
Overview

The paremetrix method first appears in the work of E. Levi [64] in the elliptic setting. Independently,
this idea was proposed by Feller [23] in the probabilistic setting for an operator which is a sum of an
elliptic operator and a bounded non-local operator. The idea of Levi was developed (independently
from Feller) in the work of Dressel [16] for a parabolic setting, Ilyin, Kalashnikov and Oleinik [31],
and was extended and described in the monograph of Friedman [24]. See also McKean, Singer [69]
and Minakshisundaram [70] for a different modification of the Levi’s method in the parabolic setting.

For the fractional Laplacian the FS solution exists and is the transition probability density of a
symmetric stable process; its asymptotic behaviour was first investigated by Blumenthal and Getoor
[6]. This probabilistic paper (as well as a still earlier paper by Polya [81] where the case n = 1
was considered) was noticed by specialists in partial differential equations only much later; see the
monograph of Eidelman, Ivasyshen and Kochubei [22] for references to other early publications (Ya.
M. Drin’, S. D. Eidelman, M. V. Fedoryuk) containing the asymptotics or estimates. In particular,
the parametrix construction of the solution to the Cauchy problem for hyper-singular integrals was
developed in Kochubei [44], see also Kolokoltsov [45], and also the reference list and an extensive
overview in the monograph [22]. For the related fractional calculus needed in the method see the
monograph of Samko, Kilbas and Marichev [86], ans Samko [84], [85].

The parametrix approach investigated in [44], [22] was further developed in several directions.
Singular delta-function type gradient perturbation of the principal operator of order α are studied
in Portenko [82, 83] (for d = 1) and further in Podolynny, Portenko [80] (for d ≥ 1). Under the
assumption on the drift b(x) that ‖b‖p <∞, where p > d/(α− 1), the existence and uniqueness of a
continuous solution is proved. The approach from [82, 83], [80] was extended recently in the works
by Osypchuk, Portenko [77, 78]. The effect of p-dependence (already in a different form appearing
in [47]) was rediscovered in Bogdan, Jakubowski [7], see also Bogdan, Jakubowski, Sydor [8], and
Bogdan, Sydor [9]. In Kim, Song [37] similar problem was investigated in the framework of the
existence and uniqueness of the weak solution to the corresponding SDE with b being a generalized
function with derivative from a certain Kato class. See also Chen, Wang [14], for the approach which
relies on [7] and the martingale problem method from Bass, Chen [4].

The approach of [44] was developed in Knopova, Kulik [41] and Ganychenko, Knopova, Kulik
[25], Kulik [57] for (gradient) perturbations of fractional Laplacian with the principal part less than
1. Further extension to more general integro-differential operators with non-homogeneous symbol
was done in Knopova, Kulik [42, 43]. This approach requites different type of the estimates on the
parametrix, and relies on the earlier works [39], [40] in this direction. On the other hand, in Chen
and Zhang [15], Kim, Song and Vondraček [38] the approach from [44] was developed and generalized
for (isotropic) perturbation of α-stable operators along a different line. In the recent works of Kühn
[54]–[56] the approach of [44] combined with the verification procedure from [41] was developed using
the complex analysis technique in order to provide the kernel estimates. Also, quite recently the
Cauchy problem with homogeneous symbols of positive order was studied in Litovchenko [66, 67] by
analytic methods in a bit different context: it is shown that this Cauchy problem is correctly solvable
in the class of generalized functions, and belongs to certain functions function space.

Completely different approach to construction of the parametrix solution was proposed in the
works of Ch. Iwasaki (Tsutsumi) and N. Iwasaki [92], [32]–[34], and Kumano-go [58]–[60]; see the
monograph by Kumano-go [61] for details and more references. The approach relies on the symbolic
calculus technique, which allows to prove the existence of the fundamental solution to the Cauchy
problem for an operator L, provided that its symbol is smooth enough (i.e. belongs to the so-
called “Hörmander class of symbols”). Hoh [29], [30] constructed the generalized Hörmander classes
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of symbols and developed the respective symbolic calculus (“Hoh’s symbolic calculus”, see also the
monograph of Jacob [35]), which in turn allowed to develop the parametrix method; this method was
further extended to evolution equations in the papers of Böttcher [12], [13].

For second-order elliptic differential operators the well-posedness of the martingale problem was
studied in Stroock and Varadhan papers [88, 89]. It was Grigelionis [26] who first gave the martingale
formulation of a Markov process associated with certain integro-differential operator. Well-posedness
of the martingale problem for a Lévy-type generator with a diffusion part was proved by using
purely probabilistic approach in Stroock [87]. Perturbations of α-stable operator were first studied
by Tsuchiya in [90, 91] by constructing the perturbation of the resolvent operator in Lp and then
showing the well-posedness of the martingale problem. The ideas from [90, 91] were developed and
improved by Komatsu in [46, 47], where he investigated space-dependent perturbations of a (non-
isotropic) α-stable operator, and proved that the parametrix expansion for the resolvent is well
defined, and provides the unique solution to the Cauchy problem. Mikulevicius and Pragarauskas
[71]–[75] studied the existence and uniqueness in Hölder and Sobolev spaces of classical solutions to
the Cauchy problem (in Rd) to parabolic integro-differential equation of the order α ∈ (0, 2), where
the kernel of the principal part of the operator is a perturbation of radially symmetric α-stable Lev́y
measure. Then the analytical results are applied for the proof of the uniqueness of the corresponding
martingale problem. In Bass [2], [3] similar resolvent approach as in [47] is used, i.e. the resolvent is
constructed in the form of convergent series, but in contrast to [47] the series are cont constructed
from the resolvent of the non-perturbed process. The resolvent approach for the well-posedness of the
martingale problem for Lévy-type pseudo-differential operators in the weak L2–setting was developed
in Hoh [27], [28], see also the monograph of Jacob [36].

Let us discuss some applications of the parametrix construction. Bally, Kohatsu-Higa [1] provide
for the diffusion case a probabilistic interpretation of the asymptotic expansion of the transition
densities, which enables to find probabilistic representations that may lead to exact Monte Carlo
type simulation methods in order to estimate the transition densities. This work was developed
further in Li, Kohazu-Higa [65], where an SDE with Hölder coefficients driven by a “stable-type”
subordinator is Lévy-driven SDE with Hölder coefficients is considered. Another version of the
parametrix, relied on the parametrix representation of of McKean, Singer [69], was developed in
Konakov, Mammen [50], [51] in order to derive the rate of convergence of the transition probability
density of the respective Markov chain to the transition probability density of a diffusion process, see
also the earlier paper by Konakov and Molchanov [49]. This methodology was developed in further
publications by Konakov, Menozzi and Molchanov [52], in order to get the estimate on the error
in the diffusion approximation, and further in Konakov, Menozzi [53] in order to get the transition
probability density approximation (and the respective error) in the model where the SDE is driven
by a symmetric stable process without a drift and a Gaussian component. In the recent paper of
Mikulevicius and Zhang [76] the earlier results on the uniqueness of the solution to the Cauchy
problem in Hölder spaces [72], [73] are used to show that the Euler scheme for a Lévy-driven SDE
yields positive weak order of convergence.
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