7.RAZRED

Apscisa – os x ( vodoravni pravac)

Brojevni pravac ili koordinatni pravac – pravac na kojem su smješteni brojevi

Koordinatna ravnina – ravnina u kojoj je uveden koordinatni sustav

Koordinatni pravac – mjerni pravac. Uvodimo ga tako da na nekom pravu označimo

točku O, i zatim desno od točke O izaberemo točku E. Točki O pridružimo broj 0,

a točki E 1. Broj 0 je koordinata točke O. Dužina OE je jedinična dužina.

Točka O je ishodište koordinatnog sustava na pravcu. Točka E jedinična točka .

Koordinatni sustav – uvodimo ga slično kao i koordinatnu ravninu, samo što je još potrebno da kroz točku O (ishodište) provučemo okomicu i na njoj također označimo jediničnu dužinu i jediničnu točku

Ordinata – y –os, okomiti pravac

Uređeni par – zapis koordinata

Primjer:

 

Dijagonala mnogokuta – spojnica dvaju nesusjednih vrhova mnogokuta

Koncentrične kružnice – kružnice koje imaju zajedničko središte

Konveksni četverokut – četverokut koji sadrži spojnicu dviju točaka čim sadrži te točke

Kružni luk – dio kružnice između dviju točaka kružnice

Kvadrant – koordinatne osi dijele ravninu na 4 dijela

Mnogokut – dio ravnine (geometrijski lik) omeđen dužinama.

Apscisa – os x ( vodoravni pravac)

Te su dužine stranice mnogokuta. Vrh mnogokuta je točka u kojoj se sastaju

dvije susjedne stranice mnogokuta, a kut mnogokuta je kut što ga određuju

dvije susjedne stranice mnogokuta

Nekonveksi ili vitoperi četverokut – četverokut koji ne sadrži spojnicu svakih dviju svojih točaka

Obodni kut – bilokoji kut na kružnici kojem je vrh na kružnici, a kraci mu sijeku kružnicu

Opseg kruga – duljina kružnice koja ga omeđuje

Pravilan mnogokut – mnogokut je pravilan ako su mu stranice međusobno jednakih duljina, a kutovi sukladni

Prikloni kut pravca – je kut što ga čine pozitivni dio osi x i dio pravca koji je iznad osi x. Ako je pravac usporedan sa osi x onda je njegov prikloni kut nul-kut

Romb – četverokut kojemu su sve stranice jednake duljine

Sekanta – pravac koji siječe kružnicu u dvjema točkama

Sličnost – dva su trokuta (mnogokuta) slična ako su im kutovi sukladni, a odgovarajuće stranice proporcionalne

Središnji kut – bilokoji kut kojemu je vrh središte kružnice

Šiljastokutni trokut – trokut kojemu su sva tri kuta šiljasta

Tangenta – pravac koji dodiruje kružnicu u jednoj točki

Tetiva – dužina koja spaja dvije točke kružnice

Tupokutni trokut – trokut kojemu je jedan kut tupi

 

Eksplicitna jednadžba pravca y=ax+b

Graf funkcije – skup svih točaka ravnine (x,y) gdje je x iz domene funkcije f i

y=f(x), tj skup svih točaka (x, f(x)).

Implicitna jednadžba – ax+by+c=0, pri tom je barem jedan od koeficijenata a i b različit od nule.

Jednadžba grafa - y=f(x)

Linearna funkcija – npr. f(x) =ax

Nultočka – je točka funkcije f u kojoj funkcija popirma vrijednost 0

Padajuća funkcija - funkcija f(x) = ax+ b je padajuća ako je a<0

Područje definicije ili domena – funkcija f svakom x-u pridružuje neku vrijednost, a sve vrijednosti koje x može poprimiti zove se domena, skup svih f(x) zove se skup vrijednosti

Rastuća funkcija – funkcija f(x) = ax+ b je rastuća ako je a>0

Sustav linearnih jednadžbi s dvjema nepoznanicama a \cdot x+b \cdot y=c, a,b \neq 0

 

Glavnica ( kapital) – iznos novca uložen na štednju ili pak iznos posuđenog zajma

Jednostavni kamatni račun k= \frac{(g \cdot p \cdot n)}{100} pri čemu je k kamata, p kamatna stopa, g glavnica, a n oznaka vremena u godinama

Kamata – iznos novca koji dužnik plaća na pozajmljenu glavnicu ili iznos novca koji banka plaća štediši

Kamatna stopa ili kamatnjak – je postotak uz koji se ulaže glavnica ili podiže zajam

Osnovna vrijednost – vrijednost od koje računamo neki postotak ( npr. 47 od 2700)

Postotak – postotak je razlomak sa nazivnikom 100, tj razlomak oblika \frac{p}{100} i piše se p%