M(2−kξ)

)
.

Observe that T−(ξ) equals the value of the power series at z = 1/2. Hence

(3.4) r−(ξ) > 1/2⇒ T−(ξ) <∞⇒ r−(ξ) ≥ 1/2.

Since

1

r−(ξ)
= lim sup

n→∞
n

√√√√ n∏
k=1

1

M(2−kξ)
=

1

lim inf
n→∞

n

√√√√ n∏
k=1

M(2−kξ)

,

we obtain the following result.

Lemma 3.5. If M : R → [0,∞) is measurable and 1-periodic and M > 0
almost everywhere, and T− = TM,−, then the following string of implications hold
for ξ ∈ I:

lim inf
n→∞

M(2−nξ) >
1

2
⇒ lim inf

n→∞
n

√√√√ n∏
k=1

M(2−kξ) >
1

2

⇒ T−(ξ) <∞

⇒ lim inf
n→∞

n

√√√√ n∏
k=1

M(2−kξ) ≥ 1

2
.

Remark 3.6. (i) Observe that the set {ξ ∈ I : T−(ξ) < ∞} is completely
determined by the values of M around zero. More precisely, if M1,M2 are two
functions with the properties listed in Lemma 3.5 and there exists an ε > 0
such that M1|(−ε,ε) = M2|(−ε,ε), then, for all ξ ∈ I, TM1,−(ξ) <∞ if and only
if TM2,−(ξ) <∞.
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(ii) We need to include the analysis of T+ in order to provide more elaborate
examples for the case when the limit in Lemma 3.5 is exactly 1/2. For now,
observe (recall Example 2.19) that, if M ≡ 1/2, then T− ≡ ∞ and

lim
N→∞

M(2−nξ) = lim inf
n→∞

M(2−nξ) = lim inf
n→∞

n

√√√√ n∏
k=1

M(2−nξ) =
1

2
.

(iii) Observe that the finite products from Lemma 3.5 appear also in the following
formula; for every n ∈ N, for every Φ ∈ SolM , and for almost every ξ ∈ I,

(3.7) Φ(ξ) =

(
n∏
k=1

M(2−kξ)

)
Φ(2−nξ).

�

Using notation from Theorem 2.32, for an M which is FO and a nontrivial

solution Φ ∈ SolM , the set A
(2)
Φ denotes the set of ξ ∈ I such that orb(ξ) is a full

orbit. In the case of Φ = Φ0,M , we denote A
(2)
Φ0,M

by A
(2)
M . Observe that for every

nontrivial solution Φ ∈ SolM we have

(3.8) A
(2)
Φ ⊆ A(2)

M and 0 < |A(2)
Φ | ≤ |A

(2)
M | ≤ 1.

Furthermore,

(3.9) Φ0,M > 0 almost everywhere⇔ |A(2)
M | = 1.

Lemma 3.10. If M is FO and Φ ∈ SolM is nontrivial, then for almost every

ξ ∈ A(2)
Φ the following hold:

(a) If lim supn→∞Φ(2−nξ) <∞, then lim infn→∞
n
√∏n

k=1M(2−kξ) ≥ 1.

(b) If lim infn→∞Φ(2−nξ) > 0, then lim supn→∞
n
√∏n

k=1M(2−kξ) ≤ 1.
(c) If lim infn→∞M(2−nξ) > 1, then limn→∞Φ(2−nξ) = 0.
(d) If lim supn→∞M(2−nξ) < 1, then limn→∞Φ(2−nξ) =∞.
(e) limn→∞ 2−nΦ(2−nξ) = 0.

Proof. Observe that for almost every ξ ∈ A
(2)
Φ we have Φ(ξ) > 0, and, for

every n ∈ N, Φ(2−nξ) > 0 and
∏n
k=1M(2−kξ) > 0. Using standard limit properties

(a), (b), (c), and (d) follow directly from (3.7). Since, for ξ ∈ A
(2)
Φ , we have

T−(ξ) <∞, we must have

lim
n→∞

1

2n
∏n
k=1M(2−kξ)

= 0;

this, together with (3.7), implies (e). �

Remark 3.11. (i) Consider an M which is FO and a nontrivial solution Φ ∈
SolM . For almost every ξ ∈ A(2)

Φ , there exists L(ξ) > 0 such that Φ(2jξ) =
L(ξ)ΦM,0(2jξ), for every j ∈ Z. Hence the behavior of any Φ along orb(ξ),
with respect to the three “value sets” {0}, (0,∞), and {∞}, will be essentially
the same as the behavior of Φ0,M .

(ii) If M is FO and ξ ∈ A(2)
M , then the infinite product

(3.12)

∞∏
n=1

M(2−nξ)



60 2. MRA STRUCTURE

exists (as an element of [0,∞]) if and only if limn→∞Φ0,M (2−nξ) exists (as

an element of [0,∞]). Furthermore, observe that for almost every ξ ∈ A(2)
M we

have 1
1+T (ξ) ∈ (0, 1). Hence, assuming that the infinite products exist, (3.7)

and (2.35) imply

∞∏
n=1

M(2−nξ) = 0⇔ lim
n→∞

Φ0,M (2−nξ) =∞;

∞∏
n=1

M(2−nξ) ∈ (0,∞)⇔ lim
n→∞

Φ0,M (2−nξ) ∈ (0,∞);

∞∏
n=1

M(2−nξ) =∞⇔ lim
n→∞

Φ0,M (2−nξ) = 0.

(iii) Consider the special case when M : R → (0, 1] is measurable and 1-periodic.
In such a case, the product in (3.12) always exists and, for every ξ ∈ I,

(3.13)

∞∏
n=1

M(2−nξ) ∈ [0, 1].

Hence ifM is also FO, then for almost every ξ ∈ A(2)
M the limit limn→∞ Φ0,M (2−nξ)

exists and is an element of (0,∞] (recall that, for ξ ∈ I \ A(2)
M , Φ0,M is iden-

tically 0 on orb(ξ)). An important question for us is whether the infinite
product provides us with an element of SolM . �

Lemma 3.14. If M > 0 is FO such that M ≤ 1 almost everywhere and, for
almost every ξ ∈ R, limn→∞Φ0,M (2−nξ) < ∞, then, for almost every ξ ∈ {T+ <
∞} the following are equivalent:

(a)

∞∏
n=1

M(2−nξ) > 0;

(b) lim
n→∞

M(2−nξ) = 1;

(c) T−(ξ) <∞.

Proof. By basic properties of infinite products and by Lemma 3.5 we al-
ways have (a) ⇒ (b) ⇒ (c). In order to prove (c) ⇒ (a), without loss of gen-
erality, we can assume that TM (ξ) < ∞, that ξ satisfies (3.7) for every n ∈ N,
and that limn→∞ Φ0,M (2−nξ) < ∞. Hence Φ0,M (ξ) > 0 and (3.7) imply that
limn→∞

∏n
k=1M(2−kξ) > 0. �

Before turning our attention to T+, let us revisit the definition of Φ0,M given
in (2.35). Observe that there is a function “hidden” in (2.35) which serves as a
“universal dyadic multiplier for M” of sorts. Let us be more precise. Given M > 0
we define FM : R→ [0,∞) by

(3.15) FM (ξ) :=



1 if ξ ∈ I ∪ {0};
j−1∏
k=0

M(2ku) for ξ = 2ju, u ∈ I, j ∈ N;

j∏
k=1

1

M(2−ku)
for ξ = 2−ju, u ∈ I, j ∈ N.
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Given any function Θ : I → [0,∞) which is measurable, there exists exactly one
function F = F (M,Θ) such that

F (2ξ) = M(ξ)F (ξ) and F |I = Θ;

it is given by the formula

(3.16) F (ξ) := FM (ξ)Θ(u), where ξ = 2ju, u ∈ I, j ∈ Z.

Obviously, F is not necessarily a solution in SolM . It is easy to see that F =
F (M,Θ) ∈ SolM if and only if

(3.17) Θ ∈ L1(I,
∑
j∈Z2jFM (2ju)).

Observe that, if Θ ∈ L1(I) and lim infn→∞M(2−nξ) > 1/2 almost everywhere,
then the integral

(3.18)

∫
I

Θ(u) ·
∞∑
j=0

1

2j
FM (2−ju)du <∞;

hence, in this case, we need only to check FM (2ju) for j > 0. This also leads
naturally to the study of T+.

Regarding T+ = TM,+, there is an important property we want to emphasize
at the outset. By (3.2), it is obvious that T+ is defined via 1-periodic functions
(unlike T−), i.e. we can consider T+ as a 1-periodic function defined on all of R.
Hence the set {T+ <∞} is a measurable, 1-periodic subset of R. Observe that, for
almost every ξ ∈ R,

(3.19) T+(ξ) = 2M(ξ)(1 + T+(2ξ)).

Since M > 0 almost everywhere, it follows that {T+ < ∞} = 2{T+ < ∞}, and so
the set {T+ <∞} satisfies the conditions of Lemma 2.1. This proves the following
important result.

Proposition 3.20. If M : R → [0,∞) is measurable, 1-periodic, and M > 0
almost everywhere, then either TM,+(ξ) <∞ for almost every ξ ∈ R or TM,+(ξ) =
∞ for almost every ξ ∈ R.

Obviously in the second case, we have {0} = SolM .

Remark 3.21. (i) If SolM 6= {0}, then TM,+ <∞ almost everywhere. Hence
the size of the “full-orbit set” will be determined by TM,−. More precisely, if

SolM 6= {0}, then A
(2)
M = {TM,− <∞}.

(ii) By changing M near zero, we can always adjust the size of A
(2)
M . Take any

measurable A ⊆ I. Take any M which is FO with A
(2)
M = I (there are plenty

of such examples). Take any a ∈ (0, 1/2). Define M1, measurable, 1-periodic
by

M1|[−1/2,1/2)(ξ) :=

{
M(ξ) if orb(ξ) ∩A = ∅;
min(a,M(ξ)) if orb(ξ) ∩A 6= ∅.

Obviously, M1 ≤ M and, since M is FO, TM1,+ ≤ TM,+ < ∞ almost ev-
erywhere. If orb(ξ) ∩ A = ∅, then TM1,−(ξ) = TM,−(ξ) < ∞, i.e. orb(ξ) is
a full orbit. If orb(ξ) ∩ A 6= ∅, then lim supn→∞M1(2−nξ) ≤ a < 1/2, i.e.

TM1,−(ξ) =∞. Hence A
(2)
M1

= A.
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(iii) If M satisfies the property that, for almost every ξ ∈ I, limn→∞M(2−nξ) = 1,
then we have two possibilities. Either TM,+ ≡ ∞ almost everywhere (in which
case SolM = {0}) or |{TM,+ < ∞}| > 0; in such a case, SolM 6= {0} and
Φ0,M > 0 almost everywhere. �

Similarly as for T−, it is useful to consider the function r+ = rM,+ : I → [0,∞],
where, for ξ ∈ I, r+(ξ) is the radius of convergence of the power series

(3.22) z 7→
∞∑
j=1

zj

(
j−1∏
k=0

M(2kξ)

)
.

Obviously, T+(ξ) is the value of the power series at z = 2. As in Lemma 3.5, it is
easy to see that the following result holds.

Lemma 3.23. If M : R→ [0,∞) is measurable, 1-periodic, and M > 0 almost
everywhere, then the following string of implications holds for ξ ∈ I:

lim sup
n→∞

M(2nξ) <
1

2
⇒ lim sup

n→∞

n

√√√√n−1∏
k=0

M(2kξ) <
1

2

⇒ T+(ξ) <∞

⇒ lim sup
n→∞

n

√√√√n−1∏
k=0

M(2kξ) ≤ 1

2
.

Let us explore the properties of T+ in more detail. Suppose that for a point
ξ ∈ I we have lim infn→∞M(2−nξ) > 1/2. It follows that there exists an a > 1/2
and n0 ∈ N such that M(2−nξ) ≥ a for every integer n > n0. Consider an arbitrary
B > 0 and n1 ∈ N. Recall that a function u 7→ T+(2n1u) is 2−n1 -periodic. Since
2a > 1, there exists n2 ∈ N such that (2a)n2 > B. Take u = 2−nξ where n >
n0 + n1 + n2. We obtain

T+(2n1u) ≥
n2−1∏
k=0

2M(2n1+ku)

=

n2−1∏
k=0

2M(2n1+k−nξ)

≥
n2−1∏
k=0

2a

= (2a)n2

> B.

Hence we have proved that

lim
n→∞

T+(2n1(2−nξ)) =∞,

i.e. T+ is unbounded around zero and u 7→ T+(2n1u) is unbounded around any point
k/2n1 for k ∈ {0, 1, ..., 2n1−1}. Since n1 is arbitrary and every interval contains at
least one dyadic point k/2n for k, n ∈ N, we have proved the following result.
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Proposition 3.24. If M : R→ [0,∞) is measurable, 1-periodic, strictly posi-
tive almost everywhere, and

|{ξ ∈ I : lim inf
n→∞

M(2−nξ) >
1

2
}| > 0

then TM,+ is unbounded on any open interval.

Remark 3.25. The proof of Proposition 3.24 suggests a fractal nature for T+

(observe that T− does not have a “fractal nature” at all). We can emphasize this
even more. It is easy to see directly from (3.19) that we obtain, for almost every
ξ ∈ R,

(3.26)
1

2
(T+(ξ) + T+(ξ + 1/2)) = [M(ξ) +M(ξ + 1/2)] (1 + T+(2ξ)).

Of particular interest are examples of M where there exists a > 0 such that, for
almost every ξ ∈ R,

(3.27) M(ξ) +M(ξ + 1/2) = a.

The case of a = 1 is the celebrated Smith–Barnwell condition (see, for example,
[HW96] for more details and historical references). It is easy to show by induction
over n that if (3.27) holds, then for almost every ξ ∈ R,

(3.28)
1

2n

2n−1∑
k=0

T+

(
ξ

2n
+

k

2n

)
=

{
a
a−1 (an − 1) + anT+(ξ) if a 6= 1;

n+ T+(ξ) if a = 1.

Observe yet another fundamental difference between T− and T+. As we have
seen (Remark 3.6 and Remark 3.21), T− depends on (and can be adjusted through)
the values of M around zero. On the other hand, values of T+(2nξ), even for large
values of n and for a positive measure set of ξ, depend on values of M on the entire
domain; see Remark 3.21.

�

Formula (3.26) provides useful information about T+. However, T+ cannot be
“reconstructed” based on this formula alone; see the following example.

Example 3.29. Let us combine (3.26) and (3.27) to consider the functional
equation

1

2

(
f

(
ξ

2

)
+ f

(
ξ

2
+

1

2

))
= a(1 + f(ξ)),

where a > 0 is given and f : R → (0,∞) is measurable and 1-periodic. Observe
that both sides of the equation are 1-periodic, so it is enough to check the equation
for ξ ∈ [0, 1). There is a simple algorithm to generate solutions of such equations.

Start by defining f on [1/4, 3/4) so that 0 < f(ξ) < 2a for every ξ ∈ [1/4, 3/4).
We select f |[1/4,3/4) ≡ a. Use the given functional equation to build f iteratively

on the sets En = [ 2n−1
2n , 2n+1−1

2n+1 ) for n ≥ 2. If we include E1 := [1/2, 3/4), then

for every n ∈ N, ξ ∈ En ⇔ ξ
2 + 1

2 ∈ En+1 (at the same time, ξ/2 is always in

[1/4, 1/2)). Hence we obtain that f |En =
∑n
k=1 2k−1ak, and that the functional

equation holds for every ξ ∈ [1/2, 1).
We now turn our attention to [0, 1/2). Define the sets Fn := [ 1

2n+1 ,
1

2n ) for
n ∈ N. Define f on Fn inductively via the functional equation. Observe that
ξ ∈ Fn ⇔ ξ/2 ∈ Fn+1 (at the same time ξ/2 + 1/2 is always in [1/2, 3/4)). We
obtain f |Fn =

∑n
k=1 2k−1ak and the equation holds for ξ ∈ [0, 1/2) as well. Observe
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that f |[0,1) is symmetric with respect to ξ = 1/2 due to the symmetry of the process
and the symmetry of the initial solution on [1/4, 3/4). Hence, we have a solution
for every a > 0, but our solution is not T+ for any M (recall Proposition 3.24).

♦

As we have seen T+ (and therefore, T ) is typically an unbounded function. Let
us explore conditions under which T is integrable on I. From (3.15) it is easy to
see that

(3.30)

∫
R
FM (ξ)dξ =

∫
I

(1 + TM (u))du,

i.e. TM ∈ L1(I) if and only if FM ∈ SolM ; in other words, we can take θ ≡ 1 on
I in (3.16). Observe also that if we split both sides in (3.30) into disjoint sets, we
obtain

(3.31) TM,− ∈ L1(I)⇔
∫

[−1/2,1/2)

FM (ξ) <∞

and

(3.32) TM,+ ∈ L1(I)⇔
∫
R\[−1,1)

FM (ξ) <∞

Remark 3.33. Integrability of T− and T+ has an effect on boundedness uni-
formly over various dyadic orbits. Let us analyze it on a specific set of examples of
M . Suppose that there exists 0 < A1 < B1 < ∞ such that A1 ≤ M ≤ B1 almost
everywhere. We define then, for n ∈ N

An := ess inf
[−1/2n,1/2n)

M

and

Bn := ess sup
[−1/2n,1/2n)

M.

It follows that

A1 ≤ An ≤ An+1 ≤ Bn+1 ≤ Bn ≤ B1.

Hence there exist A∞ := limn→∞An and B∞ := limn→∞Bn, and they satisfy, for
every n ∈ N

An ≤ A∞ ≤ B∞ ≤ Bn.

Observe that if M is also continuous at zero, then M(0) = A∞ = B∞. �

Proposition 3.34. Suppose that M : R → [0,∞) is measurable, 1-periodic
and is such that there exist 0 < A1 < B1 < ∞ such that A1 ≤ M ≤ B1 almost
everywhere. Then

(a) If TM,− <∞ almost everywhere, then B∞ ≥ 1/2.
(b) If TM,+ ∈ L1(I), then A∞ ≤ 1.
(c) If TM ∈ L1(I) and M is continuous at 0 then 1/2 ≤M(0) ≤ 1.
(d) If A∞ > 1/2, then TM,− ∈ L∞(I).
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Proof. (a) Suppose to the contrary that B∞ < 1/2. Then there exists an
n0 ∈ N such that Bn0 < 1/2. Then we have for almost every ξ ∈ I

TM,−(ξ) ≥
∞∑

k=n0+1

2−k

(
n0∏
`=1

1

M(2−`ξ)

)(
k∏

`=n0+1

1

M(2−`ξ)

)

≥
∞∑

k=n0+1

2−kB−n0
1 B−(k−n0)

n0

=
1

(2B1)n0

∞∑
k=n0+1

1

(2Bn0
)k−n0

=∞.

(b) Suppose to the contrary that A∞ > 1. Then there exists n0 ∈ N such that
An0

> 1. It follows that M(ξ) > 1 for almost every ξ ∈ (−δ, δ) where δ = 2−n0 .
Observe that for every k ∈ N and for every ξ ∈ (1 − δ/2k, 1) we have 2kξ ∈
(2k − δ, 2k). Hence

∞ >

∫
I

TM,+(ξ)dξ ≥
∞∑
k=1

2k
∫ 1

1−δ/2k

k−1∏
`=0

M(2`ξ)dξ ≥
∞∑
k=1

2k · 1 · δ
2k

=∞.

(c) This follows directly from (a), (b), and Remark 3.33.
(d) If A∞ > 1/2, then there exists n0 ∈ N such that An0 > 1/2. Then for almost

every ξ ∈ I,

TM,−(ξ) ≤
n0−1∑
j=1

2−j

(
j∏

k=1

1

M(2−kξ)

)
+

+ 2−(n0−1)

(
n0−1∏
k=1

1

M(2−kξ)

) ∞∑
j=n0

2−(j−n0+1) 1

(An0
)(j−n0+1)

≤
n0−1∑
j=1

2−jA−j1 + (2A1)−(n0−1)

1
2An0

1− 1
2An0

<∞.

�

As before, it is easier to control T− rather than T+. For the analysis of integra-
bility of T+, it is useful to consider the following recurrence formula. Observe that
for positive powers 2nI, n ∈ N, we can define FM even when M attains zero-values.

Proposition 3.35. If M : R→ [0,∞) is measurable and 1-periodic, then, for
every j ∈ N,∫

I

FM (2jξ)dξ =
1

2

∫
I

(
M

(
ξ

2

)
+M

(
ξ

2
+

1

2

))
FM (2j−1ξ)dξ.

The proof of this proposition relies on change of variables formulas for functions
on the torus (or, equivalently, 1-periodic functions). Similar formulas have been
used in the literature on wavelets (see, for example, [PŠW99]), but for the reader’s
convenience and the clarity of our exposition, we provide a quick tour of the results.



66 2. MRA STRUCTURE

Denote J1 := [1/2, 3/4), J2 = [3/4, 1), I1 = J1 ∪ (−J1) and I2 = J2 ∪ (−J2).
Define dilation ρ1 : I1 → I and ρ2 : I2 → I by

ρ1(y) :=

{
2y − 2 if y ∈ J1

2y + 2 if y ∈ −J1

ρ2(y) :=

{
2y − 1 if y ∈ J2

2y + 1 if y ∈ −J2;
(3.36)

these are bijections with ρ′1 = ρ′2 = 2 (compare with the function ρ in [PŠW99])
and it is easy to explicitly write ρ−1

1 and ρ−1
2 . In the following, consider a function

G where G is either G : R → C and locally integrable or G : R → [0,∞] and
measurable. For ` = 1, 2 and J ⊂ I` measurable, the following change of variable
formula holds:

(3.37)

∫
J

G(ξ)dξ =
1

2

∫
ρ`(J)

G(ρ−1
` (ξ))dξ.

If, moreover, G is 1-periodic, then for ` = 1 we have

(3.38)

∫
J

G(ξ)dξ =
1

2

∫
ρ1(J)

G(ξ/2)dξ,

and for ` = 2

(3.39)

∫
J

G(ξ)dξ =
1

2

∫
ρ2(J)

G((ξ + 1)/2)dξ.

Hence if J ⊆ I is measurable and G is 1-periodic, then

(3.40)

∫
J

G(ξ)dξ =
1

2

(∫
ρ1(J∩I1)

G(ξ/2)dξ +

∫
ρ2(J∩I2)

G((ξ + 1)/2)dξ

)
.

In particular, for J = I, (3.40) becomes

(3.41)

∫
I

G(ξ)dξ =
1

2

∫
I

(G(ξ/2) +G((ξ + 1)/2)) dξ.

If, moreover, G is 1/2-periodic, then (3.41) becomes

(3.42)

∫
I

G(ξ)dξ =

∫
I

G(ξ/2)dξ.

(The formula is correct, despite its “appearance”.) The sets ρ1(J∩I1) and ρ2(J∩I2)
overlap in principle, so if G ≥ 0 and G is 1/2-periodic, then (3.40) becomes

(3.43)

∫
J

G(ξ)dξ ≥ 1

2

∫
ρ1(J∩I1)∪ρ2(J∩I2)

G(ξ/2)dξ

Proof of Proposition 3.35. For every j ∈ N consider a function Gj : R→
[0,∞) defined by

Gj(ξ) :=

j−1∏
k=0

M(2kξ),

and G0 : R→ [0,∞) so that G0 ≡ 1. Obviously these are non-negative, measurable,
1-periodic functions. For ξ ∈ I, we have Gj(ξ) = FM (2jξ), for every j ∈ N.
Furthermore, for every j ∈ N and every ξ ∈ I, we have

Gj(ξ/2) = M(ξ/2)Gj−1(ξ)

Gj((ξ + 1)/2) = M((ξ + 1)/2)Gj−1(ξ).
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The proof now follows directly from (3.41). �

It is now easy to obtain, directly from the recurrence formula, the following
result.

Corollary 3.44. Let M : R → [0,∞) be measurable, 1-periodic, and M > 0
almost everywhere.

(a) If, for almost every ξ ∈ R, M(ξ) + M(ξ + 1
2 ) ≥ 1 (in particular if M satisfies

the Smith–Barnwell condition above), then TM,+ /∈ L1(I).
(b) If, for almost every ξ ∈ R, M(ξ) +M(ξ + 1

2 ) ≤ a < 1, then TM,+ ∈ L1(I).

At this point we have enough theory to develop several illustrative examples.

Example 3.45. Take a, b, ε ∈ (0, 1) such that ε ≤ 1/4, b < a < 1 and a+b < 1.
Define M to be 1-periodic so that M |[−ε,ε) ≡ a and M |[−1/2,1/2)\[−ε,ε) ≡ b. Since

a+ b < 1, Corollary 3.44b implies that TM,+ ∈ L1(I). We have several cases.
If 0 < a < 1/2, then SolM = {0} by Lemma 3.5.

If a = 1/2, then lim infn→∞M(2−nξ) = lim infn→∞
n
√∏n

k=1M(2−jξ) = 1/2
for every ξ. However, direct calculation from (3.1) shows that TM,− ≡ ∞, i.e.
SolM = {0} (compare with Lemma 3.5).

If a ∈ (1/2, 1), then TM ∈ L1(I), i.e. FM ∈ SolM . Observe, however, that the
infinite product given in (3.13) is equal to zero for every ξ ∈ I. Hence, although
we have non-trivial solutions, the infinite product is not “able to recognize them”
(this is one important point where our approach is more general and more com-
prehensive than the theory previously developed in [PŠWX01] and [PŠWX03];
we shall revisit this issue in more detail later). Observe also that in this case,
limn→∞ FM (2−nξ) =∞ for every ξ ∈ I. Nevertheless, FM is a non-trivial solution

and FM > 0 almost everywhere; in particular, A
(2)
M = I.

Let us now change M on (−ε, ε), where we now take ε = 1/4 for simplicity.
For ξ ∈ I, we define

M

(
ξ

22`−1

)
:=

1

2

M

(
ξ

22`

)
:= a >

1

2
,

for every ` ∈ N. Observe that lim infn→∞M(2−nξ) = 1
2 for every ξ ∈ I. Still,

SolM 6= {0} since

lim inf
n→∞

n

√√√√ n∏
k=1

M(ξ/2k) = lim
n→∞

n

√√√√ n∏
k=1

M(ξ/2k) = (1/2)1/2a1/2 > 1/2;

compare to Lemma 3.5.
Take now ε = 1/25 (again for simplicity) and define M on [−ε, ε] so that for

ξ ∈ I and n ∈ N with n ≥ 5,

M(2−nξ) :=
1

2

(
n

n− 1

)2

.

It follows that for n ≥ 5 and ξ ∈ I we have
n∏
k=1

2M(2−kξ) = (2b)4 1

16
n2 = b4n2.
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Hence

lim
n→∞

M(2−nξ) = lim
n→∞

n

√√√√ n∏
k=1

M(2−kξ) = lim
n→∞

n

√
b4n2

2n
=

1

2
,

while SolM 6= {0} since, for every ξ ∈ I,

T−(ξ) ∼
∞∑
n=5

1

n2
<∞.

♦
Remark 3.46. (i) Observe that in the case of TM ∈ L1(R) we have two

“natural” candidates for a maximal solution (in terms of ≺M ): Φ0,M and FM .
Since in this case 1 + TM ∈ L1(I), we simply take L ∈ OrC+ (see (2.38)) to
be L = 1+TM and obtain (1+TM )Φ0,M = FM (obviously, FM ≺M Φ0,M ≺M
FM ).

(ii) If TM ∈ L1(I) and limn→∞M(2−nξ) = a ∈ (1/2, 1) for almost every ξ ∈ R,
we will have the same phenomenon as in Example 3.45; all infinite products
in (3.13) are trivial, and any nontrivial Φ ∈ SolM will be unbounded around
zero. Hence, even in the case of TM ∈ L1(I), bounded, non-trivial solutions
are to be expected in the case where limn→∞M(2−nξ) ≡ 1.

�

It is of interest to explore whether M can be bigger than 1.

Example 3.47. Take a, b, c ∈ (0,∞) so that 1/2 < a < 1, c is arbitrary, and b
is small enough that a+ b+ 4cb < 1. Observe that we can take c > 1 here. Define
M by

M(ξ) :=

 a if ξ ∈ [−1/6, 1/6)
c if ξ ∈ [−1/3, 1/3) \ [−1/6, 1/6)
b if ξ ∈ [−1/2, 1/2) \ [−1/3, 1/3)

and extend M 1-periodically to R. It follows that

(3.48) M(ξ) +M(ξ + 1
2 ) =

{
a+ b if ξ ∈ [−1/6, 1/6)
2c if ξ ∈ [−1/4, 1/4) \ [−1/6, 1/6).

Since we can select c to be arbitrarily large (we just need to adjust b to be small
enough), both M(ξ) and M(ξ) + M(ξ + 1

2 ) can be as large as desired on a set of

positive measure, while we still have that TM ∈ L1(I). For TM,−, this follows from
Proposition 3.34d, while for TM,+ we apply the recurrence formula and (3.48). We
obtain for j ≥ 2∫

I

FM (2jξ)dξ =
a+ b

2

∫
[−1,−2/3)∪[2/3,1)

FM (2j−1ξ)dξ+

+ c

∫
[−2/3,−1/2)∪[1/2,2/3)

M(ξ)

j−2∏
k=1

M(2kξ)dξ

≤ a+ b

2

∫
I

FM (2j−1ξ)dξ + cb

∫
I

FM (2j−2ξ)dξ.

By (3.32) we need to prove that
∞∑
j=1

2j
∫
I

FM (2jξ)dξ <∞.
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Consider the N th partial sum, LN =
∑N
j=1 2j

∫
I
FM (2jξ)dξ. Our estimate shows

that

LN ≤ 2

∫
I

FM (2ξ)dξ +

N∑
j=2

a+ b

2
2j
∫
I

FM (2j−1ξ)dξ +

N∑
j=2

bc2j
∫
I

FM (2j−2ξ)dξ

= 2

∫
I

FM (2ξ)dξ + (a+ b)LN−1 + 4bcLN−2 + 4bc

∫
I

FM (ξ)dξ

≤ 2

∫
I

FM (2ξ)dξ + 4bc

∫
I

FM (ξ)dξ + (a+ b+ 4bc)LN .

It follows that

LN ≤
1

1− a− b− 4bc

(
2

∫
I

FM (2ξ)dξ + 4bc

∫
I

FM (ξ)dξ

)
.

The right side of this inequality is, of course, finite and independent of N , which
gives the desired result.

♦

Remark 3.49. In order to emphasize the differences between TM,− and TM,+,
let us turn our attention to rM,− and rM,+. As we have seen, the value of rM,−(ξ)
depends entirely on the orbit orb(ξ) and can change from orbit to orbit — not so
with rM,+. Interestingly enough, this is the consequence of ergodicity. The mapping
ξ 7→ 2ξ(mod 1) is a standard example of a measure-preserving transformation (with

respect to Lebesgue measure); observe that the mapping ξ 7→ ξ
2 used in rM,− does

not have this property. Furthermore, it is well-known (and follows from Lemma
2.1) that ξ 7→ 2ξ(mod 1) is ergodic (see, for example, [Wal00] for an introduction
to ergodic theory). Hence the classical Birkhoff’s Ergodic Theorem applies and
provides us with the following important result.

�

Theorem 3.50. If M : R → [0,∞) is measurable, 1-periodic, and bounded,
then for almost every ξ ∈ R,

lim
n→∞

n

√√√√n−1∏
k=0

M(2kξ) = exp

(∫ 1

0

lnM(ξ)dξ

)
.

Proof. Suppose first that
∫ 1

0
lnM(ξ)dξ > −∞. Since lnM(ξ) is bounded

above, this implies that lnM(ξ) ∈ L1(T). Observe that

ln n

√√√√n−1∏
k=0

M(2kξ) =
1

n

n−1∑
k=0

lnM(2kξ)

and apply Birkhoff’s Ergodic Theorem to conclude that for almost every ξ ∈ [0, 1),

lim
n→∞

1

n

n−1∑
k=0

lnM(2kξ) =

∫ 1

0

lnM(ξ)dξ.

Since ξ 7→
∏n−1
k=0 M(2kξ) is 1-periodic, it follows that, for almost every ξ ∈ R,

lim
n→∞

n

√√√√n−1∏
k=0

M(2kξ) = exp

(∫ 1

0

lnM(ξ)dξ

)
.
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Now suppose that
∫ 1

0
lnM(ξ)dξ = −∞. For every δ > 0, consider the function

Mδ(ξ) = M(ξ) + δ. Certainly,
∫ 1

0
lnMδ(ξ)dξ > −∞. Thus we obtain for every

δ > 0 and almost every ξ ∈ R

lim sup
n→∞

n

√√√√n−1∏
k=0

M(2kξ) ≤ lim
n→∞

n

√√√√n−1∏
k=0

Mδ(2kξ) = exp

(∫ 1

0

lnMδ(ξ)dξ

)
.

A routine monotone convergence argument allows one to conclude

lim
δ→0+

∫ 1

0

lnMδ(ξ)dξ = −∞.

Hence

lim
n→∞

n

√√√√n−1∏
k=0

M(2kξ) = 0.

�

Corollary 3.51. Let M : R→ [0,∞) be measurable, 1-periodic, bounded, and
M > 0 almost everywhere. Then

(a) For almost every ξ ∈ I,

1

rM,+(ξ)
= exp

(∫ 1

0

lnM(ξ)dξ

)
.

(b) The following string of implications holds:∫ 1

0

lnM(ξ)dξ < ln
1

2
⇒ TM,+ is finite almost everywhere

⇒
∫ 1

0

lnM(ξ)dξ ≤ ln
1

2
.

Remark 3.52. (i) Recall that by Jensen’s inequality,

exp

(∫ 1

0

lnM(ξ)dξ

)
≤
∫ 1

0

M(ξ)dξ,

and equality holds only when M is (almost everywhere) equal to a constant
function.

(ii) It follows that if M : R → [0,∞) is measurable, bounded, 1-periodic, M > 0
almost everywhere, M is not (almost everywhere) a constant function, and

(3.53)

∫ 1

0

M(ξ)dξ ≤ 1

2
,

then TM,+ is finite almost everywhere.
(iii) As already mentioned in Remark 3.25, of particular interest are functions

M : R→ [0,∞) which are measurable, 1-periodic, M > 0 almost everywhere,
and such that M satisfies the Smith–Barnwell condition

M(ξ) +M(ξ + 1
2 ) = 1 almost everywhere.

Observe that, for such functions, we have 0 < M ≤ 1 and∫ 1

0

M(ξ)dξ =
1

2
.



3. FILTER ANALYSIS, FO CASE. 71

Among such functions M , there is only one constant function, M ≡ 1
2 .

�

Corollary 3.54. Let M : R → [0,∞) be measurable, 1-periodic, and M > 0
almost everywhere.

(a) If M(ξ) + M(ξ + 1
2 ) = 1 almost everywhere and M 6≡ 1

2 , then TM,+ is finite
almost everywhere.

(b) If M(ξ) + M(ξ + 1
2 ) = 1 almost everywhere and, for almost every ξ ∈ I,

lim infn→∞M(2−nξ) > 1
2 , then M is FO, A

(2)
M = I, and

Φ0,M (ξ) > 0 for almost every ξ ∈ R.

Observe that M ≡ 1
2 is the only M > 0 which satisfies the Smith–Barnwell

condition and has TM,+ ≡ ∞.

Remark 3.55. We have now painted a fairly complete picture of T+ and T− for
the class of functions M > 0 which satisfy the Smith–Barnwell condition. Except
for M ≡ 1

2 , all such functions will have TM,+ which is finite almost everywhere,
which is unbounded on any interval, and which is non-integrable. The existence of
non-trivial solutions will then depend entirely on TM,−.

Under the additional assumption that M is bounded away from zero, we can
say even more about the properties of TM,+. Since this case is not of immediate
interest to us (observe that this conditions prevents M from “reaching” the value
1), we present only the main steps of the techniques required (and are confident
that an interested reader would be able to fill in the details easily).

We use the notation developed in (3.36) through (3.43). It is easy to see that
for a measurable K ⊆ I we have that

(3.56) |ρ1(K ∩ I1) ∩ ρ2(K ∩ I2)| = 0⇒ |ρ1(K ∩ I1) ∪ ρ2(K ∩ I2)| = 2|K|.

We denote the set ρ1(K∩I1)∪ρ2(K∩I2) = ρ(K). We are interested in the dynamics
of ρN (K), N ∈ N. In general (i.e. if we only know that |K| > 0) we will only be
able to conclude that |I \ ρN (K)| → 0 as N →∞.

For some special sets we can obtain better results. We will say that J ⊂ I is a (
mod 1)-interval if there exists an interval L ⊂ [−2, 2) which is “congruent mod 1”
to J (i.e. J is an open (mod 1)-interval if it is of the form (a, b), [−1, a) ∪ [b, 1), or
(a,−1/2) ∪ [1/2, b)). It is not difficult to show that

(3.57) J is a (mod 1)-interval⇒ ρ(J) is a (mod 1)-interval.

Hence, since |J | > 0 and |I| = 1, it follows that there exists N1 ∈ N such that

|ρ1(ρN1(J) ∩ I1) ∩ ρ2(ρN1(J) ∩ I2)| > 0;

observe that this precludes ρN1(J) from being of the form (a, b). Without loss of
generality, we consider the case ρN1(J) = [−1, a)∪ [b, 1), where −1 < a ≤ −1/2 and
1/2 ≤ b < 1. If b > 3/4, then ρ([b, 1)) = ρ2([b, 1)) = [2b, 2) − 1; and similarly for
a. Therefore, there exists N2 ∈ N such that ρN1+N2(J) ⊇ [−1, a1) ∪ [b1, 1), where
a1 ≥ −3/4 and b1 ≤ 3/4. Observe that ρ([−1, a1)) ⊇ ρ2(−J2) = [−1,−1/2) and
ρ([b1, 1)) ⊇ ρ2(J2) = [1/2, 1).

Hence we have proven that, for every J ⊆ I, there exists N = N(J) ∈ N such
that

(3.58) ρN (J) = I.
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We also need to extend (3.43). The following statement is easy to prove by
induction over N . If K ⊆ I is measurable and G ≥ 0 is 1

2N
-periodic for some

N ∈ N, then

(3.59)

∫
K

G(ξ)dξ ≥ 1

2N

∫
ρN (K)

G

(
ξ

2N

)
dξ.

�

Proposition 3.60. Let M : R→ [0,∞) be measurable, 1-periodic, and satisfy
M(ξ) + M(ξ + 1

2 ) ≥ 1 almost everywhere. If there exists A > 0 such that M ≥ A
almost everywhere, then for every interval J ⊆ I we have∫

J

TM,+(ξ)dξ =∞.

Proof. Take an interval J ⊆ I, and N ∈ N such that (3.58) holds. For j > N ,
we obtain

Gj(ξ) :=

(
N−1∏
k=0

M(2kξ)

)
·

(
j−N−1∏
k=0

M(2k+Nξ)

)
≥ ANGj−N (2Nξ),

and observe that Gj−N (2Nξ) is 1
2N

-periodic. We apply (3.59) to get∫
J

Gj(ξ)dξ ≥ AN
∫
J

Gj−N (2Nξ) ≥ AN 1

2N

∫
I

Gj−N (ξ)dξ.

Observe that Proposition 3.35 and our assumptions imply that, for every ` ∈ N,

2`
∫
I

G`(ξ) ≥ 1.

Hence ∫
J

TM,+(ξ)dξ ≥
∞∑

j=N+1

2j
∫
J

Gj(ξ)dξ

≥ AN
∞∑

j=N+1

2j−N
∫
I

Gj−N (ξ)dξ

≥ AN
∞∑

j=N+1

1

=∞
�

The following example shows that having M(ξ)+M(ξ+ 1
2 ) ≥ 1 is not necessarily

an obstacle for the existence of nontrivial elements of SolM .

Example 3.61. Take a > 1 and b > 0 such that ab < 1
4 (i.e.

√
ab < 1

2 ). Observe
that by adjusting b small enough, we can select arbitrarily large a. Take any two
measurable sets A,B ⊆ [−1/2, 1/2) such that A∩B = ∅, A∪B = [−1/2, 1/2), and
A+ 1

2 = B(mod 1). Define M so that M is 1-periodic and

M |[−1/2,1/2) = aχA + bχB .

It follows that for every ξ ∈ R
(3.62) M(ξ) +M(ξ + 1

2 ) = a+ b > 1.
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Observe that ∫ 1

0

lnM(ξ)dξ =
1

2
(ln a+ ln b) = ln

√
ab < ln

1

2
.

Hence by Corollary 3.51b, we have that TM,+ is finite almost everywhere. Ob-
viously, there are many choices for A and B. One possible choice is to select
A so that there exists an ε > 0 such that (−ε, ε) ⊆ A. With this choice, we
have limn→∞M(2−nξ) = a > 1 for all ξ ∈ I. Observe that under such a choice
M ≥ a > 1 in a neighborhood of 0, we have (3.62), and SolM 6= {0}.

♦

We now turn our attention to the class of functions M which are FO and satisfy
the Smith–Barnwell condition.

4. Smith–Barnwell Filters, FO Case

In this section, we revisit one of the most studied classes of filters, consisting of
filters satisfying the Smith–Barnwell condition. Let M : R→ [0,∞) be measurable,
1-periodic, M > 0 almost everywhere, M 6≡ 1/2 and M(ξ) +M(ξ + 1

2 ) = 1 almost
everywhere. Then

(4.1) SolM 6= {0} ⇔ |{ξ ∈ I : TM,−(ξ) <∞}| > 0

and A
(2)
M = {TM,− <∞}. In this section, we concentrate on the class

MFO
SB :={M : R→ [0,∞) : M is measurable, 1-periodic,(4.2)

M > 0 a.e., M(ξ) +M(ξ + 1/2) = 1 a.e., and SolM 6= {0}}.

Remark 4.3. In the terminology developed in [PŠW99], [PŠWX01], and
[PŠWX03], a function m : R → C which is measurable, 1-periodic, and which
satisfies |m(ξ)|2 + |m(ξ + 1

2 )|2 = 1 almost everywhere is called a generalized filter.
Hence, among other things, in this section we provide a fresh perspective on the
theory of generalized filters.

�

Given Φ ∈ SolM , where M ∈ MFO
SB , it is easy to see directly (or consult

[PŠW99]) that for almost every ξ ∈ I and for every j ∈ Z,

(4.4) ∞ ≥ lim
n→∞

Φ(2−nξ) ≥ Φ(2jξ) ≥ Φ(2j+1ξ) ≥ lim
n→∞

Φ(2nξ) = 0.

In particular, we have for almost every ξ ∈ I,

(4.5) lim
n→∞

Φ0,M (2−nξ) > 0⇔ TM,−(ξ) <∞,

and

(4.6) 0 < lim
n→∞

Φ0,M (2−nξ) <∞⇔
∞∏
n=1

M(2−nξ) > 0.

Recall also that (4.6) implies limn→∞M(2−nξ) = 1.

Remark 4.7. Recall that properties of TM,− depend only on the values of
M in a neighborhood of 0. Observe that we can take any measurable function
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h : [−1/4, 1/4) → (0, 1] such that |{ξ : h(ξ) = 1}| = 0 and define a 1-periodic,
measurable M so that

M(ξ) :=

 h(ξ) if ξ ∈ [−1/4, 1/4)
1− h(ξ − 1/2) if ξ ∈ [1/4, 1/2)
1− h(ξ + 1/2) if ξ ∈ [−1/2,−1/4)

Then M > 0 almost everywhere and M satisfies the Smith–Barnwell condition. It
is easy to see that we can adjust h to have various behaviors on different orbits.
For example, if lim infn→∞

n
√∏n

k=1 h(2−kξ) < 1/2, then Φ(2jξ) = 0 for every
Φ ∈ SolM and every j ∈ Z. If lim infn→∞ h(2−nξ) ∈ (1/2, 1), then TM,−(ξ) < ∞
and limn→∞ Φ0,M (2−nξ) =∞.

�

Observe that for M ≤ 1, we always have lim supn→∞M(2−nξ) ≤ 1. Hence,
in this case, lim infn→∞M(2−nξ) = 1 if and only if limn→∞M(2−nξ) = 1. Of
particular interest to us are functions M which satisfy

(4.8) lim
n→∞

M(2−nξ) = 1 for almost every ξ ∈ I;

for simplicity we assume that, in such a case, M(0) = 1 (although if the only
condition on M is that M is measurable, this does not have any appreciable effect)
and we call (4.8) dyadic continuity at 0 — this notation has been used in the Wavelet
Seminar at Washington University in St. Louis for at least fifteen years; see also
[Gun00]. Obviously, if M is 1-periodic, measurable, M > 0 almost everywhere,
M is dyadically continuous at 0, and M(ξ) + M(ξ + 1

2 ) = 1 almost everywhere,

then M ∈ MFO
SB and Φ0,M > 0 almost everywhere. By adjusting h in Remark

4.7 appropriately, it is not difficult to construct M ∈ MFO
SB so that M is not

dyadically continuous at 0. Similarly, it is easy to construct M ∈ MFO
SB such

that M is dyadically continuous at 0 but not continuous at 0. Obviously, if M
is continuous at 0 (and M(0) = 1), then M is also dyadically continuous at 0.
Moreover, if M ∈ MFO

SB and there exists Φ ∈ SolM such that 0 < Φ ≤ A < ∞
almost everywhere, then M is dyadically continuous at 0. Actually (recall Lemma
3.14), in this case we also have (4.6); observe that, in general, dyadic continuity at
zero by itself does not imply (4.6).

These notions beg several questions. Let us begin with the question as to
whether continuity at 0 (which is a stronger requirement than dyadic continuity at
0) implies (4.6). As the following counter-example shows, the answer is negative.

Example 4.9. Define M via h, as outlined in Remark 4.7, so that h|2−kI ≡
ak > 0, k ∈ {2, 3, 4, ...}. Obviously, if h(0) := 1 and limk→∞ ak = 1, then h is
continuous at 0. We also assume that ak < 1 for every k. It follows that M ∈MFO

SB

and Φ0,M > 0 almost everywhere.

Now select ak = e−1/k. It follows that for every ξ ∈ 1
2I,

∞∏
n=1

M(2−nξ) =

∞∏
k=2

e−1/k = exp

(
−
∞∑
k=2

1

k

)
= 0.

♦

The issue of (4.6) brings back the question raised in Remark 3.11(iii). Under
the Smith–Barnwell condition, we can fully answer this question; actually, most
of the answer is already provided in [PŠW99]. Let us revisit the problem from
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the point of view developed in this article. If M : R → [0, 1] is measurable and
1-periodic, then we can define a function fM : R→ [0, 1] via

(4.10) fM (ξ) =

∞∏
n=1

M(2−nξ) for ξ ∈ R.

Obviously, fM is measurable and fM (ξ) = M(ξ)fM (ξ) for every ξ ∈ R. Consider
a measurable set K ⊆ R which, up to almost everywhere equality, is 1-translation
congruent to [−1/2, 1/2), in the sense that the mapping ξ 7→ ξ − bξc − 1/2 is a
bijection from K to [−1/2, 1/2); see [PŠW99] for details. Assume further that

0 ∈ Int(K). For every n ∈ N, we define fK,nM : R→ [0, 1] by

(4.11) fK,nM (ξ) = χ2nK(ξ)

n∏
j=1

M(2−jξ) for ξ ∈ R.

If, in addition, we assume that M(ξ) +M(ξ + 1
2 ) = 1 almost everywhere, then the

well-known “peeling-off argument” (see Lemma 3.15 in [PŠW99] and pp. 369–372
in [HW96]) shows that:∫

R
fK,nM (ξ)e`(ξ)dξ = δ0,`.(4.12)

lim
n→∞

fK,nM (ξ) = fM (ξ) for almost every ξ ∈ R.(4.13)

‖fM‖L1(R) ≤ 1.(4.14)

It follows that, for M which satisfy the Smith–Barnwell condition, we always have

(4.15) fM ∈ SolM .

However, fM may be zero on some (or all) orbits, in which case it also does not
provide us with much information about the solution of our problem. Take M as
in Example 4.9; we have that M is continuous at 0, M ∈ MFO

SB , Φ0,M > 0 almost
everywhere, but fM ≡ 0 — observe that in this case limn→∞ Φ0,M (2−nξ) = ∞
almost everywhere. Combining these results in a single statement, it is now easy
to show that the following theorem holds.

Theorem 4.16. If M : R → [0,∞) is measurable, 1-periodic, M > 0 almost
everywhere, and M(ξ) + M(ξ + 1

2 ) = 1 almost everywhere, then the following are
equivalent:

(a) M ∈MFO
SB and, for almost every ξ ∈ I, 0 < limn→∞ Φ0,M (2−nξ) <∞.

(b) M ∈MFO
SB and there exists Φ ∈ SolM such that 0 < Φ ≤ 1 almost everywhere.

(c) fM > 0 almost everywhere.
(d) For almost every ξ ∈ I,

∏∞
k=1M(2−nξ) > 0.

(e) For almost every ξ ∈ I,
∑∞
k=1 lnM(2−nξ) > −∞.

It is also easy to see directly that, under the assumptions of Theorem 4.16, fM
is a maximal solution with respect to ≺M if and only if

(4.17) fM (ξ) > 0 for almost every ξ ∈ A(2)
M .

Remark 4.18. Observe that under conditions of Theorem 4.16, i.e. if fM > 0
almost everywhere, then we also have

(4.19) lim
n→∞

fM (2−nξ) = 1 for almost every ξ ∈ I.
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Assume now that M = |m|2 for some generalized filter m. In the terminology
of [PŠW99], [PŠWX01], and [PŠWX03], a generalized filter m which satisfies
(4.19) is called a generalized low-pass filter. It follows that the conditions of Theo-
rem 4.16 are, in this case, equivalent to m being a generalized low-pass filter.

This class of filters is particularly important in the theory of Parseval frame
wavelets, as developed in [PŠWX01] and [PŠWX03]. It is shown there that every
MRA Parseval frame wavelet is constructed from a generalized low-pass filter, and,
vice-versa, every generalized low-pass filter provides a constructive way to build
an MRA Parseval frame wavelet. Hence Theorem 4.16 characterizes all functions
which are of the form |m|2 where m is the low-pass filter associated to an MRA
Parseval frame wavelet and m 6= 0 almost everywhere.

�

As we have seen in Example 4.9, continuity does not necessarily imply that
fM > 0 almost everywhere. However, any level of Hölder continuity does imply
fM > 0 almost everywhere. This result is essentially contained in Lemma 4.5
in [PŠW99]. For the reader’s convenience, we state the result here and prove a
stronger result later on.

Proposition 4.20 ([PŠW99], Lemma 4.5). Let M : R → [0,∞) be measur-
able, 1-periodic, M > 0 almost everywhere, and M(ξ) + M(ξ + 1

2 ) = 1 almost
everywhere. If M(0) = 1 and there exist constants α,A, ε ∈ (0,∞) such that, for
every ξ ∈ (−ε, ε), one has |M(0)−M(ξ)| ≤ A|ξ|α (i.e. M is Hölder continuous at
0), then

∏∞
k=1M(2−nξ) > 0 for almost every ξ ∈ I.

One may think that some form of “dyadic Hölder continuity” is necessary for
fM > 0 almost everywhere to hold. The following example shows that it is not.

Example 4.21. Use the same construction as in Example 4.9 with ak =
exp(− 1

k2 ). M is then continuous at 0 and for every ξ ∈ 1
2I,

∞∏
n=1

M(2−nξ) = exp

(
−
∞∑
k=2

1

k2

)
> 0.

However, M is not Hölder continuous at 0. Suppose, to the contrary, that it were.
Then, for k sufficiently large, we would have

0 < 1− e−
1
k2 ≤ A

(
1

2k

)α
,

which leads to

1 = lim
k→∞

1− exp
(
− 1
k2

)
1
k2

≤ A lim
k→∞

k2

2αk
= 0,

which is obviously a contradiction.
Observe that M is an example of a function of the form M = |m|2, where m is

a generalized low-pass filter, i.e. m generates an MRA Parseval frame wavelet.
♦

One may ask whether the continuity of the entire M may improve the situation.
Consider the following example.

Example 4.22. Take a partition of [1/2, 1] defined by 1/2 = c0 < c1 < c2 <
c3 < c4 < c5 = 1 and consider Ci := [−ci,−ci−1] ∪ [ci−1, ci] for i = 1, 2, 3, 4, 5.
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Observe that [−1/4, 1/4] \ {0} =
⋃∞
k=2

⋃5
i=1 2−kCi. Consider two sequences (ak)

and (bk) in (0, 1) such that limk→∞ ak = 1 = limk→∞ bk. Define M via h as outlined
in Remark 4.7 in the following way. Let h(0) := 1, h(±1/4) := 1/2, h|2−kC2

≡ ak,

h|2−kC4
≡ bk, for k ∈ {2, 3, 4, ...}. Define h on

⋃∞
k=2(2−kC1 ∪ 2−kc3

⋃
2−kC5) so

that the endpoints on every interval are connected by a linear function; for example,
h( 1

4c4) = b2 and h( 1
4c5) = 1

2 , so we define h to be linear on [ 1
4c4,

1
4c5] = [ 1

4c4,
1
4 ] with

the given endpoints. It is not difficult to see that M |[−1/2,1/2] is now continuous
with M(0) = 1 and M(±1/2) = 0, so that M can be extended 1-periodically to
a function M which is continuous on all of R. Observe also that M > 0 almost
everywhere, M satisfies the Smith–Barnwell condition for all ξ ∈ R, SolM is non-
trivial, and Φ0,M > 0 almost everywhere.

Observe also that if we select increasing sequences (ak) and (bk), then, for every
ξ ∈ [−1/4, 1/4],

(4.23) M(ξ) ≥ min{1/2, a2, b2} > 0.

As for the condition “fM > 0” is concerned, we can have different behaviors,
depending on the choice of (ak) and (bk). For example, if we select ak := exp(− 1

k2 )

and bk = exp(− 1
k ), then fM will behave differently on different subsets of positive

measure. More precisely,

fM |C2
> 0 almost everywhere and fM |C4

≡ 0.

Observe also that, for almost every ξ ∈ C2, one has that limn→∞ fM (2−nξ) = 1,
while, for every ξ ∈ C4, it is obviously the case that limn→∞ fM (2−nξ) = 0. Hence,
despite M being continuous, fM is not continuous at 0.

If, instead, we select ak = bk = exp(− 1
k2 ), then it is not difficult to see that

fM > 0 almost everywhere, and fM (0) := 1 gives that fM is continuous at 0.
Observe that, in this case, M is not Hölder continuous at 0 (see Example 4.21).

♦

A modification of the argument of Lemma 4.5 from [PŠW99] shows that the
following result (which is stronger than Proposition 4.20) is valid. Observe that we
do not require M > 0 almost everywhere in this statement.

Proposition 4.24. Let M : R→ [0,∞) be measurable, 1-periodic, and M(ξ)+
M(ξ + 1

2 ) = 1 almost everywhere. Let us define fM (0) = 1. If M(0) = 1 and there
exists α,A, ε ∈ (−ε, ε) such that, for every ξ ∈ (−ε, ε), one has |M(0) −M(ξ)| ≤
A|ξ|α, then fM is continuous at 0.

Proof. (See Lemma 4.5 in [PŠW99].) Take any 0 < δ < 1. Choose n0 ∈ N
such that 2−n0 < ε and

A

2αn0(2α − 1)
< δ.
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For n ≥ n0 and r ∈ N with r > 1, we obtain, for every ξ ∈ I,

0 ≤ 1−
n0+r∏
j=n0+1

M(2−jξ)

= 1−
n0+r∏
j=n0+2

M(2−jξ) + (1−M(2−n0−1ξ))

n0+r∏
j=n0+2

M(2−jξ)

≤ 1−
n0+r∏
j=n0+2

M(2−jξ) +A
|ξ|α

2(n0+1)α

≤ ...

≤ A
(
|ξ|

2n0+1

)α n0+r−1∑
k=0

1

2kα

≤ A

2n0α

1

2α − 1
< δ,

and the same inequality holds for every n ≥ n0. If we let r → ∞, we obtain, for
every n ≥ n0 and every ξ ∈ I,

0 ≤ 1− fM (2−nξ) < δ.

Hence for every u ∈ [−2−n0 , 2−n0 ], we have 0 ≤ 1 − fM (u) < δ, i.e. |fM (0) −
fM (u)| < δ. �

Example 4.25. Let us modify Example 4.22 so that we have a partition 1/2 =
ck0 < ck1 < ck2 < ck3 < ck4 < ck5 = 1, for every k ∈ N \ {1}. We assume that
ck1 decreases to 1/2 and that ck2 increases to 1 as k → ∞. For k ∈ N \ {1} and
i = 1, 2, 3, 4, 5, we define Cki := [−cki ,−cki−1] ∪ [cki−1, c

k
i ]. Again, we have that

[−1/4, 1/4] \ {0} =
⋃∞
k=2

⋃5
i=1 2−kCki . Define h in a piece-wise linear fashion as

before, but select h so that h(0) = 1, h(±1/4) = 1/2, h|2−kCk2 ≡ exp(− 1
k2 ), and

h|2−kCk4 ≡
1
2 . Observe that M is then continuous on [−1/2, 1/2] \ {0}, but it is not

continuous at 0. Observe that for every ξ in the interior of I, there exists k0 ∈ N
such that ξ ∈ Ck2 , for every k ≥ k0. Hence

∏∞
k=1M(2−nξ) > 0 almost everywhere.

Observe that for every ξ ∈ 2−kC4
k we have fM (2ξ) ≤ M(ξ) = 1/2, i.e. fM is not

continuous at 0.
♦

Remark 4.26. This completes the analysis of those functions M which are
FO-type and are induced by generalized low-pass filters (i.e. M = |m|2 for some
generalized low-pass filter m). Our results and examples show that we have the
following schematic diagram for functions M : R → [0,∞) which are measurable,
1-periodic, and such that M(0) = 1, M > 0 almost everywhere, and M(ξ) +M(ξ+
1
2 ) = 1 almost everywhere:
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M Hölder continuous at 0

fM (0) = 1 and fM continuous at 0

M continuous at 0 fM > 0 a.e. fM dyadically continuous at 0

M dyadically continuous at 0

Observe that, in this scheme, whenever we have an implication in one direction,
i.e. “⇒”, there is a counterexample which shows that the reverse implication does
not hold. Recall that continuity of M at 0 does not necessarily imply that fM > 0
almost everywhere (Example 4.22). The condition “fM > 0 almost everywhere”
does not necessarily imply the continuity of M at 0 (Example 4.25).

♦

The condition “fM > 0” is of continuing interest for our analysis. For this
reason, we shall go a bit deeper into the schematic diagram given in the previous
remark. In some cases it is useful to present the analysis of fM in terms of

(4.27) ln
1

fM (ξ)
=

∞∑
n=1

| lnM(2−nξ)|.

For δ > 0, let Iδ := [−δ, δ) \ [−δ/2, δ/2). Since fM (ξ) ≥ fM (2ξ), it is sufficient in
many cases to obtain properties of fM on Iδ. For example, the condition “fM is
continuous at 0” implies (but is not equivalent to; using methods similar to Example
4.25 our readers can construct counterexamples themselves) the condition “fM is
bounded away from zero in a neighborhood of 0”, which, in turn, is equivalent to
the condition

(4.28) “there exists δ > 0 such that ln
1

fM
is essentially bounded on Iδ.”

Similarly, observe that the condition “fM > 0 almost everywhere” is equivalent to

(4.29) “there exists δ > 0 such that ln
1

fM (ξ)
<∞ for almost every ξ ∈ Iδ.”

There is another condition which “fits naturally between” conditions (4.28) and
(4.29), namely

(4.30) “there exists δ > 0 such that ln
1

fM
∈ L1(Iδ).”

This leads naturally to the following Dini condition for lnM(ξ).

Proposition 4.31. Let M : R → [0,∞) be measurable, 1-periodic, M > 0
almost everywhere, and M(ξ) +M(ξ + 1

2 ) = 1 almost everywhere. If there exists a
δ > 0 such that ∫ δ/2

−δ/2
|lnM(ξ)|dξ

|ξ|
<∞,

then fM (ξ) > 0 for almost every ξ ∈ R.
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Proof. By our previous discussion, it is enough to show that (4.30) holds.
Obviously,∫

Iδ

ln
1

fM (ξ)
dξ =

∞∑
n=1

∫
Iδ

| lnM(2−nξ)|dξ =

∞∑
n=1

2n
∫

2−nIδ

| lnM(y)|dy.

Observe that y ∈ 2−nIδ if and only if

δ

2

1

|y|
≤ 2n ≤ δ 1

|y|
.

Hence ∫
Iδ

ln
1

fM (ξ)
dξ � δ

∞∑
n=1

∫
2−nIδ

| lnM(y)|dy
|y|

= δ

∫ δ/2

−δ/2
| lnM(y)|dy

|y|
.

�

Remark 4.32. As our discussion shows, we have narrowed the analysis of
M to understanding those functions “between” the conditions “fM > 0 almost
everywhere” and

(4.33) “there exist δ, C > 0 such that fM |(−δ,δ) ≥ C almost everywhere”

(observe that (4.33) is equivalent to (4.28)). In this realm of functions, we do
not necessarily have that M is continuous at 0 (compare also with the schematic
diagram in Remark 4.26), but we have a gradual improvement of the behavior of
M around 0. Let us be more precise here.

Assuming the Dini condition from Proposition 4.31, we obtain

lim
δ→0+

1

δ

∫ δ/2

−δ/2
| lnM(ξ)|dξ ≤ lim

δ→0+

1

2

∫ δ/2

−δ/2
| lnM(ξ)|dξ

|ξ|
= 0,

i.e., the point ξ = 0 is a point of Lebesgue differentiation for the function lnM(ξ)
with value 0. Using Jensen’s inequality, we observe that

1 ≥ 1

δ

∫ δ/2

−δ/2
M(ξ)dξ

=
1

δ

∫ δ/2

−δ/2
exp(lnM(ξ))dξ

≥ exp

(
1

δ

∫ δ/2

−δ/2
lnM(ξ)dξ

)
.

Hence limδ→0+
1
δ

∫ δ/2
−δ/2M(ξ)dξ = 1, i.e. ξ = 0 is a point of Lebesgue differentiation

for the function M(ξ) with value 1.
Actually, the Dini condition implies the analogous result for fM as well. Using

the proof of Proposition 4.31, we can see that the Dini condition implies that ξ = 0
is a point of Lebesgue differentiation for ln fM (ξ) with value 0 (and, therefore, also
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for fM (ξ) with value 1):

1

δ

∫ δ/2

−δ/2
| ln fM (ξ)|dξ =

∞∑
n=1

1

δ

∫
2−nIδ

| ln fM (ξ)|dξ

�
∞∑
n=1

2−n
∫ δ/4

−δ/4
| lnM(y)|dy

|y|

=

∫ δ/4

−δ/4
| lnM(y)|dy

|y|
.

This leads naturally to the question of the characterization of the condition “fM > 0
almost everywhere” via the behavior of fM around zero.

�

Let us introduce some additional notation closely related to the notation given
in (4.11). We denote the interval [−1/2, 1/2) by K0. For n ∈ N, we define fnM :
R→ [0, 1] by

(4.34) fnM (ξ) =

n∏
k=1

M(2−kξ) for ξ ∈ R,

and fn,∗M : R→ [0,∞) by

(4.35) fn,∗M (ξ) = 2nfnM (2nξ) =

n−1∏
k=1

2M(2kξ) for ξ ∈ R.

Observe that for every measurable set E ⊆ R, we have

(4.36)

∫
E

fn,∗M (ξ)dξ =

∫
2nE

fnM (ξ)dξ.

In particular, (4.12) implies

(4.37)

∫
K0

fn,∗M (ξ)dξ =

∫
2nK0

fnM (ξ)dξ = 1.

For a ∈ (0, 1), denote Ea = EaM := {ξ ∈ K0 : fM (ξ) ≥ a} and Ea = Ea,M := {ξ ∈
K0 : fM (ξ) < a} = K0 \ Ea.

Proposition 4.38. Let M : R → [0,∞) be measurable, 1-periodic, M > 0
almost everywhere, and M(ξ)+M(ξ+ 1

2 ) = 1 almost everywhere. Then the following
are equivalent:

(a) fM > 0 almost everywhere.
(b) limn→∞ fM (2−nξ) = 1 almost everywhere.
(c) limn→∞

∫
K0
fM (2−nξ)dξ = 1.

(d) There exists 0 < a < 1 such that limn→∞ χEa(2−nξ) = limn→∞ χ2nEa(ξ) = 1
almost everywhere.

(e) There exists 0 < a < 1 such that limn→∞
∫
K0
χEa(2−nξ)dξ = 1.

Proof. That (a) ⇔ (b) is true is well known since [PŠW99]. Directly from
the monotone convergence theorem, we obtain (b) ⇒ (c) and (d) ⇒ (e). Observe
that the monotone convergence theorem provides the proof of (c)⇒ (b) since

1 =

∫
K0

lim
n→∞

fM (2−nξ)dξ
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and the integrand is bounded by 1.
It is straightforward to see that (b)⇒ (d), since limn→∞ fM (2−nξ) = 1 implies

that, for every 0 < a < 1, there exists n0 ∈ N such that fM (2−nξ) ≥ a for every
n ≥ n0.

Finally, (e)⇒ (b), since we know from [PŠW99] that limn→∞ fM (2−nξ) equals
0 or 1, and the first case occurs only if fM |orb(ξ) ≡ 0. If this would have happened
on a set D ⊆ K0 with |D| > 0, then for every 0 < a < 1, we would have D ⊆ Ea.
Hence χEa(2−nξ) = 0, for every n ∈ N and every ξ ∈ D. The consequence would
be that

lim
n→∞

∫
K0

χEa(2−nξ)dξ ≤ |K0 \D| < 1,

which contradicts the assumption in (e). �

Observe that we have provided the characterization of “fM > 0 almost every-
where” already in Theorem 4.16. In the previous proposition we provided a list of
technical conditions useful for the analysis of M “in the spirit of” Remark 4.32.

Remark 4.39. Observe that conditions (d) and (e) (respectively) are equivalent
to conditions (d′) and (e′) where the sentence “there exists 0 < a < 1” is replaced
by “for every 0 < a < 1”.

Furthermore, since χEa + χEa = χK0
, these conditions are equivalent to (re-

spectively)

(f) For every 0 < a < 1, lim
n→∞

χEa(2−nξ) = 0 almost everywhere

and

(g) For every 0 < a < 1, lim
n→∞

∫
K0

χEa(2−nξ) = 0.

Observe that ∫
K0

fM (2−nξ)dξ = 2n
∫ 2−n−1

−2−n−1

fM (y)dy;

therefore (c) is equivalent to

(h) The point ξ = 0 is a point of Lebesgue density 1 for fM .

Similarly, (e′) and (g) (respectively) are equivalent to

(i) The point ξ = 0 is a point of Lebesgue density 1 for Ea for every 0 < a < 1

and

(j) The point ξ = 0 is a point of Lebesgue density 0 for Ea for every 0 < a < 1.

�

We turn our attention now to one of the most important classes of filters in
wavelet theory: the class of (MRA orthonormal wavelet) low-pass filters (for histor-
ical details and further references, see [Dau92] and [HW96]). This terminology
is also used in [PŠW99], [PŠWX01], and [PŠWX03]. We can rephrase the
characterization theorem, Theorem 3.17 from [PŠW99], in the following form.
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Theorem 4.40 ([PŠW99]). Let m : R → C \ {0} be a measurable, 1-periodic
function, and let us denote |m|2 by M . Then m is a low-pass filter (for an MRA
orthonormal wavelet) if and only if M(ξ) + M(ξ + 1

2 ) = 1 almost everywhere,
fM (ξ) > 0 almost everywhere, and

(4.41)

∫
R
fM (ξ)dξ = 1

Remark 4.42. (i) Observe that the characterization theorem depends com-
pletely on the properties of M ; the phase of m has no impact on this matter.
Hence we denote the class of M that satisfy Theorem 4.40 by MFO

LPF . Obvi-
ously, MFO

LPF ⊆MFO
SB .

(ii) As it is shown in [PŠW99], the Smith–Barnwell condition implies that

(4.43)

∫
R
fM (ξ)dξ ≤ 1

but does not necessarily imply (4.41). The typical counterexample comes from
the filter

mH(ξ) =
1

2

(
1 + e2πiξ

)
of the Haar wavelet (see [HW96] for more details on the Haar wavelet). We
consider the “elongated” Haar wavelet associated with the filter

(4.44) ξ 7→ mH(3ξ) =
1

2

(
1 + e6πiξ

)
As is well known (consult [PŠWX01], [PŠWX03], and [ŠSW08] for details),
the corresponding M satisfies the Smith–Barnwell condition as well as fM > 0
almost everywhere but does not satisfy (4.41).

(iii) It is also known (see [PŠW99]) that condition (4.41) in Theorem 4.40 can
be replaced by the following equivalent condition. For n, k ∈ N, we denote
B(n, k) by

B(n, k) :=

∫
K0\2−kK0

fn,∗M (ξ)dξ.

Observe that, for a fixed n, the sequence k 7→ B(n, k) is non-decreasing. The
condition equivalent to (4.41) is

(4.45) lim
n0→∞

sup
n>n0

B(n, n− n0) = 0.

�

In some practical situations it may be difficult to check conditions on fM di-
rectly. Therefore, we shall analyze (4.41) in detail in a similar approach as we
took to the analysis of “fM > 0 almost everywhere”. The first natural question is
whether, in the FO case, condition (4.41) implies “fM > 0 almost everywhere”. As
the following example shows, this is not the case.

Example 4.46. Consider the Haar wavelet filter, mH and denote M0 by M0 :=
|mH |2. Hence, for ξ ∈ K0, we have M0(ξ) = cos2(πξ), and, for ξ ∈ R,

fM0(ξ) =

(
sin(πξ)

πξ

)2

.
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Take a small δ, say 0 < δ < 1/8, and adjust M0 near the points 0 and 1/2. More
precisely, we define M to be 1-periodic and, on K0 given by

M(ξ) :=

 M0(ξ) if ξ ∈ [−1/2, 1/2) \ ([−δ, 0) ∪ [1/2− δ, 1/2))
M0(−δ) if ξ ∈ [−δ, 0)
M0(1/2− δ) if ξ ∈ [1/2− δ, 1/2)

.

Let us denote M0(1/2 − δ) by ε. It follows that M0(−δ) = 1 − ε. It is easy to
see that M satisfies the Smith–Barnwell condition and M > 0 almost everywhere.
Since 1− ε < 1, it follows that

fM (ξ) = 0 for every ξ < 0.

Hence M does not satisfy the condition “fM > 0 almost everywhere”. It remains
to show that fM satisfies (4.41). We will show first that there exists a constant
0 < c such that

(4.47) fM (ξ) ≥ c for every ξ ∈ (0, 1).

Indeed, since M = M0 on (0, 1/2− δ), we obtain that, for every ξ ∈ (0, 1− 2δ),

fM (ξ) = fM0
(ξ) =

(
sin(πξ)

πξ

)2

≥ fM0
(1− 2δ).

If ξ ∈ [1− 2δ, 1), then

fM (ξ) = M(ξ/2)fM0
(ξ/2) = εfM0

(ξ/2) ≥ εfM0
(1/2− δ).

It follows that c := min {fM0
(1− 2δ), εfM0

(1/2− δ)} satisfies (4.47).
Since M satisfies the Smith–Barnwell condition, we have (see (4.34)–(4.37))

that fnM is 2n-periodic and

1 =

∫
2nK0

fnM (ξ)dξ =

∫ 2n

0

fnM (ξ)dξ.

Furthermore, (4.47) implies that, for every ξ ∈ (0, 2n),

fM (ξ) = fnM (ξ) · fM (ξ/2n) ≥ fnM (ξ) · c.

Using gn(ξ) := fnM (ξ)χ(0,2n)(ξ), we obtain that

lim
n→∞

gn(ξ) = fM (ξ) for every ξ > 0,

gn(ξ) ≤ 1

c
fM (ξ) for every ξ > 0 (observe that fM ∈ L1(R) by (4.43)),

and

∫ ∞
0

gn(ξ)dξ = 1 for every n ∈ N.

By the Lebesgue dominated convergence theorem, we obtain (4.41). ♦

Let us analyze (4.41) from the “point of view of Proposition 4.38”; it gives us
an interesting comparison of (4.41) and “fM > 0 almost everywhere”. We start
with the following simple — but very useful — lemma.

Lemma 4.48. If M : R → [0,∞) is measurable, 1-periodic, M > 0 almost
everywhere, and M(ξ)+M(ξ+ 1

2 ) = 1 almost everywhere, then, for every 0 < a < 1,

lim
n→∞

fM (ξ)χ2nEa(ξ) = lim
n→∞

fM (ξ)χEa(2−nξ) = 0 almost everywhere.
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In particular,

lim
n→∞

∫
2nEa

fM (ξ)dξ = lim
n→∞

∫
Ea

2nfM (2nξ)dξ = 0.

Proof. If fM (ξ) = 0, then the statement is trivial. If fM (ξ) > 0, then
limn→∞ fM (2−nξ) = 1, which implies (since a < 1) that limn→∞ χEa(2−nξ) = 0.
Recall that, under our assumptions, fM ∈ L1(R) and fM dominates all func-
tions ξ 7→ fM (ξ)χ2nEa(ξ). The last statement of the lemma now follows from
the Lebesgue dominated convergence theorem. �

Proposition 4.49. Let M : R → [0,∞) be measurable, 1-periodic, M > 0
almost everywhere, and M(ξ)+M(ξ+ 1

2 ) = 1 almost everywhere. Then the following
are equivalent.

(a) ∫
R
fM (ξ)dξ = 1.

(b)

lim
n→∞

∫
Ea

2nfM (2nξ)dξ = 1 for some (all) 0 < a < 1.

(c)

lim
n→∞

∫
Ea
fn,∗M (ξ)dξ = 1 for some (all) 0 < a < 1.

(d)

lim
n→∞

∫
Ea

fn,∗M (ξ)dξ = 0 for some (all) 0 < a < 1.

Observe that each of (b), (c), and (d) consists of two equivalent statements, one for
“some” and one for “all”.

Proof. Observe that (4.37) and χEa +χEa = χK0
show that (c)⇔ (d). Since

fM ≤ fnM , it is obvious that (b)⇒ (c).
Suppose now that (a) holds and consider an arbitrary 0 < a < 1. From Lemma

4.48 we have

lim
n→∞

∫
2nEa

fM (ξ)dξ = 0.

By (4.37) we have (using (a)) that

1 ≥ lim sup
n→∞

∫
2nK0\2nEa

fnM (ξ)dξ

≥ lim inf
n→∞

∫
2nK0\2nEa

fnM (ξ)dξ

≥ lim
n→∞

∫
2nK0\2nEa

fM (ξ)dξ

= lim
n→∞

∫
2nK0

fM (ξ)dξ

=

∫
R
fM (ξ)dξ

= 1.
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Again, using (4.37), this computation shows that

lim
n→∞

∫
2nEa

fnM (ξ)dξ = 0,

i.e. we have shown that (a)⇒ “(d) (for all)” statement.
Suppose now that (d) is valid for some 0 < a < 1. For ξ ∈ 2nK0 \ 2nEa, we

have ξ/2n /∈ Ea, i.e.

fM (ξ) = fnM (ξ)fM (ξ/2n) ≥ fnM (ξ) · a.
Considering now a sequence of functions

gn(ξ) := fnM (ξ) · χ2nK0\2nEa(ξ),

we obtain that gn ≤ 1
afM ∈ L

1(R) and, by Lemma 4.48,

lim
n→∞

gn = fM almost everywhere on R.

Using (4.37) and (d), we obtain, by the Lebesgue dominated convergence theorem,∫
R
fM (ξ)dξ = lim

n→∞

∫
2nK0\2nEa

fnM (ξ)dξ = 1− lim
n→∞

∫
Ea

fn,∗M (ξ)dξ = 1.

It remains to prove that (a) ⇒ (b). This follows directly from Lemma 4.48,
since, for all 0 < a < 1,∫

R
fM (ξ)dξ = lim

n→∞

∫
2nK0

fM (ξ)dξ = lim
n→∞

(∫
2nEa

fM (ξ)dξ +

∫
2nEa

fM (ξ)dξ

)
.

�

Remark 4.50. (i) It is of interest to examine condition (4.28) in this context.
Observe first that (4.28) is equivalent to the condition

“there exists 0 < a < 1 such that dist(0, Ea) > 0′′.

This means that, for almost every ξ ∈ R, there exists n0 = n0(ξ, a) ∈ N such
that ξ /∈ 2nEa for every n ≥ n0.

(ii) It is obvious that (4.28) implies (4.29), i.e. (4.28) implies “fM > 0 almost
everywhere”.

(iii) The example given in (4.44) shows that, in general, (4.28) does not imply
(4.41). Nevertheless, condition (4.28) is a strong assumption in this direction.
As the following results show, assuming (4.28) leads to (4.41) via algebraic
conditions connected with simple number theoretic conditions.

�

For k ∈ N, consider a bijection ρk : 2−kI → K0 given by ρk(ξ) = 2kξ −
signum(ξ), where signum(ξ) outputs the sign of ξ (compare with ρ1 and ρ2 given
in (3.36)).

Proposition 4.51. Let M : R → [0,∞) be measurable, 1-periodic, M > 0
almost everywhere, M(ξ) +M(ξ + 1

2 ) = 1 almost everywhere, and such that (4.28)
holds. If, for some 0 < a < 1,

ρ1(Ea ∩ 2−1I) ∩ Ea = ∅,
then ∫

R
fM (ξ)dξ = 1



4. SMITH–BARNWELL FILTERS, FO CASE 87

(i.e. M is generated from a low-pass filter).

Proof. Recall that fM (ξ) < a ⇒ fM (2ξ) < a. Hence our condition implies
that, for every k ∈ N,

(4.52) ρk(Ea ∩ 2−kI) ∩ Ea = ∅
since ρk(Ea ∩ 2−kI) ⊆ ρ1(Ea ∩ 2−1I).

Observe that (4.28) implies that Ea ∩ 2−kI 6= ∅ for at most finitely many
k ∈ N. By Proposition 4.49 it is enough to check condition (d) in that proposition.
Therefore, it is enough to check that, for finitely many k ∈ N,

lim
n→∞

∫
Ea∩2−kI

fn,∗M (ξ)dξ = 0.

Observe that (ρk)−1(ξ) = ξ±1
2k

, so, for n sufficiently large,

2−kfn,∗M ((ρk)−1(ξ)) = 2n−k

(
n−k∏
`=1

M(2n−k−`(ξ)

)
M

(
ξ ± 1

2

)
·A,

where A ≤ 1. It follows that

2−kfn,∗M ((ρk)−1(ξ)) ≤ fn−k,∗M (ξ)(1−M(ξ/2)).

Observe also that for ξ /∈ Ea we have

fn−k,∗M (ξ) ≤ 1

a
2n−kfM (2n−kξ).

Using these we obtain∫
Ea∩2−kI

fn,∗M (ξ)dξ = 2−k
∫
ρk(Ea∩2−kI)

fn,∗M ((ρk)−1(ξ))dξ

≤ 1

a

∫
R

2n−kfM (2n−kξ)(1−M(ξ/2))dξ

=
1

a

∫
R
fM (u)

(
1−M

( u

2n+1−k

))
du.

On the right side we have a sequence of functions dominated by fM ∈ L1(R),
and such that the converge pointwise to zero almost everywhere. By the Lebesgue
dominated convergence theorem, the right side converges to 0 as n→∞. Thus the
left side of the inequality must also converge to 0 almost everywhere. �

Example 4.53. In this example, we would like to emphasize some aspects raised
in Remark 4.50(iii) with respect to the “nature” of Proposition 4.51. Consider the
family of functions M : R → [0,∞) which are continuous, 1-periodic, M > 0
almost everywhere, M(ξ) +M(ξ+ 1

2 ) ≡ 1, M even, and such that (4.28) holds and
M |(0,1/4) has exactly one zero-point, denoted by z ∈ [1/8, 1/4). It is not difficult
to construct a large subfamily of this family. Take any function h : [0, 1/4]→ [0, 1]
such that h is continuous, h is Hölder continuous at 0 with h(0) = 1, h(1/4) = 1/2,
h(z) = 0, and h(x) > 0 for every x ∈ [0, 1/4]\{z}. Extend h to [−1/4, 0] so that the
function remains even, use the Smith–Barnwell condition to extend it to [−1/2, 1/2]
(observe that by Smith–Barnwell, we must have M(−1/2) = M(1/2) = 0), and
finally extend it to a 1-periodic function. Hölder continuity at 0 will ensure (4.28)
(consult Remark 4.26). Consider the condition ρ1(Ea∩2−1I)∩Ea = ∅ for M in our
family (by Proposition 4.51, such M are developed from orthonormal MRA wavelet
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low-pass filters). Since a can be arbitrarily small, the M are continuous, and (4.28)
holds, Ea ∩ 2−1I consists exactly of small open intervals around the points −2z
and 2z, while Ea ∩ 2−kI = ∅ for k ≥ 2 and a sufficiently small. Hence for our class
of M , the condition ρ1(Ea ∩ 2−1I) ∩ Ea = ∅ is equivalent to 2(2z) − 1 6= −2z and
2(−2z) + 1 6= 2z. Obviously, then, the condition that ρ1(Ea ∩ 2−1I) ∩ Ea 6= ∅ for
every 0 < a < 1 is equivalent to

2(2z)− 1 = −2z,

where the last equation has exactly one solution, z = 1/6.
Therefore, if z 6= 1/6, then M is generated from a low-pass filter. If z = 1/6

and M is C∞ at 0, then M is not generated from a low-pass filter; consult results in
[PŠW99] to justify this statement (our results below provide justifications, as well).
Observe that in all these examples, the condition “fM > 0 almost everywhere” is
satisfied. What fails to hold in the case z = 1/6 is the condition “

∫
R fM (ξ)dξ =

1”. It is perhaps difficult to grasp intuitively that for such a large class of M
the condition about the integral of fM would depend solely on a simple algebraic
condition such as the one given above.

Let us conclude this example with a remark that even if we allow z ∈ (0, 1/4),
then the same conclusion holds; we need some additional results (to follow) in order
to easily prove this. ♦

Example 4.54. Consider the Haar wavelet filter mH given in (4.44). For every
` ∈ N ∪ {0}, we define

(4.55) mH
` := |mH((2`+ 1)πξ)|2,

i.e. we consider the Haar filter and the “elongated” Haar filters. It is not difficult
to check that

MH
` (ξ) = cos2((2`+ 1)πξ).

Hence the functions MH
` are C∞ functions with MH

` (0) = 1, they all satisfy the
Smith–Barnwell condition as well as the condition “M > 0 almost everywhere”.
For all of them, fMH

`
is also a C∞ function and “fMH

`
> 0 almost everywhere”

holds.
Since ∫

R
fMH

0
(ξ)dξ = 1,

we obtain that, for every ` ∈ N ∪ {0},

(4.56)

∫
R
fMH

`
(ξ)dξ =

∫
R
fMH

0
((2`+ 1)ξ)dξ =

1

2`+ 1
.

Therefore, only Mh
0 is generated from a low-pass filter, while the MH

` , ` ∈ N, are
not (they are generated from the so-called “generalized” low-pass filters which play
a role in the theory of Parseval frame wavelets). They fail to be low-pass filters
precisely because of the zero points in [0, 1/4] (all these examples have M which
is an even function). Observe, though, that only ` = 1 has a single zero point in
[0, 1/4], and it is, of course, z = 1/6 (compare with the previous example). For
` ≥ 2 we have multiple zeros in [0, 1/4]; they are all of the form

k

2(2`+ 1)
with k even.
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Let us recall that, in these examples, our filters are trigonometric polynomials,
so their analysis falls under the umbrella of an early version of the celebrated Cohen
condition — consult [Coh90], but also [Coh92], [Mey90], [Dau92], and [Gun00];
particularly interesting for us is the discussion in [Gun00]. There, the zeros of the
form

k

2N − 1
+

1

2
(mod 1) where 1 ≤ k ≤ 2N − 2

are excluded (it may not be immediately visible that 1/2(2` + 1) is of this form,
but this boils down to the question of whether 2` + 1 divides any number of the
form 2N − 1; indeed it does, take N = ϕ(2`+ 1), where ϕ is the Euler function —
recall that Fermat’s Little Theorem is the fact that ϕ(p) = p− 1 when p is prime).

This brings us naturally to the Cohen condition, and we shall improve somewhat
on the discussions given in [PŠW99] and [Gun00]. ♦

The Cohen condition, presented in the form suitable for M , is (see, for example,
p. 367 in [HW96]):

(c) There exists a set K ⊆ R which is a finite union of closed, bounded(4.57)

intervals such that 0 ∈ int(K),
∑
k∈Z

χK(ξ + k) = 1 for almost every

ξ ∈ R, and M(2−jξ) > 0 for all j ∈ N and all ξ ∈ K.

The condition has been mostly applied in a situation where M is a C1-function
(or even a C∞-function) with M(0) = 1. It is worth noticing that M(2−jξ) > 0 is
required for all ξ ∈ K (not just almost every ξ ∈ K). As noted before, we refer to
the condition

∑
χK(ξ + k) = 1 as K being “1-congruent to K0 = [−1/2, 1/2)”.

Consider a class of continuous functions M with M(0) = 1. Hence, there is a
δ > 0 such that M(ξ) ≥ 1/2 for every ξ ∈ [−δ, δ]. Since K in (4.57) is compact, it
is easy to see that for continuous M with M(0) = 1, (c)⇔ (c+), where

(c+) There exists a set K ⊆ R which is a finite union of closed, bounded

intervals such that 0 ∈ int(K), K is 1-translation congruent to K0,(4.58)

and there exists a constant a with 0 < a < 1 such that, for all j ∈ N
and for almost every ξ ∈ K, M(2jξ) ≥ a.

There are two sides to the Cohen condition: one is whether it is sufficient for
M to be associated with the low-pass filter of an MRA orthonormal wavelet and
another whether it is necessary. We shall comment on the sufficiency issue first.

It is well-known (see, for example, Section 7.4 in [HW96]) that if M ∈ MFO
SB

is also a C1-function, then fM is continuous on R and the condition (c) (or, equiva-
lently, (c+)) is sufficient for M to be associated with the low-pass filter of an MRA
orthonormal wavelet. A natural question is whether the theorem still holds if the
“C1 assumption” is replaced by a weaker property such as the “C0 condition”, i.e.
the assumption that M is continuous on R. Our Example 4.22 shows that the
answer is negative. Interestingly enough, it shows even more since the fM in that
example fails to even be dyadically continuous at 0. It is shown in [PŠW99] (see
also Proposition 4.24) that this situation improves if we assume that M is Hölder
continuous at zero. This, however, is a bit too strong an assumption. As explained
in [PŠW99] and [Gun00], all sufficiency theorems really lead to the following
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condition:

There exists a set K ⊆ R which is 1-translation congruent to K0 and has

0 ∈ int(K), and a constant 0 < a < 1 such that, for almost every ξ ∈ K,(4.59)

fM (ξ) ≥ a.

Indeed, it is not difficult to see that (4.59) is a sufficient condition. First of all, since
0 ∈ int(K), we obtain that “fM > 0 almost everywhere” holds. Using the “peeling-
off” argument (consult (4.11)–(4.14)) we obtain that fM is integrable, while (4.59)
implies that, for every n ∈ N,

fK,nM ≤ 1

a
fM almost everywhere on R.

Applying the Lebesgue dominated convergence theorem gives
∫
R fM (ξ)dξ = 1.

Remark 4.60. Using an additional assumption, that fM is a continuous func-
tion, it is natural to consider a stronger version of (4.59), i.e.

There exists a set K ⊆ R which is 1-translation congruent to [−1/2, 1/2](4.61)

and a constant 0 < a < 1 such that, for every ξ ∈ K, fM (ξ) ≥ a.

This property is analyzed in [Gun00] as the ultimate version of the Cohen condition
under the assumption that fM is continuous. Observe that, in particular, the
continuity of fM at zero enables us to select an interval around zero where fM >
is bounded away from zero. Hence one can consider a version of (4.61) where 0 ∈
int(K) and K is a finite union of intervals (due to the compactness of [−1/2, 1/2]).
We shall analyze a “relaxed” (measure-theoretic) version of such a condition. �

We shall say that M satisfies the “continuous fM condition” or, more briefly,
the “(C-fM ) condition” if the following holds:

There exists a set K ⊆ R which is a finite union of closed, bounded

intervals such that 0 ∈ intK, K is 1-translation congruent to K0, and(4.62)

there exists a constant 0 < a < 1 such that, for almost every ξ ∈ K,
fM (ξ) ≥ a.

Proposition 4.63. Suppose that M ∈MFO
SB is continuous and that fM satis-

fies (4.28). Then the following are equivalent.

(a) Condition (c);
(b) Condition (c+);
(c) Condition (C-fM ).

Furthermore, if any of the equivalent conditions hold, then M is associated with a
low-pass filter for an MRA orthonormal wavelet.

Proof. As we have seen, (a)⇔ (b) under the condition that M is continuous.
Since, for every j ∈ N, we have M(2−jξ) ≥ fM (ξ), it follows that (c) always implies
(b). It remains to show that (b)⇒ (c). This is the only portion of the proof which
requires (4.28). Consider first the set K1 generated by (c+) and a corresponding
constant a1. By (4.28) there exists a closed interval L with 0 ∈ int(L) such that,
for almost every ξ ∈ L, fM (ξ) ≥ a1. Observe that each interval in K1 may have
a part which is 1-congruent to a part of L, and both parts must be finite unions
of intervals. Hence, by keeping L and removing from K1 those parts which are
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1-congruent to L, it is fairly obvious that we can construct a set K ⊆ R such that
L ⊆ K, K \ L ⊆ K1, K is a finite union of closed, bounded intervals, and K is
1-translation equivalent to K0, with all these statements being valid in the almost
everywhere sense (since we may need to “add” or “subtract” endpoints to close
the intervals). Since 0 ∈ intL and K is bounded, there exists ` ∈ N such that

2`L ⊆ K. Take now a constant a := a`+1
1 < a1. For almost every ξ ∈ L, we have

fM (ξ) ≥ a1 > a. For almost every ξ ∈ K \ L ⊆ K1, we have (since 2−`ξ ∈ L)

fM (ξ) =

∏̀
j=1

M(2−jξ)

 · fM (2−`ξ) ≥ a`1 · a1 = a.

This completes the proof of (b)⇒ (c). Since (c) implies (4.59), the proof of the last
statement is completed, too. �

Remark 4.64. (i) If we only have the assumption that M is continuous, then
(b) does not imply (c). This follows from Example 4.22.

(ii) If we have the assumption that M is continuous and fM is dyadically contin-
uous at zero (which is weaker than (4.28)), then (b) still does not imply (c).
This follows from Example 4.25.

�

Using Remark 4.26 we obtain directly the following result.

Corollary 4.65. (a) If M ∈ MFO
SB is continuous and Hölder continuous at

zero and satisfies (c), then M is associated with a low-pass filter for an MRA
orthonormal wavelet.

(b) If M ∈MFO
SB is continuous, M satisfies (c), and fM is continuous at zero, then

M is associated with a low-pass filter for an MRA orthonormal wavelet.
(c) If M ∈ MFO

SB is Hölder continuous at zero and satisfies (c+), then M is asso-
ciated with a low-pass filter for an MRA orthonormal wavelet.

(d) If M ∈MFO
SB satisfies (c+) and fM is continuous at zero, then M is associated

with a low-pass filter for an MRA orthonormal wavelet.

Remark 4.66. Regarding the necessity of the Cohen condition, it fails under
fairly general conditions. The discussion in [Gun00] covers this issue together with
an example provided in [DGH00]. This is an example of a low-pass filter such that
fM is continuous on R but for which (4.61) fails to hold. The example is constructed
in such a way that the periodization of fM has a few exceptional points where it
is equal to zero. Using compactness of [−1/2, 1/2], it is not difficult to check that
the following necessity result holds. �

Proposition 4.67. Suppose that M ∈ MFO
SB is continuous and such that fM

is continuous on R. If, for every ξ ∈ R one has∑
k∈Z

fM (ξ + k) > 0,

then M satisfies (c) (and (c+) and (C-fM ))

5. Multiplicative Structure in the Class of FO Filters

Consider the class MFO of measurable, 1-periodic functions M : R → [0,∞)
such that M > 0 almost everywhere and SolM 6= {0}. If M1,M2 ∈ MFO and
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Φ1 ∈ SolM1
, Φ2 ∈ SolM2

are non-trivial solutions, then the pair (M1 ·M2,Φ1 · Φ2)
will always satisfy equation (2.10). However, it may not be the case that M1 ·M2

belongs to MFO. There are two possible obstructions to M1 · M2 belonging to

MFO: one is that Φ1 · Φ2 will be trivial whenever |A(2)
M1
∩ A(2)

M2
| = 0, the other is

that Φ1 ·Φ2 may not be integrable. In order to avoid the first of the two problems,
we focus on the following class. For a measurable set A ⊂ I with |A| > 0, we define

(5.1) MFO
A := {M ∈MFO : A

(2)
M = A almost everywhere}.

Observe that we identify MFO
A and MFO

B whenever A = B almost everywhere.
Recalling (2.10) and the notation of (2.35), we are confident that our readers can
easily prove the following result.

Proposition 5.2. Let A ⊆ I be measurable with |A| > 0, and let n ∈ N \ {1}
and t = (t1, ..., tn) ∈ [0, 1]n such that t1 + ...+ tn = 1. If M1, ...,Mn ∈ MFO

A , then

Mt = M t1
1 ·M

t2
2 · · ·M tn

n belongs to MFO
A and Φ0,Mt

= Φt10,M1
· · · Φtn0,Mn

.

Corollary 5.3. Let A ⊆ I be measurable with |A| > 0 and let n ∈ N \ {1}. If
M1, ...,Mn ∈MFO

A , then the geometric mean of the Mi is also, i.e. n
√
M1 · · ·Mn ∈

MFO
A .

Remark 5.4. Consider a measurable set A ⊆ I with |A| > 0, n = 2, and
t1 = λ, t2 = 1 − λ, where λ ∈ [0, 1]. It follows from Proposition 5.2 that Mλ =

Mλ
1 M

1−λ
2 ∈ MFO

A whenever M1,M2 ∈ MFO
A . Furthermore, we also can follow

“the path” given by λ 7→ ΦM1,M2(λ) := Φ0,Mλ
∈ L1(R). Observe that, for every λ,

our function ΦM1,M2
(λ) is dominated by Φ0,M1

+ Φ0,M2
∈ L1(R). If λn → λ, then

ΦM1,M2
(λn)→ ΦM1,M2

(λ) pointwise almost everywhere — observe that having the
same set A is crucial for this convergence, in particular when λ = 0 and λ = 1. By
the Lebesgue Dominated Convergence Theorem, we obtain

(5.5) λ 7→ ΦM1,M2
(λ) is continuous in the L1-norm.

HenceMFO
A is logarithmically convex and connected (in the sense of (5.5)). Observe

that (5.5) is a “natural path” and compare this with the connectivity theorem in
[Con98], where it was not possible to achieve such a path. Notice that here (within
MFO

A ) we do not require the Smith–Barnwell condition, unlike in [Con98].
�

Given M ∈MFO
A , it is fairly obvious that the set

(5.6) {α ∈ (0,∞) : Φα0,M ∈ L1(R)}
is an interval containing 1. Furthermore, α belongs to the set in (5.6) if and only if

(5.7) Mα ∈MFO
A .

The consequence is that, if Φ0,M is bounded, then

(5.8) Mα ∈MFO
A for every α ≥ 1.

Let us also observe that the entire family MFO is closed under the operation
ξ 7→M(kξ) for k ∈ N. More precisely, the following result is straightforward.

Lemma 5.9. If M ∈MFO and k ∈ N, then ξ 7→M(kξ) is a function belonging
to MFO, its maximal solution is the function ξ 7→ Φ0,M (kξ), and∫

R
Φ0,M (kξ)dξ =

1

k

∫
R

Φ0,M (ξ)dξ.
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For the following class, recall the definition of fM (see (4.10)):
(5.10)
MFO
∗ := {M ∈MFO

I : M ≤ 1, fM > 0 almost everywhere, and fM ∈ L1(R)}.

Observe that we do not require the Smith–Barnwell condition. Nevertheless, for
every M ∈MFO

∗ , the function fM is a maximal solution to the (Φ,M)-Problem.

Remark 5.11. It is fairly obvious that onMFO
∗ we can perform all the various

operations described in this section.

(i) MFO
∗ is logarithmically convex, i.e. ifM1, ...,Mn ∈MFO

∗ and t = (t1, ..., tn) ∈
[0, 1]n with t1 + ...+ tn = 1, then Mt ∈MFO

∗ and fMt
=
∏n
`=1 f

ti
Mi

.

(ii) If M1,M2 ∈MFO
∗ , then λ 7→ fλM1

f1−λ
M2

is an L1-norm continuous path.

(iii) If M ∈MFO
∗ , then Mα ∈MFO

∗ for every α ≥ 1.
(iv) If M ∈ MFO

∗ , then, for every k ∈ N, ξ 7→ M(kξ) belongs to MFO
∗ and its

fM -function is ξ 7→ fM (kξ). Observe also that if M ∈MFO
∗ ∩MFO

SB , then

(5.12) ξ 7→M(kξ) belongs to MFO
∗ ∩MFO

SB ⇔ k is odd.

(v) We can apply the transformation analogous to the semiorthogonalization from
[ŠSW08] to “project” filters fromMFO

∗ intoMFO
SB . Observe first that when-

ever a pair (M,Φ) is a solution of the (Φ,M)-Problem, then the periodization
of Φ, i.e. pΦ(ξ) :=

∑
k∈Z Φ(ξ + k) satisfies the equation

(5.13) pΦ(2ξ) = M(ξ)pΦ(ξ) +M(ξ + 1/2)pΦ(ξ + 1/2) almost everywhere.

Observe that both sides of (5.13) are 1/2-periodic, so it is enough “to check”
(5.13) on an interval of size 1/2. Furthermore, since fM > 0 almost everywhere
(for M ∈ MFO

∗ ), it follows that pfM > 0 almost everywhere; therefore, the
following definition makes sense. Given M ∈MFO

∗ , we define MORT on R by

(5.14) MORT (ξ) :=
pfM (ξ)

pfM (2ξ)
M(ξ) for ξ ∈ R.

It is fairly straightforward to check that MORT is measurable, 1-periodic,
MORT > 0 almost everywhere, and that MORT satisfies the Smith–Barnwell
condition. Observe also that

(5.15) fMORT
(ξ) =

1

pfM (ξ)
fM (ξ) almost everywhere.

In particular, MORT ∈ MFO
∗ ∩ MFO

SB . However, MORT has even stronger
properties (thus its name “ORT” for orthonormal); for almost every ξ ∈ R,

(5.16) pfMORT (ξ) ≡ 1.

As is well known, (5.16) is equivalent to MORT being associated with a low-
pass filter for an orthonormal MRA wavelet — this is not a property of every
element of MFO

∗ ∩MFO
SB .

�

Example 5.17. Consider the Haar wavelet filter mH(ξ) = 1
2 (1+e2πiξ) (consult

also Remark 4.42(iii)). Let M = |mH |2, i.e. M(ξ) = cos2(πξ). It follows that

fM (ξ) =
(

sin(πξ)
πξ

)2

. In particular, M ∈ MFO
∗ which implies that Mα ∈ MFO

∗ for
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every α ≥ 1. Observe that fMα(ξ) =
(

sin(πξ)
πξ

)2α

. It follows that

pfMα (ξ)

pfMα (2ξ)
=

1

22α(cos2(πξ))α
·
∑
k∈Z[π(ξ + k)]−2α∑
k∈Z[π(2ξ + k)]−2α

which gives us (with proper adjustment for ξ ∈ Z)

(5.18) Mα
ORT (ξ) =

∑
k∈Z[π(ξ + k)]−2α∑

k∈Z[π(ξ + k)]−2α +
∑
k∈Z[π(ξ + 1

2 + k)]−2α
;

observe that Mα
ORT is associated with a low-pass filter for an MRA orthonormal

wavelet. Recall also that a function

(a, z) 7→
∞∑
n=0

1

(z + n)a

is known as a Hurwitz zeta function.
Scaling functions associated withMα andMα

ORT , with properly selected phases,
will actually generate equal principal shift-invariant spaces. Let us also mention

that, for α = N + 1, N ∈ N, we have Mα(ξ) =
(
cos2(πξ)

)N+1
. Recall that the

Daubechies filter which produces compactly supported wavelets of the order CN (R)
will give the absolute value squared of the form(

cos2(πξ)
)N+1

PN (sin2(πξ)),

where PN is the polynomial of order N which satisfies what is essentially the Smith–
Barnwell condition,

(cos2(πξ))N+1PN (sin2(πξ)) + (sin2(πξ))N+1PN (cos2(πξ)) = 1;

for details, see, for example, [Dau92] and [HW96]. The well-known formula for
PN is

PN (x) =

N∑
j=0

(
N + j

j

)
xj .

Finally, observe that the “ray” α 7→Mα can often be extended to some values
α < 1, depending on the integrability of fM . In this example, any α > 1/2 will
give us Mα ∈MFO

∗ . ♦

If fM functions remain within a closed ball in L1(R), then we can treat infinite
products as well.

Proposition 5.19. Suppose that (tn : n ∈ N) ⊆ [0, 1] with
∑∞
n=1 tn = 1 and

(Mn : n ∈ N) ⊆MFO
∗ with

sup
n∈N

(∫
R
fMn

(ξ)dξ

)
=: C <∞.

If, for almost every ξ ∈ R,
∞∏
n=1

f tnMn
(ξ) > 0

(observe that this implies
∏∞
n=1M

tn
n (ξ) > 0), then

∏∞
n=1M

tn
n ∈ MFO

∗ (and the

corresponding fM function is
∏∞
n=1 f

tn
Mn

).



5. MULTIPLICATIVE STRUCTURE IN THE CLASS OF FO FILTERS 95

Proof. Let us denote (tn : n ∈ N) by t and define Mt :=
∏∞
n=1M

tn
n . It

follows from our assumptions that Mt is measurable, 1-periodic, non-negative, and
0 < Mt ≤ 1 almost everywhere. We define ft :=

∏∞
n=1 f

tn
Mn

. It follows that
ft is measurable, non-negative, and 0 < ft ≤ 1 almost everywhere. Using limit
properties, it follows that (Mt, ft) satisfies (2.10) and that fMt

= ft. In order to
complete the proof, it remains to show that ft ∈ L1(R). Recall that for numbers
an ≥ 0 we have

(5.20)

∞∏
n=1

atnn ≤
∞∑
n=1

tnan.

Using (5.20), we obtain∫
R
ft(ξ)dξ ≤

∞∏
n=1

(∫
R
fMn

(ξ)dξ

)tn
≤ C

∞∑
n=1

tn = C <∞.

�

If Mn(ξ) = M(2nξ) in Proposition 5.19, then∫
R
fMn

(ξ)dξ =
1

2N

∫
R
fM (ξ)dξ ≤

∫
R
fM (ξ)dξ <∞,

for every n ∈ N. Hence we obtain the following result.

Corollary 5.21. Suppose that (tn : n ∈ N) ⊆ [0, 1] with
∑∞
n=1 tn = 1 and

M ∈MFO
∗ . If, for almost every ξ ∈ R,

∞∏
n=1

f tnM (2nξ) > 0,

then ξ 7→
∏∞
n=1M

tn(2nξ) belongs to MFO
∗ (and the corresponding fM function is

ξ 7→
∏∞
n=1 f

tn
M (2nξ)).

Example 5.22. Take M ∈ MFO
∗ ∩ MFO

SB and tn = 1/2n. Assume that∏∞
n=1 f

1/2n

M (2nξ) > 0 almost everywhere. Define M∗(ξ) :=
∏∞
n=1M

1/2n(2nξ) and
f∗ = fM∗ . Since

∑∞
N=`+1

1
2N

= 1
2`

, we obtain, for almost every ξ ∈ R,

f∗(ξ) =

∞∏
N=1

∞∏
k=1

M1/2N (2N−kξ)

=

∞∏
N=1

∞∏
`=1−N

M1/2N (2−`ξ)

=

[ ∞∏
N=1

∞∏
`=1

M1/2N (2−`ξ)

]
·

[ ∞∏
N=1

N−1∏
`=0

M1/2N (2`ξ)

]

=

[ ∞∏
`=1

M(2−`ξ)

]
·

[
M(ξ)

∞∏
`=1

∞∏
N=`+1

M1/2N (2`ξ)

]

= fM (ξ) ·M(ξ) ·
∞∏
`=1

[M(2`ξ)]
∑∞
N=`+1 1/2N

= fM (ξ) ·M(ξ) ·M∗(ξ).
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Hence, for almost every ξ ∈ R,

f∗(ξ) = M∗(ξ)fM (2ξ)

= M∗(ξ/2)f∗(ξ/2)

= [M∗(ξ/2)]2fM (ξ).

This leads to the formula

(5.23) M∗(ξ) =
√
M∗(2ξ)M(2ξ) almost everywhere.

Hence M∗ is at the midpoint of the (logarithmically convex) path between ξ 7→
M(2ξ) and ξ 7→M∗(2ξ). In particular, it is not an extreme point of the convex set
ln
(
MFO
∗
)
.

Consider the case of M(ξ) = cos2(πξ) (i.e. the Haar wavelet filter). In order to

show that this M satisfies the condition
∏∞
n=1 f

1/2n

M (2nξ) > 0 almost everywhere,
we will show that, for every p ∈ Z,

Ip :=

∫ p+1

p

ln
1

f∗(ξ)
dξ <∞.

Observe that

Ip =

∞∑
n=1

∫ p+1

p

1

2n
ln((2nπξ)2)dξ +

∞∑
n=1

∫ p+1

p

1

2n
ln

1

sin2(2nπξ)
dξ.

For the first term, observe that ξ2 = |ξ|2 ≤ (|p| + 1)2, which implies that the first
term is smaller than

Cp

∞∑
n=1

n

2n
<∞,

where Cp is a constant depending on p. For the second term, use the 1-periodicity

of sin2(πξ) and the fact that it is equal to

∞∑
n=1

1

2n
1

2n

∫ 2n(p+1)

2np

ln
1

sin2(πξ)
dξ =

∞∑
n=1

1

2n

∫ 1/2

−1/2

ln
1

sin2(πξ)
dξ

=

∫ 1/2

−1/2

ln
1

sin2(πξ)
dξ

<∞.

♦

Remark 5.24. Examples given in Lemma 5.9 with k even and as in (5.23) pro-
vide us with functions M which are 1/2-periodic. Observe first that such functions
can satisfy the Smith–Barnwell equation only if M ≡ 1/2 almost everywhere.

(i) Observe that if M ∈ MFO
∗ is 1/2-periodic, then pfM is not 1/2-periodic (in

particular, M is never associated with a low-pass filter for an MRA orthonor-
mal wavelet). Indeed, if both M and pfM are 1/2-periodic, then (5.13) leads
to MORT ≡ 1/2 almost everywhere, i.e. fMORT

≡ 0 almost everywhere, which
contradicts (5.16).

(ii) If M ∈MFO
∗ is 1/2-periodic, then, with p(ξ) := pfM (ξ) we have

M(ξ) =
p(2ξ)

p(ξ) + p(ξ + 1
2 )
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and

MORT (ξ) =
p(ξ)

p(ξ) + p(ξ + 1
2 )
.

For example, if M(ξ) = cos2(2πξ), then

MORT (ξ) =

∑
k∈Z(ξ + k)−2∑

k∈Z(ξ + k)−2 +
∑
k∈Z(ξ + 1

2 + k)−2
.

�

6. Structure of D(〈ϕ〉): FO Case

In this section we consider a pair of functions (ϕ,m) such that they satisfy
(2.4), ϕ is non-trivial, and m(ξ) 6= 0 for almost every ξ ∈ R. By Proposition 2.3
and Remark 2.33ii we conclude that 〈ϕ〉 is FO and 〈ϕ〉 ⊆ D(〈ϕ〉). As before, we

denote |ϕ̂|2 by Φ and |m|2 by M . Since Φ is non-trivial, we have |A(2)
Φ | > 0 and

Lemma 2.31 implies that pϕ(ξ) > 0 for almost every ξ ∈ R, i.e.

(6.1) 〈ϕ〉 is a maximal principal shift-invariant space.

Recall Corollary 2.16 which shows that in this case there is exactly one m such
that (ϕ,m) satisfies (2.4). We can actually improve upon the argument via Lemma
2.31. Observe first that in Lemma 2.1 (see [BRS01]) we can replace 1-periodicity
with u-periodicity, for any u > 0, and, using essentially the same proof, we reach
the same conclusion. Therefore, we can extend Lemma 2.31 in the same way. It
follows that for u = n ∈ N \ {1} we conclude that pϕ, 1

nZ(ξ) > 0 for almost every

ξ ∈ R; see (1.3.11) for the notation. Using (1.3.13) it follows that

(6.2) 〈ϕ〉 is of Type 1.

In other words, for every n ∈ N \ {1}, we have

(6.3) 〈ϕ〉 ( 〈ϕ〉 1
nZ.

One may think that among D−1-invariant, maximal principal shift-invariant spaces,
Type 1 occurs only in the FO case. The following examples shows that this is not
so.

Example 6.4. Consider the 1-periodic function M given by the following
graph.

1
2

1

− 1
2

− 13
32 − 11

32

− 1
4

− 3
16

3
32

5
32

1
4

5
16

1
2
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Observe that M satisfies the Smith–Barnwell condition and is not an FO. It
is not difficult to check that, among others, the corresponding Φ will have the
following properties:

Φ|[3/16,5/16) ≡
1

2

Φ|[19/16,5/4) ≡
1

4
;

since [3/16, 1/4) + 1 = [19/16, 5/4) we establish the Type-1 property by the same
argument as in Example 1.43. Moreover,

Φ|[−3/8,3/16) ≡ 1

Φ|[−11/16,−1/2) ≡ 1

Φ|[−3/4,−11/16) ≡
1

2

Φ|[3/16,5/16) ≡
1

2

Φ|[1/2,5/8) ≡
1

2
.

In other words, Φ > 0 on ([−3/4, 1/4) \ [−1/2,−3/8)) ∪ [1/2, 5/8), which guaran-
tees that any corresponding principal shift-invariant space must necessarily be a
maximal one. ♦

Going back to our 〈ϕ〉 which is a D−1-invariant, maximal principal shift-
invariant space of Type-1, we recall that, by (1.21) and Corollary 1.49,

(6.5) 〈Dϕ〉 is a maximal principal shift-invariant space of Type-1,

and, by an induction argument, the same holds for 〈Djϕ〉 for any j ∈ N.

Remark 6.6. Observe that, in principle, (6.5) does not extend to the property

of D−1-invariance. By (1.20) we have D̂ϕ(2ξ) = m(ξ/2)D̂ϕ(ξ) and, in most case,
(for example, when M satisfies the Smith–Barnwell condition) ξ 7→ m(ξ/2) would
not be 1-periodic. �

Using Corollary 1.14 and (1.41), we obtain, for every j ∈ N ∪ {0}, that

(6.7) Dj(〈ϕ〉) = 〈Djϕ〉 1

2j
Z and dimDj(〈ϕ〉) ≡ 2j .

Hence the family

(6.8) Dj(〈ϕ〉) such that j ∈ N ∪ {0}

forms a strictly increasing (with respect to j) “cascade” of shift-invariant spaces.
It is natural to ask “how big” the space

(6.9) D∞(〈ϕ〉) :=
⋃

j∈N∪{0}

Dj(〈ϕ〉)

is. The answer to this question is essentially already given in [Rze00]; see also
[BR05] for more precise statements. The spectral function is a very useful tool
for answering this question. Consider a shift-invariant space given by L2(E)∨ (see
Example 1.1.5), where E = ssupp ϕ̂; observe that E is precisely the union of full
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orbits of ϕ̂ (or, equivalently, of Φ = |ϕ̂|2). It is then straightforward to check that,
for every j ∈ N ∪ {0},
(6.10) Dj(〈ϕ〉) ⊆ L2(E)∨;

with E = ssupp ϕ̂. Since L2(E)∨ is a shift-invariant space, we obtain

(6.11) D∞(〈ϕ〉) ⊆ L2(E)∨.

Recall (1.1.23) that the spectral function of 〈ϕ〉 is

σ〈ϕ〉(ξ) =
|ϕ̂(ξ)|2

pϕ(ξ)
;

since pϕ > 0 almost everywhere. It is well known (see [BR05]) that

(6.12) σDj(〈ϕ〉)(ξ) = σ〈ϕ〉

(
ξ

2j

)
=
|ϕ̂(ξ/2j)|2

pϕ(ξ/2j)
.

for almost every ξ ∈ R. Furthermore (see [BR05] as well), we have

(6.13) σL2(E)∨ = χE almost everywhere.

If orb(ξ) is a zero-orbit for ϕ̂|2, then ξ /∈ E and

(6.14) σDj(〈ϕ〉)(ξ) = σD∞(〈ϕ〉)(ξ) = σL2(E)∨(ξ) = 0.

If orb(ξ) is a full-orbit for |ϕ̂|2, then ξ ∈ E and we know from [PŠW99] that

(6.15) σD∞(〈ϕ〉)(ξ) ≥ lim
j→∞

σDj(〈ϕ〉)(ξ) = 1.

It follows that σL2(E)∨ = σD∞(〈ϕ〉) almost everywhere, which, together with (6.11)
implies the answer to our question, namely

(6.16) D∞(〈ϕ〉) = L2(ssupp ϕ̂)∨.

It is now very easy to see that the following statement holds.

Corollary 6.17. Suppose that ϕ ∈ L2(R) is such that 〈ϕ〉 is FO and 〈ϕ〉 ⊆
D(〈ϕ〉). Denote |ϕ̂|2 by Φ. Then the following are equivalent.

(a) L2(R) =
⋃

j∈N∪{0}

Dj(〈ϕ〉);

(b) Φ > 0 almost everywhere;

(c) A
(2)
Φ = I almost everywhere;

(d) For almost every ξ ∈ R, lim
j→∞

Φ(2−jξ)

pΦ(2−jξ)
= 1.

Using the results of our filter analysis, it is now easy to establish the following
result (recall our notations from (2.35) and (3.8)).

Corollary 6.18. Let m : R → C be measurable, 1-periodic with M := |m2|
an FO (recall that in particular this means that SolM 6= {0}). Let ϕ0 ∈ L2(R) be
such that (ϕ0,m) satisfies (2.4) and |ϕ̂0|2 = Φ0,M = Φ0. Then the following are
equivalent:

(a) L2(R) =
⋃

j∈N∪{0}

Dj(〈ϕ0〉);

(b) |A(2)
M | = 1;

(c) TM,− <∞ almost everywhere.
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(Recall Lemma 3.5 in connection with (c)).

We also have the following special case.

Corollary 6.19. Let m : R → C be a measurable, 1-periodic function such
that M := |m|2 is an FO which satisfies the Smith–Barnwell condition and is
dyadically continuous at zero. If ϕ0 ∈ L2(R) is such that (ϕ0,m) satisfies (2.4) and
|ϕ̂0|2 = Φ0,M , then

L2(R) =
⋃

j∈N∪{0}

Dj(〈ϕ0〉)

If ϕ ∈ L2(R) is such that (ϕ,m) satisfies (2.4) and |ϕ̂|2 = fM , then

L2(R) =
⋃

j∈N∪{0}

Dj(〈ϕ〉)⇔ fM > 0 almost everywhere.

Remark 6.20. Observe that considering various pairs (ϕ,m) is somewhat sub-
tle. There are at least three possible issues. The first issue is whether, for a given ϕ,
we can consider different corresponding filters. In this section we consider the FO
case which implies that m is uniquely determined by ϕ, so we do not have to worry
this issue here. The second issue is whether, for a given m, we can consider different
“scaling functions”. Indeed, we can, and we shall describe the consequences later.

The third issue is whether, for a given pair (ϕ,m), we can consider another
pair (ϕ1,m1) such that 〈ϕ〉 = 〈ϕ1〉. Obviously, in such a case, the “cascades” of
spaces in (6.8) will be the same. What changes is the “relative position” of 〈Dϕ〉
(or 〈Dϕ1〉) within D(〈ϕ〉). We turn our attention to this issue now. ♦

As before, we start with a pair (ϕ,m) that satisfies (2.4), with ϕ non-trivial,
and 〈ϕ〉 is an FO. Consider another generator of 〈ϕ〉, i.e. a function ϕ1 ∈ L2(R)
such that 〈ϕ1〉 = 〈ϕ〉. By Proposition 2.3 and Corollary 2.16 there is exactly one

m1 such that (ϕ1,m1) satisfies (2.4). By Remark 2.33ii A
(2)
Φ = A

(2)
Φ1

, Φ1 := |ϕ̂1|2.

Therefore, M1 := |m1|2 is an FO, as well. What is the relationship between m and
m1? Is it possible that m = m1?

Observe that, since 〈ϕ〉 = 〈ϕ1〉 and U〈ϕ〉 = R Corollary 1.1.21b implies that
there is exactly one 1-periodic, measurable function ν such that, for almost every
ξ ∈ R, ν(ξ) 6= 0 and ϕ̂1(ξ) = ν(ξ)ϕ̂(ξ). Hence, from (2.4) we obtain that, for almost
every ξ ∈ R,

(6.21) m1(ξ) =
ν(2ξ)

ν(ξ)
m(ξ).

Observe that a “filter multiplier” µ(ξ) := ν(2ξ)/ν(ξ) is 1-periodic as well. Hence,
it is not to difficult to describe the entire family of generators which “builds” the
same space 〈ϕ〉. It consists of all the functions of the form (ν(ξ)ϕ̂(ξ))∨, where
ν : R→ C \ {0} is 1-periodic and

(6.22) ν ∈ L2(T, pϕ).

Remark 6.23. Observe that the problem is more challenging if we begin from
a “filter multiplier” µ. Given 1-periodic, measurable µ, it is not difficult to find all
solutions of the equation ν(2ξ)/ν(ξ) = µ(ξ) (see [Con98] for details). However, if
we add a requirement that ν is also 1-periodic, then one needs to work harder. We
shall not dwell on this problem here, though, since (6.22) (and then (6.21)) provides
a direct method to find all ϕ1. �
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As we shall see, the case m1 = m is possible only in the trivial case. The
following lemma is well known and can be proved in various ways. We provide a
proof via Lemma 2.31 for the reader’s convenience.

Lemma 6.24. If ν : R→ C is a function which satisfies ν(2ξ) = ν(ξ) = ν(ξ+1)
for almost every ξ ∈ R, then ν is an almost everywhere-constant function.

Proof. It is enough to prove that, for every H ⊆ C,

{ξ : ν(ξ) ∈ H} = ∅ or R almost everywhere.

Observe also that the range of ν is (almost everywhere) equal to the range of ν|I .
Given H ⊆ C, define the set A := {ξ ∈ I : ν(ξ) ∈ H}. Hence, either |A| = 0 or
|A| > 0. Using the notation from Lemma 2.31, observe that {ξ ∈ R : ν(ξ) ∈ H} =
EA almost everywhere. Applying Lemma 2.31 now completes the proof. �

Using (6.21) and Lemma 6.24, it is obvious that

(6.25) m1 = m⇔ ϕ1 = const. · ϕ.
Hence, the same filter occurs only in a trivial way. Observe that SolM is, in prin-
ciple, an infinite set. It follows from (6.25) that two solutions that differ by more
than a constant multiple will generate different principal shift-invariant spaces, i.e.,
different “cascades” of spaces in (6.8). In other words, different generators of the
same principal shift-invariant space must be associated with different filters. As al-
ready mentioned in Remark 6.20, what changes when we take a different generator
ϕ1 of 〈ϕ〉 is the “relative position” of 〈Dϕ1〉 within D(〈ϕ1〉). In order to analyze
this, we start with a specific generator,

ϕ0 :=
1
√
pϕ
• ϕ;

(recall Remark 1.5.36 here) Bϕ0
is an orthonormal basis for 〈ϕ〉. Observe that ϕ0

is paired with a filter m0, which is different from the original filter of ϕ. Since
pϕ0 ≡ 1, we obtain that m0 satisfies the Smith–Barnwell condition. Therefore, we
also have a function fM0

, where M0 = |m0|2. There is a natural question here as to
whether fM0

is equal to |ϕ̂0|2 or not. The following short argument gives a positive
answer to this question. Since M0 ≤ 1 and |ϕ̂0|2 ≤ 1, we obtain that, for almost
every ξ ∈ R, the following limit exists: h(ξ) := limn→∞ |ϕ̂0(2−nξ)|2. It is obvious
that 0 ≤ h(ξ) ≤ 1 and that h(2ξ) = h(ξ) for almost every ξ ∈ R. Furthermore,
h(ξ) = 0 if and only if orb(ξ) is a zero-orbit (recall Remark 2.17). Observe also
that for almost every ξ ∈ R we have |ϕ̂0(ξ)|2 = h(ξ)fM0

(ξ). Using (4.14) we obtain

1 =

∫
I

pϕ0
(ξ)dξ =

∫
R
|ϕ̂0(ξ)|2dξ =

∫
R
fM0

(ξ)dξ.

The same derivation holds when the last two integrals are over the set of non-zero
orbits (instead of R). Hence, we obtain that

(6.26)

∫
R
fM0

(ξ)dξ = 1,

(6.27) fM0
(ξ) = 0 whenever orb(ξ) is a zero-orbit for ϕ0,

and

(6.28) |ϕ̂0|2 = fM0
.
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Using the scaling function characterization from [HW96] and our results in this
section and Section 4, it is easy to see that the following result holds.

Corollary 6.29. Suppose that ϕ ∈ L2(R) is such that 〈ϕ〉 is FO and 〈ϕ〉 ⊆
D(〈ϕ〉). Consider ϕ0 := 1√

pϕ
• ϕ, and denote the corresponding (unique) filter by

m0 and M0 := |m0|2. Then the following are equivalent:

(a) ϕ0 is a scaling function of an orthonormal wavelet MRA structure (Dj(〈ϕ〉) :
j ∈ Z);

(b) L2(R) = D∞(〈ϕ〉);
(c) fM0

> 0 almost everywhere;
(d) ϕ̂0(ξ) 6= 0 for almost every ξ ∈ R.
(e) M0 is associated with a low-pass filter for an MRA orthonormal wavelet (and

this low-pass filter is m0).

Remark 6.30. Given ϕ ∈ L2(R) such that 〈ϕ〉 is FO and 〈ϕ〉 ⊆ D(〈ϕ〉), the
family of spaces Dj(〈ϕ〉), for j ∈ Z, does not change with a different choice of
generator, say ϕ1, such that 〈ϕ1〉 = 〈ϕ〉. Observe that the spectral function of 〈ϕ〉
belongs to L1(R), and it is then well known (see [Rze00], [BR05], [BR03] for
more details) that

(6.31)
⋂
j∈Z

Dj(〈ϕ〉) = {0}.

Consider D−1(〈ϕ〉) ⊆ 〈ϕ〉. Since 〈ϕ〉 ⊆ D(〈ϕ〉), but 〈ϕ〉 6= D(〈ϕ〉), it follows
that D−1(〈ϕ〉) 6= 〈ϕ〉. We claim that D−1(〈ϕ〉) is not a shift-invariant space.
Suppose, to the contrary, that it is. Then 〈D−1ϕ〉 ⊆ D−1(〈ϕ〉) ⊆ 〈ϕ〉. If ξ is
such that orb(ξ) is a non-zero orbit for ϕ̂, then it is obvious that it is also a non-

zero (and full) orbit for D̂−1ϕ. The consequence of this is that pD−1ϕ > 0 almost
everywhere. Hence, 〈D−1ϕ〉 ⊆ 〈ϕ〉 and U〈ϕ〉 = R = U〈D−1ϕ〉. By (1.1.28), we

obtain 〈D−1ϕ〉 = 〈ϕ〉, i.e. D−1(〈ϕ〉) = 〈ϕ〉, a contradiction.
Therefore, given ϕ ∈ L2(R) such that 〈ϕ〉 is FO and 〈ϕ〉 ⊆ D(〈ϕ〉), we always

obtain a family (Dj(〈ϕ〉) : j ∈ Z) which satisfies (6.31), Dj(〈ϕ〉) ⊆ Dj+1(〈ϕ〉),
satisfies (6.16), and

(6.32) Dj(〈ϕ〉) is a shift-invariant space ⇔ j ≥ 0.

�

As mentioned in the previous remark, the “cascade” of spaces Dj(〈ϕ〉) for
j ∈ Z does not change with different choice of generators for 〈ϕ〉. What does
change, however, is the interior structure of these spaces. We consider the choice
of ϕ0 = 1√

pϕ
• ϕ first. By Corollary 1.27, we know that

(6.33) D(〈ϕ0〉) = 〈Dϕ0〉 ⊕ 〈DTϕ0〉,
and both 〈Dϕ0〉 and 〈DTϕ0〉 are maximal principal shift-invariant spaces. Since
we also have 〈ϕ〉 = 〈ϕ0〉 ⊆ D(〈ϕ0〉) = D(〈ϕ〉), a natural question to ask is what the
position of 〈ϕ0〉 is with respect to 〈Dϕ0〉 and 〈DTϕ0〉. Without loss of generality,
we treat the case of 〈Dϕ0〉. We obtain by a simple calculation that

[ϕ0, Dϕ0](ξ) =
1√
2

(m0(ξ/2)pϕ0(ξ/2) +m0(ξ/2 + 1/2)pϕ0(ξ/2 + 1/2))

=
1√
2

(m0(ξ/2) +m0(ξ/2 + 1/2)).(6.34)
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Proposition 6.35. Suppose that ϕ ∈ L2(R) \ {0} is such that 〈ϕ〉 is FO and
〈ϕ〉 ⊆ D(〈ϕ〉), and consider ϕ0 := 1√

pϕ
• ϕ. Then 〈ϕ0〉 is neither orthogonal to

〈Dϕ0〉 nor to 〈DTϕ0〉, and 〈ϕ0〉 does not coincide with either 〈Dϕ0〉 or 〈DTϕ0〉

Proof. Observe that the second statement follows from the first. Without loss
of generality, we prove the first statement in the case of 〈Dϕ0〉. Suppose, to the
contrary, that 〈ϕ0〉 ⊥ 〈Dϕ0〉. By (6.34), it follows that m0(ξ/2+1/2) = −m0(ξ/2),
i.e. M0(ξ/2) = M0(ξ/2 + 1/2), for almost every ξ ∈ R. Since M0 satisfies the
Smith–Barnwell condition, we obtain M0 ≡ 1/2. This is in contradiction with ϕ,
and therefore ϕ0, being non-trivial. �

Using Corollary 1.27 and Lemma 1.33, we obtain the following result.

Corollary 6.36. Suppose that ϕ ∈ L2(R) \ {0} is such that 〈ϕ〉 is FO and
〈ϕ〉 ⊆ D(〈ϕ〉). Consider ϕ0 := 1√

pϕ
• ϕ. If ϕ1 ∈ L2(R) is such that 〈ϕ〉 = 〈ϕ1〉,

then 〈Dϕ1〉 = 〈Dϕ0〉 and 〈DTϕ1〉 = 〈DTϕ0〉 if and only if pϕ1 is 1/2-periodic.

This corollary describes precisely the family of generators of 〈ϕ〉 which induce
the same “inner structure” into D(〈ϕ〉) as ϕ0 does. The following example shows
that there are many such generators. Observe that one should not carry the idea of
“inner structure” too far; for example, there is only one generator which produces
an orthonormal basis — namely, ϕ0.

Example 6.37. Consider ϕ and ϕ0 as in the previous corollary. Consider a
family of functions ν : R → C such that ν is measurable, 1-periodic, ν ∈ L2(T),
ν(ξ) 6= 0 almost everywhere, and |ν|2 is 1/2-periodic. Obviously, there are many
such functions, and it is not difficult to construct them. Consider the family of
functions ν • ϕ0, where ν belongs to the family we just described. It follows that
〈ν • ϕ0〉 = 〈ϕ0〉 = 〈ϕ〉, and pν•ϕ0 = |ν|2 · pϕ0 = |ν|2. It is not difficult to see that
in this way we have described the entire family of functions ϕ1 which satisfy the
conditions of Corollary 6.36. If we denote the filter corresponding to ϕ1 by m1 and
denote M1 := |m1|2, then we obtain M1(ξ) =

(
|ν(2ξ)|2/|ν(ξ)|2

)
M0(ξ). Hence

M0(ξ) +M1(ξ + 1/2) =
|ν(2ξ)|2

|ν(ξ)|2
.

By Lemma 6.24, it follows that m1 satisfies the Smith–Barnwell condition if and
only if |ν(ξ)| is a constant function. In particular, observe that, for this reason,
the class of our examples given here would not even be “detected” via the theory
developed in [PŠW99], [PŠWX01], and [PŠWX03]. ♦

Let us now get into more details about the structure of D(〈ϕ〉) with respect
to ϕ0. Formula (6.34), in connection with orthogonality, leads to the notion of
1/2-antiperiodicity. We shall say that a function µ : R → C is 1/2-antiperiodic
if, for almost every ξ ∈ R, µ(ξ + 1/2) = −µ(ξ). Two typical examples are the
functions ξ 7→ exp(±2πiξ). Observe that every 1/2-antiperiodic function must also
be 1-periodic. Furthermore, every 1-periodic function can be decomposed into its
1/2-periodic and 1/2-antiperiodic parts. More precisely, if m is 1-periodic, then

(6.38) m(ξ) = a(ξ) + b(ξ)e−2πiξ,
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where a and b are 1/2-periodic; in particular, they are given by

a(ξ) :=
1

2
(m(ξ) +m(ξ + 1/2))

b(ξ) :=
e2πiξ

2
(m(ξ)−m(ξ + 1/2)) .(6.39)

Observe that

(6.40) m is 1/2-periodic⇔ b ≡ 0

and

(6.41) m is 1/2-antiperiodic⇔ a ≡ 0.

It is also straightforward to check the following results, which are valid in general
(not just in the FO case).

Lemma 6.42. If f, g ∈ L2(R) are a, b are functions given by (6.38) and (6.39)
as the decomposition of [f, g](ξ), then [Df,Dg](ξ) = a(ξ/2) and [Df,DTg](ξ) =
b(ξ/2).

Lemma 6.43. If ϕ ∈ L2(R) and m : R→ C, measurable and 1-periodic, satisfy
(2.4), and a, b are functions given by (6.38) and (6.39) as the decomposition of
m(ξ), then

ϕ = α •Dϕ+ β •DTϕ,
where α(ξ) =

√
2a(ξ/2) and β(ξ) =

√
2b(ξ/2).

Going back to our FO case, consider ϕ ∈ L2(R) \ {0} such that 〈ϕ〉 is FO
and 〈ϕ〉 ⊆ D(〈ϕ〉). As before, take ϕ0 := 1√

pϕ
• ϕ and denote the corresponding

filter by m0. Denote by α0 and β0 the functions given in Lemma 6.43 generated
by m0. We have 〈ϕ0〉 ⊆ D(〈ϕ0〉) = 〈Dϕ0〉 ⊕ 〈DTϕ0〉, and it is natural to look
into the orthogonal complement of 〈ϕ0〉 within D(〈ϕ0〉). We focus on the function
ψ ∈ L2(R) given by

(6.44) ψ := −β0 •Dϕ0 + α0 •DTϕ0.

Observe first that, by its very definition, ψ ∈ D(〈ϕ0〉). Secondly, 〈ψ〉 ⊥ 〈ϕ0〉 since

(6.45) [ψ,ϕ0](ξ) = −β0(ξ) · α0(ξ) + α0(ξ) · β0(ξ) = 0.

Thirdly, and directly from (6.44), we have that, for almost every ξ ∈ R,

(6.46) ψ̂(ξ) = e−πiξm0(ξ/2 + 1/2)ϕ̂0(ξ/2).

In particular, for every ξ such that orb(ξ) is FO with respect to ϕ0 (or, equivalently,
ϕ), we have

(6.47) ψ̂|orb(ξ) 6= 0.

Furthermore,

(6.48) [ψ,ψ](ξ) = |β0|2 + |α0|2 = |m0(ξ/2)|2 + |m0(ξ/2 + 1/2)|2 = 1;

i.e., Bψ is an orthonormal basis for the maximal principal shift-invariant space 〈ψ〉.
In particular,

(6.49) D(〈ϕ0〉) = D(〈ϕ〉) = 〈ϕ0〉 ⊕ 〈ψ〉;
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both the spectral function argument and the dimension function argument lead to
this conclusion. It follows now, by induction, that, for every j ∈ N,

(6.50) Dj(〈ϕ〉) = Dj(〈ϕ0〉) = 〈ϕ0〉 ⊕ 〈ψ〉 ⊕D(〈ψ〉)⊕ ...⊕Dj−1(〈ψ〉).

In addition, for every j ∈ N ∪ {0}, Dj(Bψ) is an orthonormal basis for Dj(〈ψ〉).
Observe also that Dj(〈ψ〉) is a shift-invariant space for every j ∈ N ∪ {0}.

For j ∈ Z with j < 0, observe first that Dj is also a unitary operator, so Dj(Bψ)
remains an orthonormal basis for the subspace Dj(〈ψ〉). However, Dj(〈ψ〉) is not
a shift-invariant space for negative j. Nevertheless, from (6.49) we do get

(6.51) D−1(〈ψ〉) � 〈ϕ0〉,

and

(6.52) 〈ϕ0〉 = D−1(〈ϕ0〉)⊕D−1(〈ψ〉).

Using (6.31), this implies that

(6.53) 〈ϕ0〉 =
⊕
j<0

Dj(〈ψ〉).

Observe also that (2.4) and (6.46) imply that

(6.54) |ψ̂(ξ)|2 + |ϕ̂0(ξ)|2 = |ϕ̂0(ξ/2)|2,

for almost every ξ ∈ R. It then follows that (recall that limn→∞ |ϕ̂0(2nξ)|2 = 0; see
Remark 2.17ii)

(6.55) |ϕ̂0(ξ)|2 =
∑
j∈N
|ψ̂(2jξ)|2,

for almost every ξ ∈ R, and

(6.56)
∑
j∈Z
|ψ̂(2jξ)|2 =

{
1 if orb(ξ) is FO for ϕ
0 if orb(ξ) is not FO for ϕ

for almost every ξ ∈ R. Combining all these results provides us with the following
theorem.

Theorem 6.57. Suppose that ϕ ∈ L2(R) \ {0} is such that 〈ϕ〉 is FO, 〈ϕ〉 ⊆
D(〈ϕ〉). Consider ϕ0 := 1√

pϕ
• ϕ and ψ defined by (6.44). Then {ψjk : j, k ∈ Z} is

an orthonormal basis for

L2(ssupp ϕ̂)∨,

and

L2(ssupp ϕ̂)∨ =
⊕
j∈Z

Dj(〈ψ〉).

Furthermore, the following are equivalent:

(a) ψ is an MRA orthonormal wavelet;

(b) ssupp ψ̂ = R;

(c)
∑
j∈Z
|ψ̂(2jξ)|2 = 1 for almost every ξ ∈ R;

(d) ssupp ϕ̂ = R;

(e) lim
n→∞

|ϕ̂(2−nξ)|2

pϕ(2−nξ)
= 1 for almost every ξ ∈ R.
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Remark 6.58. We assume that our reader is familiar with the basic definitions
from the theory of orthonormal wavelets (as outlined, for example, in [HW96]).
Here we have shown that, if we have

(i) a D−1-invariant 〈ϕ〉 such that 〈ϕ〉 is FO; and
(ii) we select (which one can always do in this case) an “orthonormal basis gen-

erator” ϕ0 of 〈ϕ〉,
we obtain a theory completely analogous to the standard theory of MRA orthonor-
mal wavelets with the caveat that our systems do not necessarily span the entirety
of L2(R) but rather the “infinite-dimensional” shift-invariant space L2(ssupp ϕ̂)∨.

Furthermore, this theory captures, as a special case (completely characterized
by the previous theorem), a certain part of the standard MRA orthonormal wavelet
theory. More precisely, this “certain part” consists precisely of the MRA orthonor-
mal wavelets such that

ssupp ψ̂ = R;

this includes, for example, the Haar wavelet and the family of Daubechies wavelets.
Observe also that we have shown that, as soon as we have (i), we always

generate an MRA-type structure — namely the family Dj(〈ϕ〉) for j ∈ Z. Moreover,

if we additionally have that ssupp ψ̂ = R, this family is indeed an MRA structure,
and, in fact, it must be a family which comes from an orthonormal wavelet. �

Going back to the original generator, consider ϕ ∈ L2(R) \ {0} such that 〈ϕ〉
is FO and 〈ϕ〉 ⊆ D(〈ϕ〉). Observe that the formula ϕ = α • Dϕ + β • Dϕ, given
in Lemma 6.43, is still valid. Corollary 1.14(b) holds as well, i.e. dimDj(〈ϕ〉) ≡ 2j ,
for every j ∈ N ∪ {0}. What changes are the relative positions of 〈ϕ〉, 〈Dϕ〉, and
〈DTϕ〉 within D(〈ϕ〉). The relationship between 〈Dϕ〉 and 〈DTϕ〉 is described
in Corollary 1.25; they do not intersect, their “parts are orthogonal” at points ξ
where pϕ(ξ/2) = pϕ(ξ/2 + 1/2) and are “at an angle” at other points. We have
seen examples where only orthogonality occurs (where pϕ is 1/2-periodic) and it is
not difficult to construct examples where the two spaces are only “at an angle”.

It is interesting to add 〈ϕ〉 into this relationship. A typical relationship (with

ϕ0 = p
−1/2
ϕ • ϕ) is given in (6.33), (6.34), and Proposition 6.35. Observe that it

does not allow for an extreme case where 〈ϕ0〉 coincides with 〈Dϕ0〉. What about
general ϕ? To start, consider the following example which demonstrates a nice
pattern.

Example 6.59. In order to have 〈ϕ〉 = 〈Dϕ〉 with 〈ϕ〉 being FO, it is enough
to find a “multiplier” m which is never zero and such that Dϕ = m •ϕ. By taking
the square in this equation on the Fourier transform side, it is enough to find a
pair of functions f : R→ [0,∞) and ν : R→ [0,∞) such that both are measurable,
ν > 0 almost everywhere, ν 1-periodic, f ∈ L1(R) with

∑
k∈Z f(ξ + k) > 0 almost

everywhere, and such that ν(ξ)f(ξ) = f(ξ/2) almost everywhere. Observe that we
shall fulfill these requirements if we can find ν : (0,∞) → (0,∞) measurable and
1-periodic (i.e. it is enough to give ν on (0, 1]) and f : (0,∞) → (0,∞) such that
f ∈ L1(R) and for every ξ > 0 we have ν(ξ)f(ξ) = f(ξ/2).

Consider the numbers a, b ∈ R such that 0 < a < 2, a < b <∞ and 1/a+1/b <
1. Define ν on (0, 1] by

ν(ξ) :=

{
a if 0 < ξ ≤ 1/4
b if 1/4 < ξ ≤ 1
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and extend it 1-periodically to (0,∞). Define f to be identically 1 on (1/2, 1] and
extend it dyadically to (0,∞) via the equation ν(ξ)f(ξ) = f(ξ/2). It is not difficult
to see that extending it into “low frequencies” leads to

f ≡ b on (1/4, 1/2]

f ≡ b2 on (1/8, 1/4]

f ≡ anb2 on

(
1

2n+3
,

1

2n+2

]
for n ∈ N.

It follows that

∫ 1

0

f(ξ)dξ =
1

2
+
b

4
+ b2

∞∑
n=0

an

2n+3
=

1

2
+
b

4
+
b2

8

1

1− a
2

.

Since a < 2, this integral is finite.
The pattern for “high frequencies” is a bit more complex. Observe first that the

value of f changes between two consecutive even integers according to the pattern
of “3 subintervals + 2 subintervals”. For example, on (2, 4] we have

f ≡ 1

a2
on (2, 2 + 1/4]

f ≡ 1

ab
on (2 + 1/4, 2 + 1/2]

f ≡ 1

b2
on (2 + 1/2, 3]

f ≡ 1

ab
on (3, 3 + 1/4]

f ≡ 1

b2
on (3 + 1/4, 4]
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Let us check one more iteration, i.e. on (4, 8], where we have

f ≡ 1

a3
on (4, 4 + 1/4]

f ≡ 1

a2b
on (4 + 1/4, 4 + 1/2]

f ≡ 1

ab2
on (4 + 1/2, 5]

f ≡ 1

ab2
on (5, 5 + 1/4]

f ≡ 1

b3
on (5 + 1/4, 6]

f ≡ 1

a2b
on (6, 6 + 1/4]

f ≡ 1

ab2
on (6 + 1/4, 6 + 1/2]

f ≡ 1

b3
on (6 + 1/2, 7]

f ≡ 1

ab2
on (7, 7 + 1/4]

f ≡ 1

b3
on (7 + 1/4, 8]

One can now approach this pattern in various ways. Here is one we find some-
what elegant. Observe that for any “3+2” pattern, it is enough to determine “the
last power of a−1” in order to know exactly how the pattern looks for all five subin-
tervals. So each “3+2” pattern can be written as a pair of numbers, n,m, with
n,m ∈ N ∪ {0}. We will write them vertically:

n

m

For example, the “starting” pattern, i.e. for (2, 4], is

0

0

while the “next” pattern, i.e. for [4, 8) is

1

0

0

0.

Observe that each “3+2” block determines two new “3+2” blocks within the next
dyadic iteration and that it is obtained from the previous one according to the
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transformation

n+ 1

↗
n −→ n(6.60)

m −→ m

↘
m

This rule obviously holds from (2, 4] to (4, 8]; from (4, 8] to (8, 16] we have

2

1 1

0 0

0

1

0 0

0 0

0

One can check inductively that (6.60) holds for all “steps” from (2k, 2k+1] to
(2k+1, 2k+2].

Additionally, observe that pattern (6.60) means that, if we denote

∫
(2k,2k+2k−1]

f(ξ)dξ

by A and

∫
(2k+2k−1,2k+1]

f(ξ)dξ by B, then

∫
(2k+1,2k+2]

f(ξ)dξ =
A

a
+
B

b
+
A

b
+
B

b

<
A

a
+
B

a
+
A

b
+
B

b

= (A+B)

(
1

a
+

1

b

)
.

Hence ∫ ∞
1

f(ξ)dξ =

∞∑
n=0

∫ 2n+1

2n
f(ξ)dξ ≤ const.

∞∑
n=0

(
1

a
+

1

b

)n
<∞.

It is perhaps somewhat intriguing that such an example exists. We decided to
devote some time to describe it rather completely. ♦

Consider the following problem. Find all functions ϕ ∈ L2(R) \ {0} such that

(6.61) 〈ϕ〉 = 〈Dϕ〉.

Observe first the following (seemingly weaker) condition

(6.62) 〈Dϕ〉 ⊆ 〈ϕ〉, ϕ 6= 0.
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By Proposition 1.1.20, we have U〈Dϕ〉 ⊆ U〈ϕ〉 and |U〈ϕ〉| > 0. Using (1.21) we
obstain

ξ ∈ 2U〈ϕ〉 ⇒ ξ = 2u, pϕ(u) > 0⇒ pDϕ(2u) > 0⇒ 2u ∈ U〈Dϕ〉 ⇒ ξ ∈ U〈ϕ〉.
Lemma 2.1 and |U〈ϕ〉| > 0 leads to the following result.

Lemma 6.63. If f ∈ L2(R) \ {0} satisfies (6.62), then

U〈ϕ〉 = U〈Dϕ〉 = R.

Now it is easy to prove the following set of equivalent characterizations.

Theorem 6.64. If ϕ ∈ L2(R) \ {0}, then the following are equivalent:

(a) 〈ϕ〉 = 〈Dϕ〉;
(b) 〈Dϕ〉 ⊆ 〈ϕ〉;
(c) There exist 1-periodic, measurable functions µ0 and µ1 such that ϕ̂(ξ/2) =

µ0(ξ)ϕ̂(ξ) and ϕ̂(ξ) = µ1(ξ)ϕ̂(ξ/2);
(d) There exists a 1-periodic, measurable function µ such that, for almost every

ξ ∈ R, µ(ξ) 6= 0 and ϕ̂(ξ/2) = µ(ξ)ϕ̂(ξ);
(e) There exists a 1-periodic measurable function µ such that ϕ̂(ξ/2) = µ(ξ)ϕ̂(ξ).

Proof. It is obvious that (a) ⇒ (b) and (d) ⇒ (e). By taking µ0 = µ and
µ1 = 1/µ, it is obvious that (d)⇒ (c). By Proposition 1.1.20 we have (b)⇔ (e), and
by Corollary 1.1.21 we have (a)⇔ (c). Hence it is enough to prove that (b)⇒ (d).
If (b) holds, then Lemma 6.63 shows that pϕ > 0 almost everywhere and pDϕ > 0

almost everywhere. As we already mentioned, (b)⇒ (e), so Dϕ = (µ/
√

2) • ϕ. By
(1.1.8) and (1.1.9) we obtain

pDϕ = |µ|2 1

2
pϕ almost everywhere,

which implies that |µ|2 > 0 almost everywhere. �

Remark 6.65. It is perhaps useful to compare (6.61) to (2.4). Observe that by
taking m(ξ) := µ1(2ξ) in the previous theorem, we obtain that (6.61) is equivalent
to the existence of a measurable

(6.66)
1

2
-periodic function m

such that ϕ̂(2ξ) = m(ξ)ϕ̂(ξ). This is not surprising since it is indeed obvious that
(6.61) implies 〈ϕ〉 ⊆ D(〈ϕ〉).

This also shows that it is not difficult to dyadically adjust the phase. Hence,
analogous to the relationship between the (ϕ,m)-Problem and the the (Φ,M)-
Problem (see Remark 2.11), it is not difficult to show that (6.61) boils down to
the following problem. Find all pairs (Φ, ν) such that Φ : R → [0,∞) with Φ ∈
L1(R) \ {0}, ν : R→ (0,∞) measurable, 1-periodic, and, for almost every ξ ∈ R,

(6.67) Φ(ξ/2) = ν(ξ)Φ(ξ).

�

Observe also that our results imply that we are always within the FO case.

Corollary 6.68. If ϕ ∈ L2(R) \ {0} satisfies (6.61), then 〈ϕ〉 is a maximal,
FO, principal shift-invariant space and, furthermore, for almost every ξ ∈ R,

M(ξ) =
1

ν(2ξ)
.
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It is now not surprising that the construction of all solutions of (6.67) will follow
from the Tauberian-type construction described in (2.34) and (2.35). As it turns
out, the connection with FO principal shift-invariant spaces is deeper than that.
The following theorem shows that there is a natural one-to-one correspondence
between the two.

Theorem 6.69. We have the following.

(a) If a pair (ϕ,m) satisfies (2.4) and 〈ϕ〉 is a FO principal shift-invariant space,
then ϕ1 := m • ϕ satisfies (6.61).

(b) If ϕ1 ∈ L2(R) \ {0} satisfies (6.61) and µ is a function described in Theorem
6.64(d), then the pair (ϕ, µ), where ϕ := 1

µ •ϕ1, satisfies (2.4) and 〈ϕ〉 is a FO

principal shift-invariant space.

In both cases, 〈ϕ〉 = 〈ϕ1〉.

Proof. (a) Since 〈ϕ〉 is FO, we have m(ξ) 6= 0 for almost every ξ ∈ R. It
follows that ϕ1 ∈ L2(R) \ {0} (recall that the definition of an FO postulates
that ϕ is non-trivial). For almost every ξ ∈ R we obtain

ϕ̂1(ξ) = m(ξ)ϕ̂(ξ)

= m(ξ)m(ξ/2)ϕ̂(ξ/2)

= m(ξ)m(ξ/2)m(ξ/2)−1ϕ̂1(ξ/2)

= m(ξ)ϕ̂1(ξ/2).

The desired conclusion now follows from Theorem 6.64, and 〈ϕ1〉 = 〈ϕ〉 is
obvious.

(b) Observe that ϕ must be non-trivial. Now use the same calculation as in (a),
i.e. for almost every ξ ∈ R we obtain

ϕ̂(2ξ) =
1

µ(2ξ)
ϕ̂1(2ξ)

=
1

µ(2ξ)
µ(2ξ)ϕ̂1(ξ)

= ϕ̂1(ξ)

= µ(ξ)ϕ̂(ξ).

�

Remark 6.70. (i) Observe that, up to a constant, the ϕ1 in the previous
theorem is actually D−1ϕ. Indeed, D−1ϕ ∈ 〈ϕ〉 if and only if 〈ϕ〉 ⊆ D(〈ϕ〉).
Hence, we will have, in this case, that 〈D−1ϕ〉 = 〈ϕ〉 if and only if 〈D−1ϕ〉
is a maximal principal shift-invariant space. This, in turn, is equivalent to
pD−1ϕ > 0 almost everywhere. Since we have ϕ̂(2ξ) = m(ξ)ϕ̂(ξ), we obtain

(D−1ϕ)∧(ξ) =
√

2m(ξ)ϕ̂(ξ) and

(6.71) pD−1ϕ(ξ) = 2|m(ξ)|2pϕ(ξ).

Therefore, we obtain the following characterization of the FO principal shift-
invariant spaces. If ϕ ∈ L2(R) \ {0} is such that 〈ϕ〉 ⊆ D(〈ϕ〉), then

(6.72) 〈D−1ϕ〉 = 〈ϕ〉 ⇔ 〈ϕ〉 is an FO principal shift-invariant space.

Observe that this approach also provides a complete solution of the problem
(6.61).
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(ii) Observe that for ϕ1 in the previous theorem, or for D−1ϕ (which is essentially
the same) we have ϕ̂1(2ξ) = m(2ξ)ϕ̂1(ξ), and, since ξ 7→ m(2ξ) is 1

2 -periodic,
it can never satisfy the Smith–Barnwell condition. This is the main reason
why the theory developed in [PŠWX01], [PŠWX03], and [ŠSW08] failed
to detect such examples.

(iii) If ϕ ∈ L2(R) \ {0} is such that 〈ϕ〉 is an FO principal shift-invariant space,
then observe that, for every n ∈ N we have

(6.73) 〈D−nϕ〉 = 〈D−(n−1)ϕ〉 = ... = 〈D−1ϕ〉 = 〈ϕ〉,
i.e. ϕ̃ := D−nϕ satisfies 〈Dnϕ̃〉 = 〈ϕ̃〉. Observe also that, for almost every
ξ ∈ R,

(6.74) (ϕ̃)∧(2ξ) = m(2nξ)(ϕ̃)∧(ξ);

this is the “even ray” part of the sequence described in Remark 5.11iv.
�

In general, we have 〈ϕ〉 positioned within D(〈ϕ〉) so that it intersects with
both 〈Dϕ〉 and 〈DTϕ〉. By taking ϕ1 := D−1ϕ, we obtain one “extreme” case, i.e.
〈ϕ1〉 = 〈Dϕ1〉. Observe that it is not difficult to get the “other extreme”. Consider
ϕ2 := T−1D

−1ϕ. Obviously, in the FO case we obtain

(6.75) 〈ϕ2〉 = 〈ϕ1〉 = 〈Dϕ1〉 = 〈ϕ〉 = 〈DTϕ2〉.

7. Pre-GMRA

The notion of a generalized multi-resolution analysis (GMRA, for short) has
been introduced by L.W. Baggett, H.A. Medina, and K.D. Merrill in [BMM99]. It
has been studied extensively by many authors; among early references, we mention
[BM99], [BR05], [BR03], [BRS01], [BL98], and [Pap00] since their discussions
are similar in approach to what we present in this section. Consider a slightly more
general structure; we shall say that a family {Vj : j ∈ Z} of closed subspaces of
L2(R) is a pre-GMRA if

(7.1) Vj ≤ Vj+1 = D(Vj), for every j ∈ Z
and

(7.2) V0 is a shift-invariant space.

As usual, we refer to V0 as the core space of the family {Vj : j ∈ Z}. Obviously,
every shift-invariant space V which is D−1-invariant (or, equivalently, refineable),
i.e.

(7.3) V ≤ D(V )

serves as the core space for some pre-GMRA. For every pre-GMRA {Vj : j ∈ Z},
it is natural to consider the following three closed subspaces of L2(R):

(7.4) V−∞ :=
⋂
j∈Z

Vj ,

(7.5) V∞ :=
⋃
j∈Z

Vj ,

and

(7.6) W0 := V1 ∩ V ⊥0 .
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Observe that W0 and V∞ are always shift-invariant spaces, while V−∞ may or may
not be a shift-invariant space. Let us first recall some standard facts about W0. It
is well-known (consult, for example, [BR03] for historical details) that, for almost
every ξ ∈ R,

(7.7) dimV0(ξ) + dimW0(ξ) = dimV1(ξ) = dimV0(ξ/2) + dimV0(ξ/2 + 1/2),

and

(7.8) σV0(ξ) + σW0(ξ) = σV1(ξ) = σV0(ξ/2).

It is actually possible for W0 to be an infinitely generated shift-invariant space.
Consider the following list of examples.

Example 7.9. (i) Consider, for every j ∈ Z, the space (recall Example 1.1.5)

Vj := L2((−∞, 2j ])∨.

It is not difficult to check that {Vj : j ∈ Z} is a pre-GMRA with the following
properties:

V0 6= V1 and dimW0 ≡ 1;

Vj is a principal shift-invariant space for every j ∈ Z;

V−∞ = L2((−∞, 0])∨, V−∞ is a principal shift-invariant space;

dimV−∞ ≡ ∞;

V∞ = L2(R)∨ = L2(R).

(ii) Consider ε ∈ (0, 1/6) and the set E ⊆ R defined by

E := (−ε, 0] ∪

( ∞⋃
n=0

(2n, 2n + ε]

)
∪ (0, 1/2 + ε].

Take V0 := L2(E)∨. Then it is not too difficult to check that V0 satisfies (7.3)
and the corresponding pre-GMRA has the following properties:

V0 6= V1 and |{ξ : dimW0
(ξ) =∞}| > 0;

dimV0
(ξ) =


1 if ξ ∈ (−ε, 0]
∞ if ξ ∈ (0, ε]
1 if ξ ∈ (ε, 1/2 + ε]
0 if ξ ∈ (1/2 + ε, 1− ε]

;

V−∞ = {0};
V∞ = L2(R)∨ = L2(R).

The last two properties show that this is, in fact, a GMRA. Observe also that
in this case, Vj is a shift-invariant space for every j ∈ Z. This example is a
slight change from Example 3.7 in [BR03].

(iii) Consider Example 3.1 in [Bow09]. One can check that M. Bownik constructed
there an elaborate example of a pre-GMRA with the following properties:

dimV0 ≡ ∞;

V−∞ 6= {0}
V−∞ is not a shift-invariant space;
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indeed, if it were, one could check that σV−∞ would be identically 0, contra-
dicting the non-triviality of V−∞. It follows that it is not possible for all the
Vj spaces to be shift-invariant.

♦

Using (7.7) and applying Lemma 2.1 directly to the set IV0
= {ξ ∈ R :

dimV0
(ξ) = ∞}, we observe that “mixed quantities” as in Example 7.9ii are not

possible if dimW0 is almost everywhere finite.

Proposition 7.10. If {Vj : j ∈ Z} is a pre-GMRA such that

dimW0 <∞ almost everywhere,

then either dimV0 ≡ ∞ or dimV0 <∞ almost everywhere.

Observe that there are examples of pre-GMRAs for which W0 = {0}, which is
equivalent to

(7.11) D(V0) = V0,

which is equivalent to

(7.12) V−∞ = V0 = Vj = V∞ for every j ∈ Z.

Example 7.13. Take any measurable subset A ⊆ I and define E :=
⋃
k∈Z 2kA.

Consider V0 := L2(E)∨. This is a typical example of a shift-invariant space which
satisfies (7.11). If |A| = 0, then V0 = {0}. If |A| = 1, then V0 = L2(R). If
0 < |A| < 1, then we have a non-trivial V0 which satisfies (7.11).

By Proposition 7.10, every V0 6= {0} which satisfies (7.11) must have that
dimV0

≡ ∞. Observe that V := L2((1,∞))∨ is an example of a shift-invariant
space such that dimV ≡ ∞, D(V ) ≤ V , and D(V ) 6= V .

♦

Consider V∞. It is always a shift-invariant space, and since Di is continuous
for both i = ±1, we obtain

Di(V∞) ⊆ Di

⋃
j∈Z

Vj

 =
⋃
j∈Z

Di(Vj) =
⋃
j∈Z

Vj+i = V∞.

Hence D(V∞) = V∞.

Proposition 7.14. If {Vj : j ∈ Z} is a pre-GMRA, then V∞ is a shift-invariant
space and D(V∞) = V∞.

We have seen examples of pre-GMRAs for which V∞ 6= L2(R) in a previous
section (recall Remark 6.30).

The issues surrounding V−∞ are more subtle. As we have seen, V−∞ may or
may not be a shift-invariant space. Furthermore, if dimV0 ≡ ∞, then it is possible to
have either V−∞ = {0} or V−∞ 6= {0}. As far as we know, the strongest result which
appears in the literature is due to M. Bownik in [Bow09]. Using our terminology,
the Bownik theorem says that if {Vj : j ∈ Z} is a pre-GMRA such that

(7.15) |{ξ ∈ R : dimV0
(ξ) <∞}| > 0,



7. PRE-GMRA 115

then V−∞ = {0}. Even though V−∞ may not be a shift-invariant space, we can
still apply Di, i = ±1, to it and obtain

Di(V−∞) ⊆
⋂
j∈Z

Di(Vj) =
⋂
j∈Z

Vj+i = V−∞;

i.e. V−∞ satisfies D(V−∞) = V−∞.
GMRA terminology has been fairly standardized at present; see, for example,

[Bow09]. In our set up, we have that {Vj : j ∈ Z} is a GMRA if and only if it is
a pre-GMRA and V−∞ = {0}, V∞ = L2(R). If, in addition to being a GMRA, we
have dimV0 ≡ 1, then {Vj : j ∈ Z} is the classical MRA structure of an orthonormal
wavelet (see, for example, [HW96] for details and standard terminology). Indeed,
dimV0

≡ 1 means that there exists ϕ ∈ L2(|R) with pϕ > 0 almost everywhere
and V0 = 〈ϕ〉. By taking ϕ0 := 1√

pϕ
• ϕ, we obtain an orthonormal basis Bϕ0

for V0; the standard nomenclature is that ϕ0 is the scaling function of the MRA
{Vj : j ∈ Z}. Let us also mention that dimV0

has been completely characterized for
both pre-GMRA and GMRA in [BR03].

Remark 7.16. One should be somewhat careful applying characterization the-
orems. For example, if dimV0

≡ ∞, then such a function will satisfy all the char-
acterization properties for both pre-GMRA and GMRA. That does not mean that
a particular V0 will give us the desired structure — it only means that there exists
a shift-invariant space U0 with the same dimension function which generates the
desired structure. For example, taking V0 := L2([0,∞))∨ satisfies (7.11), so it gen-
erates a pre-GMRA with {0} 6= V−∞ = V0 = V∞ 6= L2(R). Its dimension function
is identically∞, so it satisfies all the characterization results. We can conclude the
following, though, based on the results from [BR03] and [Bow09].

If {Vj : j ∈ Z} is a pre-GMRA which satisfies (7.15), then V−∞ = {0}. If
{Vj : j ∈ Z} is a pre-GMRA such that V−∞ = {0} we may or may not have (7.15)
(see, for example, the construction in the proof of Lemma 3.3 in [BR03]).

If {Vj : j ∈ Z} is a GMRA (in particular, V∞ = L2(R)), then (see [BR03]), for
almost every ξ ∈ R,

(7.17) lim inf
n→∞

dimV0
(ξ/2n) ≥ 1.

If Vj : j ∈ Z} is a pre-GMRA which satisfies (7.17), then V∞ may or may not be
L2(R) (see our example above). However, we could, in this situation, employ the
following result, which is essentially in [BR03], too. If {Vj : j ∈ Z} is a pre-GMRA
such that, for almost every ξ ∈ R,

(7.18) lim
n→∞

σV0
(ξ/2n) = 1,

then V∞ = L2(R). �

The class of all pre-GMRAs splits according to the following property:

(7.19) Vj is a shift-invariant space for every j ∈ Z.

There are non-trivial examples where (7.19) holds (see Example 7.9i and ii) and
non-trivial examples where it does not hold (see Example 7.9iii and all examples in
the previous section, recalling Remark 6.30, in particular). Let us first consider the
former class. The following result could be considered “folklore”, but since we are
not aware of a precise reference, we provide details for our readers’ convenience.
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Theorem 7.20. If {Vj : j ∈ Z} is a pre-GMRA which satisfies (7.19), then
V−∞ is a shift-invariant space which satisfies (7.11), and the family {Uj : j ∈ Z},
where Uj := Vj ∩V ⊥−∞ for j ∈ Z, is a pre-GMRA which satisfies (7.19) and U−∞ =
{0}. Furthermore, V∞ = V−∞ ⊕ U∞ and either V−∞ = {0} or dimV−∞ ≡ ∞.

Proof. It is obvious that (7.19) implies that V−∞ is a shift-invariant space.
We have seen already that V−∞ satisfies (7.11). By (7.7), (7.8), and Proposition
7.10, it now follows easily that either V−∞ = {0} or dimV−∞ ≡ ∞.

By its definition, every Uj is a shift-invariant space and, for every j ∈ Z,
Vj = V−∞ ⊕ Uj . Since D is unitary, we obtain

V−∞ ⊕ Uj+1 = Vj+1

= D(Vj)

= D(V−∞ ⊕ Uj)
= D(V−∞)⊕D(Uj)

= V−∞ ⊕D(Uj),

which guarantees Uj+1 = D(Uj). Since Vj+1 ≥ Vj , we obtain Uj+1 ≥ Uj , so
{Uj : j ∈ Z} is a pre-GMRA which satisfies (7.19). It follows that U−∞ is a shift-
invariant space and V−∞ ⊕U−∞ ≤ V−∞, hence U−∞ = {0}. Since V−∞ is a closed
space, we obtain

V∞ =
⋃
j∈Z

V−∞ ⊕ Uj = V−∞ ⊕
⋃
j∈Z

Uj = V−∞ ⊕
⋃
j∈Z

Uj = V−∞ ⊕ U∞.

�

At this point we are interested in the class of pre-GMRAs which do not satisfy
(7.19). Since, for a shift-invariant space V we always have that D(V ) is a shift-
invariant space also, we conclude that, for a pre-GMRA {Vj : j ∈ Z} which does
not satisfy (7.19) there exists exactly one ` ∈ Z such that Vj is a shift-invariant
space if and only if j ≥ `. Observe that it must be the case that ` ≤ 0. We shall
say that the space V` is the natural core space of {Vj : j ∈ Z}. Observe that in all
examples described in Remark 6.30 the natural core is identical to the “ordinary”
core V0.

A natural question for us is whether an “FO type wavelet” (described in the
previous section) can be developed in some way different than the one described in
Theorem 6.57, i.e. from some other pre-GMRA structure. Because an “FO type

wavelet” (see (6.46)) satisfies ψ̂0(ξ) 6= 0 for almost every ξ ∈ R, our question is really
in the spirit of the Lemarié theorem (see [LR92]) which shows that all compactly
supported wavelets (in the orthonormal case) arise from an MRA structure. For the
development of such a line of theorems, consult [Aus95] and, ultimately, [BR05].
We have the following result which is closely related to the corresponding theorem
in [BR05].

Theorem 7.21. Let ψ ∈ L2(R) be such that, for almost every ξ ∈ R, ψ̂(ξ) 6= 0.
If {Vj : j ∈ Z} is a pre-GMRA such that

(a) V1 = 〈ψ〉 ⊕ V0, and
(b) |{ξ ∈ R : dimV0

(ξ) <∞}| > 0,

then V0 is an FO principal shift-invariant space and {Vj : j ∈ Z} is the MRA
structure associated with an orthonormal wavelet ψ0 := 1√

pψ
• ψ.
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We will prove this theorem shortly. First, we observe that, regarding the proof
of the theorem, one can attack from several directions. One way is to show that
V0 is spanned by the negative dilates of ψ0 and then apply powerful theorems from
[BR05] and [Bow09]. However, in this case one can produce a significantly more
elementary proof, which we will do here. First, a lemma.

Lemma 7.22. If V is a shift-invariant space such that

(a) |{ξ ∈ R : dimV (ξ) <∞}| > 0;
(b) For almost every ξ ∈ R, dimV (ξ) > 0; and
(c) There exists a 1-periodic, measurable set U ⊆ R such that, for almost every

ξ ∈ R,
dimV (2ξ) + χU (2ξ) = dimV (ξ) + dimV (ξ + 1/2),

then dimV ≡ 1 almost everywhere (in particular, U = R almost everywhere).

Proof of Lemma 7.22. Consider IV first. It is a 1-periodic, measurable sub-
set of R. If u ∈ 2IV , then u = 2ξ with dimV (ξ) = ∞. By (c), we obtain
dimV (u) = ∞ as well. Hence 2IV ⊆ IV and, by Lemma 2.1, we have either
|IV | = 0 or IV = R almost everywhere. By (a), we must have |IV | = 0, i.e.

(7.23) dimV (ξ) <∞ for almost every ξ ∈ R.
Observe that (b) actually means that

(7.24) dimV (ξ) ≥ 1 for almost every ξ ∈ R.
For n ∈ N, let us denote Un := {ξ ∈ R : dimV (ξ) ≥ n}. Hence every Un is a
measurable, 1-periodic subset of R. By (7.24), U1 = R almost everywhere.

We claim that |R \ U2| > 0. Suppose to the contrary that U2 = R almost
everywhere. For almost every ξ ∈ R, we obtain that

∞ > dimV (2ξ) + χU (2ξ) = dimV (ξ) + dimV (ξ + 1/2) ≥ dimV (ξ) + 2.

Hence for almost every ξ and for every n ∈ N we obtain

∞ > dimV (ξ) ≥ dimV (ξ/2)+1 ≥ dimV (ξ/4)+2 ≥ ... ≥ dimV (ξ/2n−1)+n−1 ≥ n,
which clearly produces a contradiction. Hence

(7.25) |R \ U2| > 0.

Consider now u ∈ U2, i.e. u = 2ξ and dimV (ξ) ≥ 2. By (c), we obtain

dimV (u) + χU (u) = dimV (ξ) + dimV (ξ + 1/2) ≥ 21.

Since this implies dimV (u) ≥ 2, i.e. u ∈ U2, we can employ Lemma 2.1 again to
show that either |U2| = 0 or U2 = R. By (7.25) we must have that |U2| = 0, i.e.
dimV ≡ 1 almost everywhere. Notice that (c) is then only possible with U = R
almost everywhere. �

Notice that if we have the stronger assumption that dimV is integrable on [0, 1],
then integrating (c) over [0, 1] and using (b) provides the same conclusion even more
directly.

Proof. Proof of Theorem 7.21 Since ψ̂(ξ) 6= 0 almost everywhere, we obtain
pψ > 0 almost everywhere. Hence the definition of ψ0 makes sense and Bψ0

is an
orthonormal basis for 〈ψ0〉 = 〈ψ〉. Furthermore, for almost every ξ ∈ R,

(7.26) σ〈ψ〉(ξ) = |ψ̂0(ξ)|2 > 0.
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By (7.8) and (a), we obtain, for almost every ξ ∈ R, σV0
(ξ) = σV0

(2ξ)+σ〈ψ〉(2ξ) > 0.
Hence

dimV0
> 0 almost everywhere.

Observe that dim〈ψ〉 ≡ 1, so by (7.7) we obtain, for almost every ξ ∈ R,

dimV0(2ξ) + 1 = dimV0(ξ) + dimV0(ξ + 1/2).

Therefore, V0 satisfies the conditions of Lemma 7.22, and we conclude that dimV0
≡

1 almost everywhere. It follows that there exists ϕ0 ∈ L2(R) such that V0 = 〈ϕ0〉
and Bϕ0 is an orthonormal basis for V0. Since σV0 > 0 almost everywhere, it follows
that ϕ̂0(ξ) 6= 0 for almost every ξ ∈ R. Since 〈ϕ0〉 ≤ D(〈ϕ0〉) = 〈ϕ0〉 ⊕ 〈ψ0〉, there
exists a filter m0 such that ϕ̂0(2ξ) = m0(ξ)ϕ̂0(ξ) and we must have m0(ξ) 6= 0 for

almost every ξ ∈ R. It follows that 〈ϕ0〉 is an FO with ssupp ϕ̂0 = ssupp ψ̂0 = R.
Hence by Theorem 6.57 we conclude that {Vj : j ∈ Z} is an MRA structure for
an orthonormal wavelet ψ1 defined by (6.44) from ϕ0. It follows that 〈ψ0〉 = 〈ψ1〉,
which implies ψ1 = µ • ψ0 for some 1-periodic, measurable function µ with µ 6= 0
almost everywhere. Since pψ0 ≡ 1 ≡ pψ1 almost everywhere, it follows that |µ|2 = 1
almost everywhere. Therefore, ψ0 is an orthonormal wavelet with the same MRA
structure as ψ1. �

We shall return to the ideas related to questions about GMRA and pre-GMRA
structures later. For now, we turn our attention to the non-FO case in the next
section.

8. Filter Analysis, Non-FO Case

In this section we consider M : R→ [0,∞) which is measurable and 1-periodic
such that (see (2.40))

(8.1) |ZM | > 0.

For such an M , almost every orbit orb(ξ) either intersects the horizon of M , i.e.

HM or the set A
(1)
M (see Remark 2.42). If |HM | = 0, then SolM is trivial (again, see

Remark 2.42). Hence we also assume that

(8.2) |HM | > 0.

Let us begin by exploring some simple relationships among ZM , HM , A
(1)
M . It is

obvious that the sets

(8.3) A
(1)
M and {ξ ∈ I : orb(ξ) ∩HM 6= ∅}

form an almost everywhere-partition of I. Furthermore,

(8.4) A
(1)
M =

∞⋂
n=1

⋃
k≥n

(
1

2k
I ∩ ZM

)
Hence from (8.3) and (8.4), we obtain

(8.5) {ξ ∈ I : orb(ξ) ∩HM 6= ∅} =

∞⋃
n=1

⋂
k≥n

(
1

2k
I ∩ ZM

)c
.
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As mentioned in (2.47), we have HM ⊆ ZM , but it is also easy to see that ZM
determines HM completely:

(8.6) Hc
M ∩ ZM =

∞⋃
n=1

(ZM ∩ 2nZM ) =

∞⋃
n=1

2n(ZM ∩
1

2n
ZM ).

It is natural to ask whether HM determines ZM completely. As the following
example shows, this is not the case.

Example 8.7. Take any M : R→ [0,∞), measurable and 1-periodic such that

M(ξ) > 0 if ξ ∈ [−1/8, 1/8) and

M(ξ) = 0 if ξ ∈ [−1/4, 1/4) \ [−1/8, 1/8);

observe that we can define M freely on [−1/2, 1/2) \ [−1/4, 1/4), i.e. we can add
any set of zero points to M there. However, every such M will have the property
that

HM = [−1/4, 1/4) \ [−1/8, 1/8)

and |A(1)
M | = 0. ♦

Let us add a few more remarks and examples in order to understand better
the notion of the horizon of M . The following examples illustrate that HM may or
may not be either bounded or bounded away from 0.

Example 8.8. (i) Consider M = |m|2, where m is the low-pass filter for the
Shannon wavelet (see, for example, [HW96] for details). This means that M
is 1-periodic and M |[−1/2,1/2) = χ[−1/4,1/4). It is obvious, then, that HM =
1
2I ⊆ [−1/2, 1/2). Observe also that Φ = χ[−1/2,1/2) = 2Φ0,M (see Theorem
2.52) prevents an example of a solution which is maximal in (SolM ,≺M ).

(ii) We introduce the following notation: for each n ∈ N,

A0 := [
3

4
, 1)

An :=

[
2n+1 + 1

2n+2
,

2n+1 + 1

2n+1

)
Bn :=

[
2n+1 − 1

2n+1
,

2n+2 − 1

2n+2

)
.

Observe that {An : n ∈ N ∪ {0}} forms a partition of [1/2, 1). Define M to
be 1-periodic and such that M |[0,1) is given by

M(ξ) =


1 if ξ ∈ A0

0 if ξ ∈ [1/2, 3/4)
1 if ξ ∈ 2−jAn and n < j, n ∈ N ∪ {0}, j ∈ N
0 if ξ ∈ 2−jAn and n ≥ j, n ∈ N ∪ {0}, j ∈ N.

It is a simple exercise to check that |A(1)
M | = 0 and

HM = [−1/2,−1/4) ∪

⋃
j∈N

2−jAj

 ∪(⋃
k∈N

2kBk

)
.

Hence HM ∩ (0,∞) is neither bounded nor bounded away from 0.
♦
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Is it possible to have HM ∩ [−1/2, 1/2) = ∅? Yes, but only at the expense of

having non-trivial A
(1)
M .

Example 8.9. Take a 1-periodic function M such that M |[−1/2,1/2) equals

χ[0,1/2). Then we have A
(1)
M = [−1,−1/2) and HM = [1/2, 1). ♦

Lemma 8.10. If M : R → [0,∞) is measurable, 1-periodic, and such that

|ZM | > 0 with |A(1)
M | = 0, then

|HM ∩ [−1/2, 1/2)| > 0.

Proof. Suppose to the contrary that |HM ∩ [−1/2, 1/2)| = 0. By our assump-
tions, for almost every ξ ∈ R, orb(ξ) ∩HM = {ν} and ν = ν(ξ) ∈ R \ [−1/2, 1/2).
Hence for every such ν and for every j ∈ N, we have that M(2−jν) > 0. It follows
that M > 0 almost everywhere, contrary to the assumption that |ZM | > 0. �

Using essentially the same argument, we also have the following result:

Corollary 8.11. Let M : R→ [0,∞) be measurable, 1-periodic, and such that

|ZM | > 0 and |A(1)
M | = 0. If there exists 0 < ε < 1/2 such that |HM ∩ [−ε, ε)| = 0,

then |ZM ∩ [−ε, ε)| = 0.

We turn our attention now to the elements of SolM . Observe that the analysis
of the Tauberian function TM , in this non-FO case, is similar to the analysis of
TM,− (the “low frequency” part) in the FO case. Hence there is no effect of “high
frequencies” in the sense that for every ξ ∈ HM we can treat orb(ξ) “individually”.

There are several consequences in the non-FO case. If M is non-FO and Φ ∈
SolM , we cannot expect Φ to have full support; more precisely, we must have

(8.12) ssupp Φ ⊆
∞⋃
n=0

2−nHM .

Maximal solutions in (SolM ,≺M ) have the property that there is an equality in
(8.12). Despite that, it is possible to have an almost everywhere strictly positive
periodization of Φ (take Example 8.8i, for instance). As before, we abuse notation
slightly, and for Φ ∈ SolM , we denote its periodization by pΦ, i.e.

(8.13) pΦ(ξ) =
∑
k∈Z

Φ(ξ + k), ξ ∈ R.

Observe that for almost every ξ ∈ R,

(8.14) pΦ(2ξ) = M(ξ)pΦ(ξ) +M(ξ + 1/2)pΦ(ξ + 1/2).

The lemma below follows directly:

Lemma 8.15. If M : R → [0,∞) is measurable, 1-periodic, with |ZM ∩ (1/2 +
ZM )| > 0, then for every Φ ∈ SolM ,

|{ξ ∈ R : pΦ(ξ) = 0}| > 0.

In particular, this holds if |ZM ∩ [0, 1)| > 1/2.

Observe that Example 8.8i has the properties that pΦ > 0 almost everywhere
and |ZM ∩ [0, 1)| = 1/2. Obviously, the condition in the previous lemma is not a
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necessary one. For example, even a “small” set in ZM which contains a neighbor-
hood of 0 will make everything trivial. More precisely, if there exists ε > 0 such
that (−ε, ε) ⊆ ZM , then

(8.16) A
(1)
M = I and SolM = {0}.

Regarding the existence of non-trivial solutions, we follow an approach similar
to (3.3). We define a function rM : HM → [0,∞] by considering the power series

(8.17) z 7→
∞∑
j=1

zj

(
j∏

k=1

1

M(2−kξ)

)
,

for every ξ ∈ HM (observe that the definition makes sense and that rM is analogous
to rM,− in (3.3)); then rM (ξ) is defined as the radius of convergence of the power
series given in (8.17). Exactly as in Section 3, we obtain the following results. If
M : R → [0,∞) is measurable, 1-periodic, and satisfies (8.1) and (8.2), then, for
almost every ξ ∈ HM ,

lim inf
n→∞

M(2−nξ) > 1/2⇒ lim inf
n→∞

n

√√√√ n∏
k=1

M(2−kξ) > 1/2

⇒ TM (ξ) <∞

⇒ lim inf
n→∞

n

√√√√ n∏
k=1

M(2−kξ) ≥ 1/2

(8.18)

Using Theorem 2.52 and (8.18), we obtain directly a result which is analogous to
Corollary 3.54.

Corollary 8.19. Let M : R→ [0,∞) be measurable, 1-periodic, with |ZM | > 0
and |HM | > 0. If, for almost every ξ ∈ HM , lim infn→∞M(2−nξ) > 1/2, then, for
almost every ξ ∈ HM , TM (ξ) < ∞ and Φ0,M (2−jξ) > 0 for every j ∈ N

⋃
{0}. If

lim infn→∞M(2−nξ) > 1/2, for almost every ξ, then, in addition, |A(1)
M | = 0.

Remark 8.20. Observe that in the non-FO case, large values of M are not
an obstacle to the existence of non-trivial solutions (unlike in the FO case). For
example, if there exists a > 1/2 such that for almost every ξ ∈ HM , and for every
k ∈ N, M(2−kξ) ≥ a, then, for almost every ξ ∈ HM ,

(8.21) TM (ξ) ≤ 1

2a− 1

Observe that, due to the lack of TM,+ in the non-FO case, TM does not exhibit
fractal properties either. By adjusting M on a part of an orbit orb(ξ) near 0, we
completely determine TM (ξ), and this has no effect on other orbits.

Observe that we still have formula (3.7), i.e. for almost every ξ ∈ HM , and, for
every n ∈ N,

(8.22) Φ(ξ) =

(
n∏
k=1

M(2−kξ)

)
Φ(2−nξ) and

n∏
k=1

M(2−kξ) > 0,

whenever Φ ∈ SolM . Hence, a statement analogous to Lemma 3.10 holds (we use

ξ ∈ HM such that Φ(ξ) > 0 instead of ξ ∈ A(2)
M , as was used in Lemma 3.10).
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Finally, let us observe that in the non-FO case there is no ergodic behavior
either. It also means that the Smith–Barnwell type condition does not play the
same role in the FO case. Let us illuminate this in the following simple example.
Take an a ∈ R with a ≥ 0, and define Ma : R → [0,∞) to be 1-periodic and such
that Ma|[−1/2,1/2) is given by

(8.23) Ma(ξ) :=


1 if ξ ∈ [−1/8, 1/8)
0 if ξ ∈ [−1/4,−1/8) ∪ [1/8, 1/4)
a if ξ ∈ [−1/2,−3/8) ∪ [3/8, 1/2)
a+ 1 if ξ ∈ [−3/8,−1/4) ∪ [1/4, 3/8).

Observe that, for every a ≥ 0, Φ = χ[−1/4,1/4) is a maximal solution in SolMa

(obviously, Φ does not depend on a). On the other hand, for almost every ξ ∈ R,

(8.24) Ma(ξ) +Ma(ξ + 1/2) = 1 + a.

Despite this, one should not completely disregard the Smith–Barnwell condition in
the non-FO case, either. For example, for 0 < b ≤ 1/2, the condition

M(ξ) +M(ξ + 1/2) = b almost everywhere

would imply SolM = {0}; but this would simply be a consequence of M ≤ 1/2.
However, there are other issues, like zero-sets and Parseval frame representation
which bring the Smith–Barnwell condition into focus. �

Let us observe first that some zeroes are unavoidable and play an essential role,
while the others can be replaced with positive values.

Example 8.25. Consider a 1-periodic M such that M |[−1/4,1/8) ≡ 1 and
M |[−1/2,−1/4)∪[1/8,1/4) ≡ 0. It follows that the maximal solution is Φ = χ[−1/2,1/4),
and this holds irrespective of the values of M on [1/4, 1/2). Hence, the zeroes on
[−1/2,−1/4) ∪ [1/8, 1/4) cannot be changed without altering SolM . On the other
hand, possible zeroes within [1/4, 1/2) could be changed arbitrarily without affect-
ing SolM . Observe also that for ξ ∈ [1/8, 1/4), we must have M(ξ)+M(ξ+1/2) = 0.

♦

Consider M : R→ [0,∞) which is measurable, 1-periodic, such that (8.1) and
(8.2) hold, and such that SolM is non-trivial. Let Φ be a maximal solution in
(SolM ,≺M ) and consider its periodization pΦ (see (8.13)). Consider U := {ξ ∈ R :
pΦ(2ξ) = 0}. It is fairly obvious that U does not depend on the choice of maximal
solution in (SolM ,≺M ) and that U is measurable and 1/2-periodic. If |U | = 0,
then we leave M as it is. Observe that, in this case, using (8.14) we must have the
property that for almost every ξ ∈ R,

(8.26) M(ξ) +M(ξ + 1/2) > 0.

If |U | > 0, then for ξ ∈ U we have two possibilities; either pΦ(ξ)+pΦ(ξ+1/2) = 0 or
pΦ(ξ) +pΦ(ξ+ 1/2) > 0. In the second case, we must keep M(ξ) +M(ξ+ 1/2) = 0;
otherwise SolM would change. However, in the first case, we can change the values
of M freely without any effect on SolM — say, we put M(ξ) = M(ξ + 1/2) = 1/2.

This short analysis shows that in the study of the non-FO case, we can, without
loss of generality, restrict ourselves to the class of M with the property that for
every maximal solution Φ in (SolM ,≺M ), we have, for almost every ξ ∈ R,

(8.27) either M(ξ) +M(ξ + 1/2) > 0 or pΦ(ξ) + pΦ(ξ + 1/2) > 0.
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Following the well-known process of semiorthogonalization (as we did in the FO
case), it is not difficult to restrict our analysis onto the class of the “Smith–

Barnwell”-type filters. We start with M̃ : R → [0,∞) which is measurable, 1-
periodic, satisfies (8.1) and (8.2), and Sol

M̃
is non-trivial. Furthermore, we also

require (8.27). Take any maximal solution Φ̃ in (Sol
M̃
,≺

M̃
). Consider a function

M : R→ [0,∞) defined by

(8.28) M(ξ) :=


pΦ̃(ξ)

pΦ̃(2ξ)M̃(ξ) if pΦ̃(2ξ) > 0

1/2 if pΦ̃(2ξ) = pΦ̃(ξ) = pΦ̃(ξ + 1/2) = 0
0 if pΦ̃(2ξ) = 0 < pΦ̃(ξ) + pΦ̃(ξ + 1/2).

It is easy to check that Φ, defined by

(8.29) Φ(ξ) :=

{
Φ̃(ξ)
pΦ̃(ξ) if pΦ̃(ξ) > 0

0 if pΦ̃(ξ) = 0,

satisfies Φ(2ξ) = Φ(ξ)M(ξ), with M 1-periodic and measurable, such that ZM =
Z
M̃

, HM = H
M̃

, and the elements in (SolM ,≺M ) can be described, by the same
transformations as the one given in (8.27), from the elements of (Sol

M̃
,≺

M̃
). In

other words, we can reduce the study of M̃ to the study of M . Observe, however,
that M also has the following properties: for almost every ξ ∈ R,

(8.30) M(ξ) +M(ξ + 1/2) = 0 or 1,

and

(8.31) M(ξ) +M(ξ + 1/2) = 0⇔ pΦ(ξ) + pΦ(ξ + 1/2) > 0.

Remark 8.32. (i) Consider M : R →][0, 1], measurable, 1-periodic, such
that (8.30) holds and |ZM | > 0 and |HM | > 0. Since ergodic properties do
not play a role in this case, observe that in order to have non-trivial SolM , it
is sufficient to have

|{ξ ∈ HM : lim inf
n→∞

M(2−nξ) > 1/2}| > 0.

(ii) Suppose that ϕ ∈ L2(R) is such that 〈ϕ〉 ⊆ D(〈ϕ〉), ϕ 6= 0, and the corre-
sponding m has the property that |{ξ : m(ξ) = 0}| > 0. We can still observe

that ϕ0 :=
(
p
−1/2
ϕ χpϕ>0

)
• ϕ, and it is well-known that 〈ϕ0〉 = 〈ϕ〉, with

Bϕ0
forming a Parseval frame for 〈ϕ〉. Let us denote the corresponding fil-

ter by m0 and M := |m0|2, Φ := |ϕ̂0|2. It follows then that M is non-FO,
that Φ ∈ SolM , but also that M satisfies (8.30) and that, for almost every
ξ ∈ R, pΦ(ξ) = 0 or 1. As before, we can remove “non-essential” zeroes from
M , and obtain (8.31). Hence, from the point of view of non-FO principal
shift-invariant spaces 〈ϕ〉, our reduction to (8.30) and (8.31) allows us still to
capture all principal shift-invariant spaces of interest.

�

Consider now a 1-periodic, measurable M : R → [0, 1] such that (8.30) holds.
As in the FO case (see (4.10)) we can define fM : R→ [0, 1] by

fM (ξ) :=

∞∏
n=1

M(2−nξ) for ξ ∈ R.
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Again, fM is measurable and satisfies fM (2ξ) = M(ξ)fM (ξ). Observe that we can
again apply a partial version of the “peeling-off argument”; only the part which
applies to the estimate of the norm of fM (since (8.30) does not allow the orthog-
onality property, but it does give M(ξ) + M(ξ + 1/2) ≤ 1). Hence, we do obtain
(4.14) in this case, as well:

(8.33) ‖fM‖L1(R) ≤ 1.

Therefore, in this case we also have (see Section 4 for comparison)

(8.34) fM ∈ SolM .

Again, it is possible to have trivial fM and yet have non-trivial SolM . Similarly as
before, we have, in this case, that fM is a maximal solution in (SolM ,≺M ) if and
only if

(8.35) fM (ξ) > 0 for almost every ξ ∈ HM .

Again, positivity leads to dyadic continuity at zero, i.e. for ξ ∈ HM , we have

fM (ξ) > 0⇒ lim
n→∞

M(2−nξ) = 1

fM (ξ) > 0⇒ lim
n→∞

fM (2−nξ) = 1,
(8.36)

where the second limit is an increasing one. The following examples (rather well-

known ones) emphasize a few points about positivity and HM , A
(1)
M , (8.30), and

(8.31).

Example 8.37. (i) Consider a 1-periodic functionM such thatM |[−1/2,1/2) =

χ[0,1/2). In this case, we have |ZM | > 0, HM = [1/2, 1), A
(1)
M = [−1,−1/2),

fM = χ[0,1), pfM ≡ 1, and, for almost every ξ ∈ R, M(ξ) +M(ξ + 1/2) = 1.
(ii) Consider a filter associated to the Shannon wavelet, i.e. 1-periodic M with

M |[−1/2,1/2) = χ[−1/4,1/4). In this case, we have |ZM | > 0, HM = 1
2I, A

(1)
M =

∅, fM = χ[−1/2,1/2), pfM ≡ 1, and, for almost every ξ ∈ R, M(ξ) + M(ξ +
1/2) = 1.

♦

It is also not difficult to see that a theorem analogous to Theorem 4.16 holds in
this case, as well. Likewise, the proof of Proposition 4.24 also goes through in this
case. Hence we can similarly develop a remark analogous to Remark 4.26. Observe,
however, that all these results hold within a special subclass of non-FO filters. This
is the content of the following result.

Proposition 8.38. If M : R→ [0,∞) is measurable, 1-periodic, with |ZM | > 0

and such that M is dyadically continuous at zero, then |A(1)
M | = 0.

Proof. Obviously, for almost every ξ ∈ R, we have limn→∞M(2−nξ) = 1.
This implies that M(2−jξ) 6= 0 for j large enough. Hence orb(ξ) ∩HM 6= ∅. �

Observe that in the previous statement (unlike in Corollary 8.19) we did not
require any assumptions onHM , but we do get “maximal horizon” as a consequence.

Example 8.39. Consider 0 < ε < 1/4 and define M to be 1-periodic and such
that M |[−1/2,1/2) = χ[−ε,ε). Then M is dyadically continuous at zero, M(ξ) +
M(ξ+ 1/2) = 1 for ξ ∈ [−ε, ε), M(ξ) +M(ξ+ 1/2) = 0 for ξ ∈ [−1/4, 1/4)\ [−ε, ε),
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fM = χ[−2ε,2ε), fM is dyadically continuous at zero, pfM |[−1/2,1/2) = χ[−2ε,2ε),

|A(1)
M | = 0, and HM = [−2ε, 2ε) \ [−ε, ε). ♦

Remark 8.40. The previous example provides an illustration of the generality
of our method. For 0 < ε ≤ 1/4, denote ϕε the function in L2(R) such that
ϕ̂ε = χ[−2ε,2ε). Obviously, 〈ϕε〉 ⊆ D(〈ϕε〉), and let us introduce

Wε := D(〈ϕε〉) ∩ 〈ϕε〉⊥,

which, of course, means Wε is a shift-invariant space. Consider the dimension
functions, dimWε

of Wε. It is not difficult to check that the following identities
hold:

0 < ε ≤ 1/8⇒ dimWε(ξ) =

 0 if ξ ∈ [−2ε, 2ε)
1 if ξ ∈ [−4ε, 4ε) \ [−2ε, 2ε)
0 if ξ ∈ [−1/2, 1/2) \ [−4ε, 4ε),

1/8 < ε < 1/6⇒ dimWε(ξ) =

 0 if ξ ∈ [−2ε, 2ε)
1 if ξ ∈ [−1 + 4ε,−2ε) ∪ [2ε, 1− 4ε)
2 if ξ ∈ [−1/2,−1 + 4ε) ∪ [1− 4ε, 1/2),

ε = 1/6⇒ dimWε
(ξ) =

{
0 if ξ ∈ [−1/3, 1/3)
2 if ξ ∈ [−1/2, 1/2) \ [−1/3, 1/3),

1/6 < ε < 1/4⇒ dimWε
(ξ) =

 0 if ξ ∈ [−1 + 4ε, 1− 4ε)
1 if ξ ∈ [−2ε, 2ε) \ [−1 + 4ε, 1− 4ε)
2 if ξ ∈ [−1/2, 1/2) \ [−2ε, 2ε),

ε = 1/4⇒ dimWε ≡ 1.

We would like to emphasize a few points here (in what follows, we take M to be as
it was in Example 8.39, i.e. M |[−1/2,1/2) = χ[−ε,ε).

(i) In the case ε ∈ [0, 1/8]∪{1/4}, dimWε ≤ 1, i.e. Wε is a principal shift-invariant
space. We should approach this in the spirit of the discussion of (8.26) and
(8.27). For some ε, there will be ξ such that M(ξ)+M(ξ+1/2) = 0. Of course,
for ε = 1/4, M(ξ) + M(ξ + 1/2) = 1 almost everywhere. For ε ∈ (0, 1/8],
one has that M(ξ) + M(ξ + 1/2) = 0 for any ξ ∈ [ε, 1/2 − ε), but this is a
non-essential issue in the sense that we can replace M by M ′ given by

M ′|[−1/2,1/2) := χ[−ε,ε)∪[−1/2+ε,−1/2+2ε)∪[2ε,1/2−ε),

which satisfies SolM = SolM ′ and, for almost every ξ,

M ′(ξ) +M ′(ξ + 1/2) = 1.

In this sense, the values of ε ∈ (0, 1/8] and ε = 1/4 are “related”.
For ε ∈ (1/8, 1/4), however, it is not possible to perform a similar re-

placement, and that M(ξ) + M(ξ + 1/2) must equal zero for ξ ∈ [ε, 1/2 − ε)
since any modification otherwise would force SolM to change — for example,
Φ := ϕ̂ε would be “pushed out” of SolM .

(ii) The case ε ∈ (0, 1/8]∪ {1/4} actually belongs to the theory of MRA Parseval
frame wavelets, as developed in [PŠWX01], [PŠWX03], and [ŠSW08]. We
just need to replaceM withM ′ as above, andM ′ is a generalized low-pass filter
(in the terminology of the aforementioned papers); the corresponding pseudo-
scaling function is ϕε. However, when ϕ ∈ (1/8, 1/4), we have filters which
cannot be captured by the theory of MRA Parseval frame wavelets: observe
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that Wε is a “2-dimensional” shift-invariant space and cannot be spanned by
a single generating wavelet ψ.

(iii) As we have just seen, this approach to filters is more comprehensive than
previous approaches. It is interesting, though, that from the point of view
of the corresponding pre-GMRA structures we do not obtain anything new.
More precisely, if ε ∈ (1/8, 1/4), then ε/2 < 1/8 and

D(〈ϕε/2〉) = 〈ϕε〉.
It is not difficult to check that in both cases we do get a GMRA, and the
two structures consist of the same spaces — the only difference is that the
core space is “shifted”. For the ε-case, V0 = 〈ϕε〉, while for the ε/2-case,
V0 = 〈ϕε/2〉 = D−1(〈ϕε〉). Observe that 〈ϕε/2〉 is the core space of an MRA

PFW structure as described in [ŠSW08].

�

It is useful to compare the previous Remark with Remark 4.18, in particular
with respect to Theorem 4.16. As we mentioned earlier, the theorem analogous to
Theorem 4.16 holds in the non-FO case, as well. However, it does not characterize
all the non-FO filters induced by generalized low-pass filters (in the terminology of
Remark 4.26). Using (8.26), (8.27), and (8.31), it is not difficult to check that the
following result holds.

Proposition 8.41. Let M : R → [0, 1] be measurable and 1-periodic, such
that |ZM | > 0 and (8.30) holds. If fM (ξ) > 0 for almost every ξ ∈ HM , then the
following are equivalent:

(a) M is induced by a generalized low-pass filter (i.e. there exists a generalized
low-pass filter m so that fM = f|m|2);

(b) |A(1)
M | = 0 and

|{ξ ∈ R : pfM (2ξ) = 0 and pfM (ξ) + pfM (ξ + 1/2) > 0}| = 0.

Let us now turn our attention to the filters induced by low-pass filters of MRA
orthonormal wavelets. Observe that Proposition 8.41 shows that in this case we
can focus our attention, without loss of generality, on the class

Mnon-FO
SB := {M : R→ [0, 1] : M is measurable, 1-periodic, |ZM | > 0, |A(1)

M | = 0,

SolM 6= {0},M(ξ) +M(ξ + 1/2) = 1 almost everywhere}.

(8.42)

Again, as in the FO case, the main insight is essentially given in Theorem 3.17 from
[PŠW99]:

Theorem 8.43 ([PŠW99]). Let m : R→ C be a measurable, 1-periodic func-
tion such that M := |m|2 ∈ Mnon-FO

SB . Then m is a low-pass filter (for an MRA
orthonormal wavelet) if and only if fM (ξ) > 0 for almost every ξ ∈ HM , and∫

R
fM (ξ)dξ = 1.

Remark 8.44. Observe that Example 8.37i provides an M which is not induced
by an MRA orthonormal wavelet filter, but it does satisfy the conditions that
fM (ξ) > 0 for almost every ξ ∈ HM and

∫
R fM (ξ)dξ = 1. Observe, however, that

the condition |A(1)
M | = 0 is not satisfied.
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�

The analysis of the condition (8.35) is analogous to the FO case and we leave
the details to the interested reader. Let us explore the condition

(8.45)

∫
R
fM (ξ)dξ = 1

some more. First of all, using (8.12) and fM ≤ 1, we obtain

(8.46)

∫
R
fM (ξ)dξ =

∫
HM

( ∞∑
n=0

fM (ξ/2n)

2n

)
dξ ≤ 2|HM |.

Hence if (8.45) holds, then we have

(8.47) |HM | ≥ 1/2.

Proposition 8.48. If M ∈Mnon-FO
SB and fM satisfies (8.45) and |HM | = 1/2,

then
fM = χ⋃∞

n=0 2−nHM .

Proof. Directly from (8.45) and (8.46). �

The following list of examples covers various aspects related to conditions (8.35)
and (8.45).

Example 8.49. Let 0 < ε < 1/2. Consider the 1-periodic function M such
that M |[−1/2,1/2) = χ[ε−1/2,ε). Then M ∈Mnon-FO

SB , HM = [2ε−1, ε−1/2)∪ [ε, 2ε),
|HM | = 1/2, fM = χ[2ε−1,2ε), and fM satisfies both (8.35) and (8.45). This example
is well-known (see, for example, [HW96]).

♦

Consider M ′ from Remark 8.40 with ε ∈ (0, 1/8]. Then M ′ ∈ Mnon-FO
SB ,

|HM ′ | = 2ε ≤ 1/4 < 1/2 (i.e. (8.45) does not hold), and fM ′ = χ[−2ε,2ε) satisfies
(8.35).

Example 8.50. Consider the 1-periodic function M such that

M |[−1/2,1/2) = χ[0,1/4) +
1

2
χ[−1/4,0)∪[1/4,1/2).

It is not difficult to check that M ∈ Mnon-FO
SB , but fM does not satisfy (8.35),

since fM (ξ) = 0 for ξ ∈ (−∞, 0). Observe also that HM ∩ (−∞, 0) = [−1/2,−1/4).
Considering [0,∞), observe that fM (ξ) = 1 for ξ ∈ [0, 1/2). Using induction
over n ∈ N ∪ {0}, it is not difficult to prove that for ξ ∈ [2n − 1/2, 2n) we have
fM (ξ) = 2−(n+1). Hence∫

R
fM (ξ)dξ =

1

2
+

∞∑
n=0

1

2n+1
· 1

2
= 1.

Using induction we can also show that

HM ∩ [0,∞) =

∞⋃
n=0

[2n − 1/2, 2n − 1/4)

and
|HM | =∞.

♦
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9. Pre-GMRA Core

We begin with an example. It illustrates the point of view we take in this
section.

Example 9.1. Consider one of the well-known Lemarié wavelets (see [Lem90]
and [HW96]) given by

(9.2) ψ̂ = χ[−4/7,−2/7)∪[2/7,3/7)∪[12/7,16/7).

Observe that Tαψ ∈ 〈ψ〉 for every α ∈ R. Recall that ψ is a non-MRA orthonormal
wavelet (and also an MSF wavelet, see [HW96]). Nevertheless, there is a GMRA
structure associated with ψ; there is a shift-invariant space V such that

(9.3) D(V ) = V ⊕ 〈ψ〉.
Using standard dimensions function techniques (see, for example, [HW96] and
[ŠSW08]) it is straightforward to show that V is a “two-dimensional” shift-invariant
space since
(9.4)

dimV (ξ) =

 2 if ξ ∈ [−1/7, 1/7)
1 if ξ ∈ [−1/2,−3/7) ∪ [−2/7,−1/7) ∪ [1/7, 2/7) ∪ [3/7, 1/2)
0 if ξ ∈ [−3/7,−2/7) ∪ [2/7, 3/7),

V is then the core of the GMRA of ψ. It may be surprising to see that, despite the
fact that (Dj(V ), j ∈ Z) is a GMRA but not an MRA, we can actually consider this
same structure as an MRA by “shifting” the core space. More precisely, consider

ψ0 :=
1√
2
D−1ψ,

i.e.

(9.5) ψ̂0 = χ[−2/7,−1/7)∪[1/7,3/14)∪[6/7,8/7).

Observe that ψ̂0 ∈ 〈ψ0〉 ≤ V and, since T1/2ψ ∈ 〈ψ〉,

(9.6) D−1(〈ψ〉) = 〈ψ0〉.
Furthermore,

(9.7) dim〈ψ0〉 |[−1/2,1/2) = χ[−2/7,3/14).

It follows that the space V0 := V ∩ 〈ψ0〉⊥ is a shift-invariant space such that

(9.8) V0 = D−1(V ),

and

(9.9) dimV0 |[−1/2,1/2) = χ[−1/2,−3/7)∪[−1/7,1/7)∪[3/14,2/7)∪[3/7,1/2).

We conclude that V0 generates essentially the same structure as V ; more precisely,
Dj+1(V0) = Dj(V ) for j ∈ Z. Furthermore, by (9.9) and direct calculation, it

follows that ψ0 is an MRA Parseval frame wavelet (see [ŠSW08] for more on
Parseval frame wavelets). ♦

The result above is not “an accident”, as the following proposition shows.

Proposition 9.10. If ψ ∈ L2(R) is a Parseval frame wavelet such that 〈ψ〉 1
2Z

=

〈ψ〉Z, then ψ0 := 1√
2
D−1(ψ) is also a Parseval frame wavelet and D−1(〈ψ〉) = 〈ψ0〉.
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Proof. The last statement holds since T1/2ψ ∈ 〈ψ〉. In order to prove the first

part, we need to check that two basic equations hold; see [ŠSW08] for details. For
the first equation, we have∑

j∈Z
|ψ̂0(2jξ)|2 =

1

2

∑
j∈Z
|
√

2ψ̂(2 · 2jξ)|2 =
∑
j∈Z
|ψ̂(2j+1ξ)|2 =

∑
j∈Z
|ψ̂(2jξ)|2 = 1.

For the second equation, recall Lemma 1.3.7. For ξ ∈ R and q an odd integer,
we obtain∑

j≥0

ψ̂0(2jξ)ψ̂0(2j(ξ + q)) =
1

2

∑
j≥0

√
2ψ̂(2j+1ξ)

√
2ψ̂(2j+1(ξ + q))

=
∑
j≥1

ψ̂(2jξ)ψ̂(2j(ξ + q))

=

∑
j≥0

ψ̂(2jξ)ψ̂(2j(ξ + q))

− ψ̂(ξ)ψ̂(ξ + q)

= 0− 0

= 0.

�

Remark 9.11. (i) Even if ψ is an orthonormal wavelet, ψ0 is not going to
be one. Observe that ‖ψ0‖22 = 1

2‖ψ‖
2
2, i.e. ‖ψ0‖22 ≤ 1/2, always.

(ii) It is not difficult to extend the above to other powers of 2. However, we will
take a somewhat more general approach.

(iii) If, in the result above, we have a shift-invariant space V such that D(V ) =
V ⊕ 〈ψ〉, then V0 := D−1(V ) satisfies V = D(V0) = V0 ⊕ 〈ψ0〉 and

dimV (ξ) = dimV0
(ξ) + dim〈ψ0〉(ξ) ≤ dimV0

(ξ) + 1.

(iv) If ψ is of Type 1, then the result above, Propsition 9.10, is not going to be
satisfied in many cases. However, compare the result with Theorem 7.21.

�

We turn our attention to the Type 3 case now; recall that MSF Parseval
frame wavelets (and MSF orthonormal wavelets) are of Type 3 (see [ŠSW08] and
[ŠW11]). We shall consider an even more general situation where V may not be a
principal space.

Theorem 9.12. A shift invariant space V ≤ L2(R) satisfies the property
Tα(V ) = V for every α ∈ R if and only if there exists a measurable set E such
that V = L2(E)∨.

Proof. The proof of sufficiency follows directly from the fact that the set of

support of f̂ equals the set of support of T̂αf . Let us prove the necessity of the
given condition.

Suppose that V ≤ L2(R) is a closed subspace such that Tα(V ) = V for every
α ∈ R. If V is trivial, there is nothing to prove. Consider any ϕ ∈ V \ {0}. Denote
by Sϕ := ssupp ϕ̂. Consider the space L2(R, |ϕ̂|2dξ). Obviously, m ∈ L2(R, |ϕ̂|2dξ)
if and only if m • ϕ ∈ L2(R). Furthermore,

L2(Sϕ)∨ = {m • ϕ : m ∈ L2(R, |ϕ̂|2dξ)}.
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We claim first that m•ϕ ∈ V for every m : R→ C with m continuous with compact
support. Take ε > 0. There exists N > 0 sufficiently large so that m ≡ 0 outside
of [−N/2, N/2] and

(9.13)
1

2‖m‖∞

(∫
R\[−N/2,N/2]

|ϕ̂(ξ)|2dξ

)1/2

≤ ε

2
.

By the Stone-Weierstrass theorem, we can choose a trigonometric polynomial µ
which is N -periodic and

(9.14) ‖µ|[−N/2,N/2] −m‖L2(R,|ϕ̂|2dξ) <
ε

2
and

(9.15) ‖µ‖∞ ≤ 2‖m‖∞.
From (9.13) through (9.15), it then follows that

‖m • ϕ− µ • ϕ‖2 = ‖µ−m‖L2(R,|ϕ̂|2dξ) < ε.

Recall that µ is a finite linear combination of exponentials, ek/N for k ∈ Z which
are N -periodic. By our assumption, ek/N • ϕ ∈ V i.e. µ • ϕ ∈ V . Since ε was
arbitrary and V is closed, we obtain m • ϕ ∈ V .

Since every m ∈ L2(R, |ϕ̂|2dξ) can be approximated via a sequence of contin-
uous, compactly supported functions, and since V is closed, we conclude that, for
every ϕ ∈ V \ {0} we have

(9.16) L2(Sϕ)∨ ≤ V.
Finally, since V is a shift-invariant space, we know that there exists a countable

family {ϕi : i ∈ N} ⊆ V such that ϕi+(χSϕi+1
\Sϕi )•ϕi+1 ∈ V and 〈{ϕi : i ∈ N}〉 =

V . It is then not difficult to construct a function ψ ∈ V such that Sf ⊆ Sψ, modulo
null sets, for every f ∈ V . It follows that V ⊆ L2(Sψ)∨ ⊆ V , i.e. V = L2(Sψ)∨. �

Remark 9.17. Consider V = L2(S)∨, where S ⊆ R is measurable. Obviously,
for every j ∈ Z, Vj := Dj(V ) = L2(2jS)∨. Hence the property Vj ⊆ Vj+1 holds for
every j ∈ Z if and only if V ⊆ D(V ) if and only if S ⊆ 2S (modulo null sets).

If S is bounded, then we can choose j0 ∈ Z such that 2j0S ⊆ [−1/4, 1/4). Ob-
viously in such a case, Vj0 is a principal shift-invariant space generated by (χ2j0S)∨

and this is a core space of an MRA Parseval frame wavelet of MSF-type if and only
if

R =
⋃
j∈Z

2jS (modulo null sets).

�

Corollary 9.18. Let ψ ∈ L2(R) be an MSF orthonormal wavelet (recall that
there is a GMRA structure {Vj} associated with ψ). Then, for every n ∈ N, we
have ψn := 1

2n/2
D−n(ψ) is a Parseval frame wavelet associated with the GMRA

structure {V nj }, where V nj := Vj−n. Furthermore, if ψ̂ is compactly supported, then
there exists n0 ∈ N such that ψn0

is an MRA Parseval frame wavelet.

Proof. Since ψ is an MSF wavelet, it follows that Tαψ ∈ 〈ψ〉 for every α ∈ R.
By Proposition 9.10, ψ1 is a Parseval frame wavelet and D−1(〈ψ〉) = 〈ψ1〉. Recall
that D(V0) = V0 ⊕ 〈ψ〉. It follows then, as in Remark 9.11iii, that V−1 ⊕ 〈ψ1〉 =
V0 = D(V−1).
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Recall that, for every α ∈ R, we have that TαD−1ψ = D−1Tα/2ψ. Hence, for
every α ∈ R, we have Tαψ1 ∈ 〈ψ1〉. We can now repeat these steps, going from ψ1

to ψ2, and so on, so that the first part of the theorem follows by induction on n.

If ψ̂ is compactly supported, then, for n0 ∈ N sufficiently large, the support

of ψ̂n0
is contained in [−1/2, 1/2). It follows that V−n0

is a shift-invariant space
contained in L2([−1/2, 1/2))∨. This implies that dimV−n0

≤ 1, i.e. that V−n0 is a

principal shift-invariant space. Hence D(V−n0
) = V−n0

⊕〈ψn0
〉 and ψn0

is an MRA
Parseval frame wavelet. �

Remark 9.19. Suppose that we have a GMRA {Vj} such that D(V0) = V0〈ψ〉
and ψ ∈ L2(R) is such that

(9.20) T1/2ψ /∈ 〈ψ〉.
If this holds, then V−1 = D−1(V0) is not a shift-invariant space, i.e. V0 is also
a natural core of the GMRA. Observe that we must have V0 = V−1 ⊕ D−1(〈ψ〉).
Hence, it is enough to prove that D−1(〈ψ〉) is not a shift-invariant space. And,
indeed, if it were a shift-invariant space, then we would have

D−1(T1/2ψ) = TD−1ψ ∈ D−1(〈ψ〉),
i.e. T1/2ψ ∈ 〈ψ〉, which clearly contradicts (9.20).

This shows that if we have a Parseval frame wavelet and a shift-invariant space
V such that D(V ) = V ⊕ 〈ψ〉, then we can apply D−1 and obtain the same type
of structure if and only if T1/2ψ ∈ 〈ψ〉. In other words, we can “shift” a core space
“one step down”. However, if we encounter (9.20) such a procedure cannot continue
and we have reached the natural core of the corresponding GMRA structure. �





CHAPTER 3

Wavelet Structure

1. The Space of Negative Dilates

Given ψ ∈ L2(R), we are interested in the behavior of the “wavelet family”,
{ψjk : j, k ∈ Z}; recall the notation from (2.1.2). We begin by introducing some
standard notation. For ψ ∈ L2(R), we denote the “main resolution level” by

(1.1) W0 = W0(ψ) := 〈ψ〉.

For every j ∈ Z,

(1.2) Wj = Wj(ψ) = Dj(W0) = span{ψjk : k ∈ Z}.

If j ∈ Z with j ≥ 0, then

(1.3) Wj(ψ) is a shift-invariant space,

and its spectral function is

(1.4) σWj (ξ) =

{
|ψ̂(ξ/2j)|2
pψ(ξ/2j) if ξ/2j ∈ U〈ψ〉

0 otherwise,

and its dimension function is

(1.5) dimWj
(ξ) =

∑
k∈Z

σWj
(ξ + k) =

2j−1∑
`=0

χU〈ψ〉

(
ξ + `

2j

)
.

If j ∈ Z and j < 0, then Wj(ψ) may or may not be a shift-invariant space.
More precisely, and using the notation from (II1.2), we have that, for j ∈ Z with
j < 0, the following equivalencies hold:

Wj is a shift-invariant space ⇐⇒ T2jψ ∈ 〈ψ〉
⇐⇒ Wj(ψ) = 〈Djψ〉

⇐⇒ Wj(ψ) = span{ψjk : k ∈ Z}
(1.6)

If this is the case, observe that Wj(ψ) is then a principal shift-invariant space. It
follows directly from (1.6) that

(1.7) Wj(ψ) is a shift-invariant space for every j ∈ Z ⇐⇒ 〈ψ〉 is of Type 3.

As we have seen, negative dilate spaces for individual dilate levels often do not
preserve shift invariance. It is then natural to consider the space of (all) negative
dilates,

(1.8) V0(ψ) := span{ψjk : j < 0, k ∈ Z}.

133
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Again, V0(ψ) may or may not be a shift-invariant space. Obviously we will have

V0(ψ) is a shift-invariant space ⇐⇒ V0 = 〈Djψ : j < 0〉

⇐⇒ V0 = span{ψjk : j < 0, k ∈ Z}.
(1.9)

Remark 1.10. The question of the shift-invariance of V0(ψ) has been studied
by many authors. Let us briefly recall some of the main directions.

(i) If {ψjk : j, k ∈ Z} is a Riesz basis for L2(R), then there is a complete char-
acterization in the sense of the dual system; it must be of the same form,
{ϕjk : j, k ∈ Z} for some ϕ ∈ L2(R) (see [DH02], [Zal99], and [KKL01] for
more details).

(ii) If {ψjk : j, k ∈ Z} is a frame for L2(R), then the characterization issue is
significantly more complicated. For a nice overview and several important
results, see [BW03]. Briefly, the existence of the standard dual frame of the
same form will ensure the shift-invariance of V0(ψ). However, this condition
is not a necessary one. Furthermore, there are other conditions that may
provide (1.9).

This question is also closely related to the question of the period of the
frame {ψjk : j, k ∈ Z} introduced by I. Daubechies and B. Han; see [DH02]
and [BW03].

(iii) Systems of the form {ψjk : j, k ∈ Z} are known as affine systems, while
systems of the form

(1.11) {ψjk : j ≥ 0, k ∈ Z} ∪ {ψjk : j < 0, k ∈ Z}
are known as quasi-affine systems. They were introduced by A. Ron and Z.
Shen in [RS97] (see also [CSS98], [CS94], and [BW03]). Let us mention
that M. Bownik and E. Weber ([BW03]) prove that a system of the form
(1.11) which is also a frame has canonical dual of the same form (i.e. form
(1.11)) if and only if, for every q ∈ 2Z+ 1 for almost every ξ ∈ R,

(1.12)

∞∑
j=0

ψ̂(2jξ)ψ̂(2j(ξ + q) = 0.

Recall that (1.12) is the “tq equation” which plays a crucial role in the charac-
terization of orthonormal wavelets and Parseval frame wavelets — see Chapter
7 in [HW96] for details.

(iv) If ψ ∈ L2(R) is a Parseval frame wavelet, then V0(ψ) is a shift-invariant space.
This is a well-known result of L. Baggett; see the nice survey in [Bow08].

�

Let us denote by

(1.13) VSIS := {ψ ∈ L2(R) : V0(ψ) is a shift-invariant space}.

Observe that [ŠSW08, p.268–269] shows that for ψ ∈ L2(R), we have

V0(ψ) is a shift-invariant space⇒ T1/2Djψ ∈ 〈D`ψ : ` ≤ 0〉
for every j ∈ Z, j ≤ 0.

(1.14)

Consider now ψ ∈ L2(R) such that V0(ψ) is a shift-invariant space. It follows
then that

(1.15) V0(ψ) ≤ V0(ψ) + 〈ψ〉 = D(V0(ψ)).
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Observe that the sum in (1.15) is not necessarily an orthogonal one. Actually, our
functions now split into two very different classes. Consider first ψ ∈ VSIS such that

(1.16) ψ ∈ V0(ψ).

This property is equivalent to

(1.17) D(V0(ψ)) = V0(ψ).

Remark 1.18. Recall (2.7.11), (2.7.12), and Example 2.7.13 for the description
of such principal shift-invariant spaces that satisfy (2.7.11). Clearly, our class of
spaces satisfying (1.17) is a subclass of those spaces. In particular, if ψ 6= 0, then
(1.16) implies

(1.19) dimV0(ψ) ≡ ∞.
As it turns out, {ψjk : j, k ∈ Z} can have a variety of complicated structures

and it may well be that (1.16) could possibly hold. M. Bownik and Z. Rzeszotnik,
in [BR05], constructed examples of functions ψδ ∈ L2(R) with δ > 0 such that
{(ψδ)jk : j, k ∈ Z} is a frame for L2(R) with frame bounds 1 and 1 + δ such that

(1.20) V0(ψδ) = L2(R).

�

Observe that (1.15) shows that, for every ψ ∈ VSIS,

(1.21) {Vj(ψ) := Dj(V0(ψ)) : j ∈ Z}
is a pre-GMRA. If, in addition, ψ satisfies (1.16), then

(1.22) V−∞(ψ) = V0(ψ) = V∞(ψ);

observe that even (1.20) is possible. In particular, assuming ψ 6= 0, we get from
(1.16) that

(1.23)
⋂
j∈Z

Dj(V0(ψ)) 6= {0}.

Remark 1.24. Given a pre-GMRA (in the general sense) it is natural to ask
about the relationship of properties analogous to (1.16), (1.19), and (1.23). Using
[Bow08], [Bow09] (see also Remark 2.7.16) we have, assuming V0 6= {0},

D(V0) = V0 ⇒
⋂
j∈Z

Dj(V0) 6= {0} ⇒ dimV0
≡ ∞,

and none of the reversed implications are true.
What happens if we restrict ourselves to pre-GMRAS {Vj : j ∈ Z} given in

(1.21)? Obviously, the given implications remain true. The first implication cannot
be reversed since M. Bownik constructed in [Bow08] an example of a ψ ∈ L2(R)
such that ψ /∈ V0(ψ) such that ψ satisfies (1.23) and {ψjk : j, k ∈ Z} is a frame for
L2(R). The question of whether

dimV0(ψ) ≡ ∞⇒
⋂
j∈Z

Dj(V0(ψ)) 6= {0}

is, as far as we know, open at this time.
If we restrict ourselves to the case of ψ belonging to the class of Parseval frame

wavelets, then it has been shown in [ŠSW08] that

(1.25) ψ ∈ V0(ψ) ⇐⇒ V0(ψ) = L2(R).
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Whether any of the implications can be reversed is, as far as we know, an open
problem. Actually, even more basic questions remain open as well. Considering all
three properties, (1.16), (1.19), and (1.23), is there a Parseval frame wavelet which
satisfies at least one of these conditions? This question applied to (1.23) is known
as the Baggett problem; see [Bow08] for details. �

Let us turn our attention to the second important class. Consider ψ0 ∈ VSIS

such that

(1.26) ψ0 /∈ V0(ψ0).

Consider the space U0 := V1(ψ0) ∩ V0(ψ0)⊥. By (1.26), U0 is a non-trivial shift-
invariant space, and it is easy to see that σU0

≤ σ〈ψ0〉; hence dimU0
≤ dim〈ψ0〉 ≤ 1.

Hence, U0 is a principal shift-invariant space, and there exists a function ψ ∈ L2(R)
such that

(1.27) U0 = 〈ψ〉 and Bψ is a Parseval frame for 〈ψ〉.
Hence

(1.28) V1(ψ0) = V0(ψ0)⊕ 〈ψ〉,
and ψ 6= 0. Since D is a unitary operator, we obtain that, for every j ∈ N,

(1.29) Vj(ψ0) = V0(ψ0)⊕

(
j⊕
`=1

W`(ψ)

)
.

Observe that, despite this property, it can happen that dimV0(ψ) ≡ ∞; we can even

have that {(ψ0)jk : j, k ∈ Z} is a frame for L2(R) (see Remark 1.24). However,
we have the following result which generalizes slightly some well-known results for
GMRAs and Parseval frame wavelets.

Proposition 1.30. Let {Vj : j ∈ Z} be a pre-GMRA and ψ ∈ L2(R)\{0} such
that Bψ is a Parseval frame for ψ. If

(i) V1 = V0 ⊕ 〈ψ〉, and
(ii) |{ξ ∈ R : dimV0

(ξ) <∞}| > 0,

then V−∞ = {0}, dimV0
<∞ almost everywhere, V∞ =

⊕
j∈ZWj(ψ), and

σV0
(ξ) =

∞∑
j=1

|ψ̂(2jξ)|2.

If this is the case, then the following are equivalent:

(a) {Vj} is a GMRA;
(b) {ψjk : j, k ∈ Z} is a semiorthogonal Parseval frame wavelet;

(c) For almost every ξ ∈ R,
∑
j∈Z |ψ̂(2jξ)|2 = 1.

Proof. By Proposition 2.7.10 we conclude that dimV0
< ∞ almost every-

where. By the Bownik theorem [Bow09] we have V−∞ = {0}. This and a property
analogous to (1.29) leads to V∞ =

⊕
j∈ZWj(ψ).

Regarding the spectral function, observe that, for almost every ξ ∈ R, we have
(by a standard argument)

1 ≥ σV0
(ξ) = σV1

(2ξ) = σV0
(2ξ) + σ〈ψ〉(2ξ)

= σV0
(2ξ) + |ψ̂(2ξ)|2.

(1.31)
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Using the recursion, boundedness, and monotonicity in (1.31), it follows by a stan-
dard argument that, for almost every ξ ∈ R,

1 ≥ σV0
(ξ) = H(ξ) +

∞∑
j=1

|ψ̂(2jξ)|2,

where H(ξ) = limN→∞ σV0
(2Nξ). In particular, H : R → [0, 1] is a measurable

function such that, for almost every ξ ∈ R, H(ξ) = H(2ξ). We wish to prove that
H(ξ) = 0 almost everywhere. Suppose, to the contrary, that |{ξ ∈ R : H(ξ) > 0}| >
0. Then there exists a δ > 0 such that the set A := {ξ ∈ I : H(ξ) ≥ δ} has positive
measure. It is then obvious that we can form infinitely many sets (Ai : i ∈ N) such
that they are disjoint, that

⋃
i∈NAi ⊆ A, and |Ai| > 0, for every i ∈ N. Using now

Lemma 2.2.31, we conclude that EAi = R almost everywhere for each i ∈ N. It
follows that, for almost every ξ ∈ R, H(ξ + k) ≥ δ for infinitely many k ∈ Z. Since

dimV0
(ξ) =

∑
k∈Z

σV0
(ξ + k) ≥

∑
k∈Z

H(ξ + k) =∞ almost everywhere,

we obtain a contradiction with (ii). Hence H ≡ 0 almost everywhere, which implies

that σV0
(ξ) =

∑∞
j=1 |ψ̂(2jξ)|2, which leads to

(1.32) σV∞(ξ) =
∑
j∈Z
|ψ̂(2jξ)|2 almost everywhere.

Hence V∞ = L2(R) if and only if∑
j∈Z
|ψ̂(2jξ)|2 = 1 almost everywhere.

The rest of the proof is now straightforward. �

Hence, if we are in a fairly “non-extreme” case, i.e. ψ0 ∈ VSIS with ψ0 /∈
V0(ψ) and dimV0(ψ) 6≡ ∞ then, in theory, we obtain a nice pre-GMRA structure in
standard form.

2. Orthogonality

Orthogonal structures are perhaps the most thoroughly studied among wavelet
structures. We briefly revisit some of the results from a slightly different point of
view. For every ψ ∈ L2(R) we have (recall also results from [HW96])

(2.1) 〈ψ〉 ⊥ 〈Dψ〉 ⇐⇒
∑
k∈Z

ψ̂

(
ξ + k

2

)
ψ̂(ξ + k) = 0 almost everywhere,

and

(2.2) 〈ψ〉 ⊥ 〈DTψ〉 ⇐⇒
∑
k∈Z

(−1)kψ̂

(
ξ + k

2

)
ψ̂(ξ + k) = 0 almost everywhere.

It is not difficult to check (and it is well-known, for example see [HW96]) that

〈Dψ〉 ⊥ 〈ψ〉 ⊥ 〈DTψ〉 ⇐⇒ 〈ψ〉 ⊥ D(〈ψ〉)

⇐⇒
∑
k∈Z

ψ̂(2(ξ + k))ψ̂(ξ + k) = 0 almost everywhere.

(2.3)
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Since Dj is an orthogonal operator, it is obvious that (2.3) is equivalent to

(2.4) Dj(〈ψ〉) = Wj(ψ) ⊥ Dj+1(〈ψ〉) = Wj+1(ψ),

for every j ∈ Z. Following (1.7), we examine first the special case where 〈ψ〉 is of
Type 3.

Consider ψ ∈ L2(R) such that 〈ψ〉 is of Type 3. Recall (see (1.3.5)) that
in this case there exists an almost everywhere-measurable partition of [0, 1), say
{Ak : k ∈ Z} such that

(2.5) ssupp ψ̂ ⊆
⋃
k∈Z

(Ak + k).

If we denote, for every k ∈ Z, the set Bk by

(2.6) Bk := ssupp ψ̂ ∩ (Ak + k),

then B :=
⋃
k∈ZBk = ssupp ψ̂. In particular, if g ∈ L2(R) is such that ĝ = χB ,

then

(2.7) 〈ψ〉 = 〈g〉,

and Bg is a Parseval frame for 〈ψ〉. Observe also that in this case (2.3) is equivalent
to

(2.8) For almost every ξ ∈ R, if ψ̂(ξ) 6= 0, then ψ̂(2ξ) = 0.

Remark 2.9. Observe that, even in this case, having W−1(ψ) ⊥ W0(ψ) ⊥
W1(ψ) does not necessarily ensure that W−1(ψ) is orthogonal to W1(ψ). Indeed,
take ψ ∈ L2(R) such that

ψ̂ = χ[1/8,1/4)∪[1/2,1).

It is obvious that 〈ψ〉 is of Type 3 and that ψ satisfies (2.8). However, W−1(ψ) is
not orthogonal to W1(ψ) since

D̂−1ψ =
√

2χ[1/16,1/8)∪[1/4,1/2) and D̂ψ =
1√
2
χ[1/4,1/2)∪[1,2).

Therefore, even in this case, we need the full scope of the orthogonality property.
More precisely, it follows easily from [HW96, p. 102] that, for every ψ ∈ L2(R),

(2.10) 〈ψ〉 ⊥ Dn(〈ψ〉) for every n ∈ N

if and only if

(2.11) Wj(ψ) ⊥Wk(ψ) for all j, k ∈ Z, j 6= k

if and only if, for every n ∈ N and for almost every ξ ∈ R,

(2.12)
∑
k∈Z

ψ̂(2n(ξ + k))ψ̂(ξ + k) = 0.

Observe that (2.12) is one of the four characterizing equations for the orthonormal
wavelet (see [HW96, Ch. 7]). Nevertheless, the analysis of the Type 3 case is
simpler, since every ψ ∈ L2(R) such that 〈ψ〉 is of Type 3 satisfies the “tq-equation”
given in (1.12). �
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We shall say that ψ ∈ L2(R) is a semiorthogonal pre-wavelet if ψ satisfies
(2.11). Hence, if ψ ∈ L2(R) is a semiorthogonal pre-wavelet and 〈ψ〉 is of Type
3, then ψ satisfies two of the characterizing equations for orthonormal wavelets.
Furthermore, if ψ = g (g as described in (2.7)), then the more general version of
the third equation is satisfied as well, i.e., for almost every ξ ∈ R,

(2.13)
∑
k∈Z
|ψ̂(ξ + k)|2 = 0 or 1.

Obviously, the orthogonality properties of Wj(ψ) spaces in the Type 3 case, as they
relate to the wavelet structure, are going to depend mainly on the fourth equation.
Observe that (1.7) ensures that, in this case, we cannot have dimV0(ψ) ≡ ∞.

Lemma 2.14. If ψ ∈ L2(R) is a semiorthogonal pre-wavelet such that 〈ψ〉 is of
Type 3, then dimV0 <∞ almost everywhere.

Proof. By (1.7), Wj(ψ) is a principal shift-invariant space for every j ∈ Z.
By (2.11) we have that ⊕

j<0

Wj(ψ)

is a shift-invariant space which contains all Djψ for j < 0. Using (1.9) we conclude
that V0(ψ) is a shift-invariant space and

(2.15) V0(ψ) =
⊕
j<0

Wj(ψ).

By (1.7) again, we have

σV0(ψ) =
∑
j<0

σWj(ψ).

By taking g :=
(

1√
pψ
χU〈ψ〉

)
• ψ, we obtain that, for almost every ξ ∈ R,

σV0(ψ)(ξ) =

∞∑
j=1

|ĝ(2jξ)|2.

It follows then that (see [ŠSW08, (27)])∫ 1

0

dimV0(ψ)(ξ)dξ =

∫ 1

0

∞∑
j=1

∑
k∈Z
|ĝ(2j(ξ + k))|2dξ = ‖ĝ‖22 <∞.

Hence we conclude that dimV0(ψ) must be finite almost everywhere. �

It is now straightforward to describe completely the structure of {ψjk : j, k ∈ Z}
for functions ψ for which 〈ψ〉 is of Type 3. Observe that this completely covers the
“MSF-case” orthogonality properties.

Theorem 2.16. Let ψ ∈ L2(R) and let K := ssupp (ψ̂).

(a) 〈ψ〉 is of Type 3 if and only if {K+k : k ∈ Z} is an almost everywhere-disjoint
family. If 〈ψ〉 is of Type 3, then Bψ is a Parseval frame for 〈ψ〉 if and only if

ψ̂ = χK .
(b) If 〈ψ〉 is of Type 3, then ψ is a semiorthogonal pre-wavelet if and only if {2jK :

j ∈ Z} is an almost everywhere disjoint family. If 〈ψ〉 is of Type 3 and ψ is a
semiorthogonal pre-wavelet, then the following properties hold:
• V0(ψ) is a shift-invariant space.
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• dimV0(ψ) <∞ almost everywhere.
• {Vj : j ∈ Z} is a pre-GMRA.
• Vj(ψ) is shift-invariant space for every j ∈ Z.

• Vj(ψ) =

j−1⊕
`=−∞

W`(ψ) for every j ∈ Z.

• V−∞(ψ) = {0}.
• V∞(ψ) = L2(

⋃
j∈Z

2jK)∨.

• σVj (ψ) =

∞∑
`=j+1

χK(2`·) = χ⋃∞
`=j+1 2−`K for every j ∈ Z.

• σV∞(ψ) = χ⋃
j∈Z 2jK .

• dimV0(ψ) =
∑
j<0

χ⋃
k∈Z(2jK+k).

(c) If 〈ψ〉 is of Type 3 and ψ is a semiorthogonal pre-wavelet, then ψ is a Parseval
frame wavelet if and only if, for almost every ξ ∈ R,

(2.17)
∑
j∈Z
|ψ̂(2jξ)|2 = 1.

If this is the case, then ψ̂ = χK (i.e. ψ is of MSF type), {2jK : j ∈ Z} is
an almost everywhere partition of R, and {Vj(ψ) : j ∈ Z} is a GMRA. Fur-
thermore, these last two conditions are equivalent and are equivalent to (χK)∨

being a Parseval frame wavelet.
(d) If 〈ψ〉 is of Type 3 and ψ is a semiorthogonal Parseval frame wavelet, then ψ is

an orthonormal wavelet if and only if {K + k : k ∈ Z} is an almost everywhere
partition of R. If 〈ψ〉 is of Type 3 and ψ is a semiorthogonal pre-wavelet, then
ψ is an orthonormal wavelet if and only if, for almost every ξ ∈ R,∑

k∈Z
|ψ̂(ξ + k)|2 = 1 and

∑
j∈Z
|ψ̂(2jξ)|2 = 1

Remark 2.18. If we combine the previous theorem with Proposition 2.9.10,
then we conclude that the choice of GMRA structures is perhaps somewhat more
limited than one may expect.

First of all, if ψ ∈ L2(R) is such that ψ̂ = χK and ψ is an MSF Parseval frame
wavelet, then, for every n ∈ N, ψn := 2−n/2D−n(ψ) is an MSF Parseval frame
wavelet. Furthermore, they share essentially the same GMRA {Vj : j ∈ Z}, except
that the core space for the “ψn-GMRA” is “shifted” to V−n(ψ).

Secondly, recall that every orthonormal wavelet, η, is associated with a GMRA
{Vj(η) : j ∈ Z}. Furthermore, for every such GMRA, there exists an MSF wavelet

ψ such that dimV0(η) = dimV0(ψ). If, in addition, ψ̂ is compactly supported, then
there exists an MRA Parseval frame wavelet which generates essentially the same
GMRA. More precisely, there is an MRA Parseval frame wavelet pseudo-scaling
function ϕ (see [PŠWX01], [PŠWX03], [ŠSW08] for details) and n ∈ N such
that V0(ψ) = Dn(〈ϕ〉). �.

When considering functions ψ ∈ L2(R) such that 〈ψ〉 is of Type 1 or of Type 2,
several aspects of the above construction change. Some of the issues are illustrated
in the following example.
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Example 2.19. Consider ψ0 ∈ L2(R) such that

ψ̂0 = χ[−2,−1) + χ[1,2),

and ψ1 ∈ L2(R) such that

ψ̂1 = −χ[−2,−1) + χ[1,2).

Observe that T〈ψ0〉 = T〈ψ1〉 = {3}, i.e. both 〈ψ0〉 and 〈ψ1〉 are of Type 2. Fur-
thermore, we have that ψ0 (and ψ1, for that matter) is a semiorthogonal pre-
wavelet. Notice that 〈ψ0〉 ⊥ 〈ψ1〉, that, for every j ∈ Z, Wj(ψ0) ⊥ 〈ψ1〉, and that
T1/2ψ0 ∈ 〈ψ1〉. To understand this example, it is useful to notice that

L2([−2,−1) ∪ [1, 2))∨ = 〈ψ0〉 ⊕ 〈ψ1〉

and

dim〈ψ0〉 ≡ 1 ≡ dim〈ψ1〉 .

It follows that

V0(ψ0) =

−1⊕
`=−∞

W`(ψ)

and

(2.20) T1/2ψ0 /∈ V0(ψ0).

It follows (consult (1.14)) that V0(ψ0) is not a shift-invariant space. Moreover, by
essentially the same argument, none of the spaces Dj(V0(ψ0)), for j ∈ Z are shift-
invariant spaces (despite the fact that D(V0(ψ0)) = V0(ψ0)⊕〈ψ0〉). Even the space⊕

j∈ZWj(ψ0) is not a shift-invariant space.

Observe also that Bψ is an orthonormal basis for 〈ψ0〉, where

ψ :=
1√
2
• ψ0.

Moreover, {ψjk : j, k ∈ Z} is an orthonormal system (see [HW96, p.100–103]) and,
for almost every ξ ∈ R,

1

2
=
∑
j∈Z
|ψ̂(2jξ)|2 > 0.

Still, V0(ψ) = V0(ψ0) is not a shift-invariant space. Notice also that ψ0 and ψ do
not satisfy the “tq-equation” for q = 3.

♦

Going beyond the Type 3 case, let us observe a few simple details. Consider a
semiorthogonal pre-wavelet ψ0 and define ψ ∈ L2(R) by

(2.21) ψ :=

(
1
√
pψ0

χU〈ψ0〉

)
• ψ0

Then ψ is a semiorthogonal pre-wavelet, 〈ψ〉 = 〈ψ0〉, and Bψ is a Parseval frame
for 〈ψ0〉. By a slight abuse of notation, for j ∈ Z, we define a closed subspace,

(2.22) Vj :=

j−1⊕
`=−∞

W`(ψ).
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It follows that DVj = Vj+1 for every j ∈ Z, but V0 is not(!) necessarily a shift-
invariant space. Let us also define two more closed subspaces:

V∞ :=
⊕
j∈Z

Wj(ψ), and

U0 :=

∞⊕
j=0

Wj(ψ).

(2.23)

Notice that U0 is a shift-invariant space (and, therefore, U⊥0 is also a shift-invariant
space), but V∞ may or may not be a shift-invariant space. Furthermore,

(2.24) V0 = V∞ ∩ U⊥0 .

The following statement is now a straightforward consequence.

Lemma 2.25. If ψ0 ∈ L2(R) is a semiorthogonal pre-wavelet and ψ is defined
by (2.21), then the following are equivalent.

(a) V0 is a shift-invariant space;
(b) V∞ is a shift-invariant space;
(c) V0 = 〈Djψ : j ∈ Z, j < 0〉;
(d) 〈Djψ : j ∈ Z, j < 0〉 ⊆ V∞.

Observe also that for ψ given by (2.21), we have, for almost every ξ ∈ R,

(2.26) σU0
(ξ) =

0∑
j=−∞

|ψ̂(2jξ)|2.

It follows that, for almost every ξ ∈ R,

(2.27)
∑
j∈Z
|ψ̂(2jξ)|2 ≤ 1.

Furthermore, since Bψ is a Parseval frame for 〈ψ〉 and D is a unitary operator, it
is not difficult to see that

(2.28) {ψjk : j, k ∈ Z} is a Parseval frame for V∞.

Theorem 2.29. Let ψ0 ∈ L2(R) be a semiorthogonal pre-wavelet and let ψ be
defined by (2.21). If ψ satisfies (1.12) — the “tq equation” — and, for almost every
ξ ∈ R,

(2.30)
∑
j∈Z
|ψ̂(2jξ)|2 = 0 or 1,

then V0 = V0(ψ) = V0(ψ0) is a shift-invariant space and, for almost every ξ ∈ R,

σV0(ψ)(ξ) =

∞∑
j=1

|ψ̂(2jξ)|2;

moreover, V∞ = V∞(ψ) = V∞(ψ0) = L2(E)∨, where

E := {ξ ∈ R :
∑
j∈Z
|ψ̂(2jξ)|2 = 1}.

Furthermore, ψ is a semiorthogonal Parseval frame wavelet (for L2(R)) if and only
if E = R up to a null set.
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Proof. Using a standard argument from [HW96, p.338–342] we can show
that for every f in a dense subset of L2(R)∨ we have

‖f‖22 =

∫
R
|f̂(ξ)|2

∑
j∈Z
|ψ̂(2jξ)|2

 dξ

=

∫
R
|f̂(ξ)|2

∑
j∈Z
|ψ̂(2jξ)|2

 dξ +

∫
R
f̂(ξ)

∑
p∈Z

∑
q∈2Z+1

f̂(ξ + 2pq)tq(2
−pξ)

 dξ

=
∑
j,k∈Z

|〈f, ψjk〉|2.

Hence {ψjk : j, k ∈ Z} is a Parseval frame for L2(E)∨. In particular, L2(E)∨ ⊆ V∞,
and, obviously, V∞ = V∞(ψ) = V∞(ψ0) is a shift-invariant space. By Lemma 2.25,
V0 = V0(ψ) = V0(ψ0) is a shift-invariant space as well. Using a standard argument
(see [PŠWX01], [PŠWX03], [ŠSW08]) we obtain that, for almost every ξ ∈ R,

(2.31) dimV0(ψ)(ξ) =

∞∑
j=1

∑
k∈Z
|ψ̂(2j(ξ + k)|2.

Integrating both sides over [0, 1] leads to dimV0(ψ) being finite almost everywhere.
It now follows immediately that, for almost every ξ ∈ R,

σV0(ψ)(ξ) =

∞∑
j=1

|ψ̂(2jξ)|2.

The last statement of this theorem is now obvious. �

A natural question is now whether (1.12) (the “tq equation”) and (2.30) (let
us call it the “generalized Calderón condition”) are also necessary. In the case
of a Parseval frame wavelet, the answer is well known and positive (see [HW96,
Section 7]). The issue is a bit subtler when we consider it in greater generality.
In the Parseval frame wavelet case, the role of V∞ is played by L2(R), and it is
not immediately clear which of L2(R)’s many properties are essential to prove the
desired result. We found it useful to consult the proof for general reproducing
function systems given in [Lab02] and [HLW02]. It turns out that the invariance
to all translations plays a crucial role. We begin with the following auxiliary result
which, at least partially, would be considered “folklore”.

Proposition 2.32. If V ≤ L2(R) is a shift-invariant space, then the following
are equivalent.

(a) D(V ) = V .
(b) Tα(V ) = V for every α ∈ R and D(V ) = V ;
(c) V = L2(E)∨, where E ⊂ R is measurable and E = 2E up to null sets.

Proof. It is obvious that (c)⇒ (b)⇒ (a). Let us prove that (a)⇒ (c).
Given (a), recall that, for every j ∈ Z, we have

(2.33) DjTkψ = Tk/2jDjψ.

Since V is a shift-invariant space, we have Tk(V ) = V for every k ∈ Z. Since
D(V ) = V , we obtain from (2.33) that, for every k ∈ Z and every n ∈ N,

(2.34) Tk/2n(V ) = V.
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Since translational invariances form a closed subgroup of (R,+), we obtain that,
for every α ∈ R,

(2.35) Tα(V ) = V.

By Theorem 2.9.12, we obtain V = L2(E)∨ for some measurable set E. Applying
(a) again, we conclude that E = 2E almost everywhere. �

Theorem 2.36. Let ψ ∈ L2(R) be a semi-orthogonal pre-wavelet such that Bψ
is a Parseval frame for 〈ψ〉. If V0(ψ) is a shift-invariant space, then ψ satisfies
(1.12) and (2.30).

Proof. By Lemma 2.25, V0(ψ) being a shift-invariant space implies V∞(ψ) is
a shift-invariant space. By the definition of V∞(ψ) we obtain that D(V∞(ψ)) =
V∞(ψ). By Proposition 2.32, there exists E ⊆ R which is measurable, satisfies
E = 2E almost everywhere, and

(2.37) V∞(ψ) = L2(E)∨.

In particular, for every j, k ∈ Z, ssupp (ψ̂jk) ⊆ E almost everywhere. Hence, for
almost every ξ ∈ Ec, ∑

j∈Z
|ψ̂(2jξ)|2 = 0.

Similarly, if at least one of the points ξ or ξ + q belongs to Ec, we have (1.12) for
such a ξ. It follows that we need to prove that for almost every ξ ∈ E,∑

j∈Z
|ψ̂(2jξ)|2 = 1,

and that for almost every ξ ∈ E, we have (1.12) whenever ξ + q ∈ E, too.
Observe that, since σV∞(ψ) = χE for almost every ξ ∈ E, we have

1 ≥ σV0(ψ)(ξ) +

∞∑
j=0

σWj(ψ)(ξ).

Since E = 2E almost everywhere, we obtain that, for almost every ξ ∈ E,∑
j∈Z
|ψ̂(2jξ)|2 ≤ 1;

in particular, ξ 7→
∑
j∈Z |ψ̂(2jξ)|2 is locally integrable. We can now repeat the

standard proof from [HW96], Section 7.1, with all functions being adjusted on E
versus R, to conclude the proof of the theorem. �

Remark 2.38. It is worth mentioning that even a more general proof, the
one given for the main result in [HLW02], applies and will lead to the proof
of the theorem above. The significance of Proposition 2.32 may be even more
transparent in that context since it allows for a function “ω(x) = N2(Txf)” (given
in Proposition 2.4 in [HLW02]) to be defined for all x ∈ R, i.e. for f ∈ V∞(ψ) we
need that Txf ∈ V∞(ψ) for every x ∈ R.

�

It is now straightforward to prove the following results.
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Corollary 2.39. If ψ ∈ L2(R) is a semiorthogonal pre-wavelet such that
V0(ψ) is a shift-invariant space, then

dimV0(ψ) <∞ almost everywhere.

For the following result, recall Section 2.7.

Corollary 2.40. If {Vj} is a pre-GMRA (in a general sense) such that
(2.7.19) holds, then there exist two measurable sets E−∞ ⊆ E∞ ⊆ R such that
2E−∞ = E−∞ almost everywhere, 2E∞ = E∞ almost everywhere, and

V−∞ = L2(E−∞)∨ ≤ L2(E∞)∨ = V∞.

We conclude this section with a remark about coefficients. Consider a semiorthog-
onal pre-wavelet ψ ∈ L2(R) such that V0(ψ) is a shift-invariant space. Then, for
some set E ⊆ R with E = 2E almost everywhere, we have

(2.41) L2(E)∨ =
⊕
j∈Z

Wj(ψ).

Some level of the reproducing property is possible even if Bψ is not a Parseval frame
for 〈ψ〉. Let us be more precise. Given a function f ∈ L2(E)∨, consider, for every
j ∈ Z, a function fj ∈ Wj(ψ) which is the orthogonal projection of f on Wj(ψ).
Recall that then the sum ∑

j∈Z
‖fj‖22

converges and is equal to ‖f‖22. Hence, we have unconditional convergence in the
following formula:

(2.42) f =
∑
j∈Z

fj .

Using results from Section 1.6 we obtain that, for every j ∈ Z,

(2.43) pψ • (D−jfj) =
∑
k∈Z
〈D−jfj , Tkψ〉Tkψ;

notice that D−jfj ∈ 〈ψ〉. Using the notation νj(ξ) := pψ(2−jξ), j ∈ Z, we apply
Dj on (2.43) and, since Dj is unitary, we obtain, for every j ∈ Z,

(νj f̂j)
∨ =

∑
k∈Z
〈fj , ψjk〉ψjk

=
∑
k∈Z
〈f, ψjk〉ψjk

(2.44)

3. General Case

In this section, we consider ψ ∈ L2(R) such that V0(ψ) is a shift-invariant
space; in other words, ψ ∈ VSIS (recall (1.13)). Using (1.16), (1.17), (1.21), and
Proposition 2.32, we obtain directly a complete description for the class of functions
which satisfy (1.16).

Corollary 3.1. If ψ ∈ VSIS and ψ ∈ V0(ψ), then there exists a measurable
set E ⊂ R such that E = 2E almost everywhere and, for every j ∈ Z,

L2(E)∨ = Vj(ψ) = V−∞(ψ) = V∞(ψ).



146 3. WAVELET STRUCTURE

If, in addition, |E| > 0, then

dimV0(ψ) ≡ ∞.

Remark 3.2. In [BR05] the authors constructed examples of functions ϕ ∈
L2(R) such that V0(ϕ) = L2(R). Consider a measurable set E ⊆ R with 2E = E

almost everywhere. Define ψ ∈ L2(R) such that ψ̂ := ϕ̂χE . Observe that we

have ψ̂jk = ϕ̂jkχE , since E = 2E almost everywhere. It follows then easily that
V0(ψ) = L2(E)∨ and ψ ∈ V0(ψ). ♦

We turn our attention now to the more interesting case of ψ ∈ VSIS such that

(3.3) ψ /∈ V0(ψ).

Let us denote by η = η(ψ) the orthogonal projection of ψ on (the closed space)
V0(ψ) and denote by ϕ,

(3.4) ϕ = ϕ(ψ) := ψ − η.

Since V0(ψ) is a shift-invariant space, it is easy to check (and it is well known) that,
for every k ∈ Z,

(3.5) Tkη = the orthogonal projection of Tkψ on V0(ψ).

Hence, we have the well-known result that

(3.6) D(V0(ψ)) = V0(ψ)⊕ 〈ϕ〉.

It follows that for every n ∈ N,

(3.7) D−n(〈ϕ〉) ≤ V0(ψ) ⊥ 〈ϕ〉.

Hence ϕ is a semiorthogonal pre-wavelet and

(3.8) V0(ϕ) ≤ V0(ψ).

To understand better what can transpire, it is useful at this point to consider the
following example.

Example 3.9. Take a function η ∈ L2(R) such that V0(η) = L2((−∞, 0))∨

(see Example 3.2). Take a function ϕ ∈ L2(R) such that ϕ̂ := χ[1/2,1). Consider
ψ := η + ϕ and notice that η ⊥ ϕ. Observe that, for every n ∈ N, η ∈ V−∞(η) ≤
V−n(η) and limn→∞ 2−n/2D−nϕ = 0. It is not difficult to see that

V−∞(η) = V∞(η) = L2((−∞, 0))∨

and

V−∞(ϕ) = {0} ≤ V0(ϕ) = L2([0, 1/2))∨ ≤ V∞(ϕ) = L2([0,∞))∨.

It follows that, for every j ∈ Z,

Vj(ψ) = L2((−∞, 2j−1))∨.

In particular, ϕ = ϕ(ψ) and η = η(ψ).
♦

It turns out that the key property is the shift-invariant property of V0(ϕ).
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Theorem 3.10. Let ψ ∈ VSIS and let η be the orthogonal projection of ψ on
V0(ψ). Then V∞(ψ) is a shift-invariant space and

V∞(ψ) = V0(ψ)⊕

⊕
j≥0

Wj(ϕ)

 ,

where ϕ := ψ − η. Furthermore, 〈ϕ〉 = {0} if and only if ψ ∈ V0(ψ). Moreover, if
V0(ϕ) is a shift-invariant space, then dimV0(ϕ) < ∞ almost everywhere and U :=

V0(ψ) ∩ (V0(ϕ)⊥) is a shift-invariant space such that D(U) = U and

V∞(ψ) = U ⊕

⊕
j∈Z

Wj(ϕ)


Proof. The first statement follows from Lemma 2.25, (3.6), and (3.7). The

second statement is obvious. Let us prove the third statement. If V0(ϕ) is a
shift-invariant space, then V∞(ϕ) is a shift-invariant space, too. Obviously then
V∞(ϕ) =

⊕
j∈ZWj(ϕ) and there exists E ⊆ R, measurable and with E = 2E

almost everywhere, such that V∞(ϕ) = L2(E)∨ and, moreover, dimV0(ϕ) < ∞
almost everywhere (see Theorem 2.36 and Corollary 2.39). Since both V0(ϕ) and
V0(ψ) are shift-invariant spaces and (3.8) holds, we obtain that U is shift invariant
as well. Observe that

V0(ϕ)⊥ = V∞(ϕ)⊥ ⊕

⊕
j≥0

Wj(ϕ)

 ,

V∞(ϕ)⊥ = L2(Ec)∨,

and ⊕
j≥0

Wj(ϕ) ⊥ V0(ψ).

It follows that

(3.11) U = V0(ψ) ∩ L2(Ec)∨.

Since D is a bijection and 2Ec = Ec almost everywhere we obtain

D(U) = D(V0(ψ)) ∩D(L2(Ec)∨)

= (V0(ψ)⊕ 〈ϕ〉) ∩ L2(Ec)∨

= V0(ψ) ∩ L2(Ec)∨

= U,

since 〈ϕ〉 ⊆ L2(E)∨. It follows that there exists a measurable set G ⊆ R such
that G = 2G almost everywhere and U = L2(G)∨. Observe that G ⊆ Ec almost
everywhere and that

(3.12) V∞(ψ) = L2(G ∪ E)∨.

The last statement follows easily, and also we have that

(3.13) V∞(ψ) = L2(R)⇔ G = Ec almost everywhere.

�
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Recall now the open questions listed in Remark 1.24. As the following result
shows, we have actually resolved (in a positive way) one of these questions.

Corollary 3.14. If ψ ∈ VSIS, then⋂
j∈Z

Dj(V0(ψ)) 6= {0} ⇔ dimV0(ψ) ≡ ∞.

Proof. As mentioned in Remark 1.24 the proof of “⇒” is an important the-
orem by M. Bownik, [Bow09]. We need to prove “⇐”, i.e.

(3.15)
⋂
j∈Z

Dj(V0(ψ)) = {0} ⇒ dimV0(ψ) <∞ almost everywhere.

Observe first that if the intersection is trivial, then either ψ = 0 or ψ /∈ V0(ψ) (see
Corollary 3.1).

Furthermore, we know that both V0(ϕ) and V∞(ϕ) are closed subspaces (not
necessarily shift-invariant spaces) and we can define U := V0(ψ) ∩ (V0(ϕ)⊥). Then
U is a closed subspace of L2(R) and arguing as in the proof of Theorem 3.10 shows
that U satisfies (3.11) in the sense that

U = V0(ψ) ∩ V∞(ϕ)⊥

and D(U) = U — observe that D(V∞(ϕ)) = V∞(ϕ) by its definition (irrespective of
V∞(ϕ) being a shift-invariant space). Since U ≤ V0(ψ) and D(U) = U , we obtain

(3.16) U ≤
⋂
j∈Z

Dj(V0(ψ)) = {0},

i.e. U is trivial. It follows that V0(ψ) = V0(ϕ). In particular, V0(ϕ) is a shift-
invariant space and the corresponding U is trivial. By Theorem 3.10, we obtain
that dimV0(ψ) <∞ almost everywhere. �

Notice that we have also proved the following result.

Corollary 3.17. Let ψ ∈ VSIS, let η be the orthogonal projection of ψ on
V0(ψ), and let ϕ := ψ − η. Then⋂

j∈Z
Dj(V0(ψ)) = {0} ⇔ V0(ψ) = V0(ϕ).
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