On the Global Convergence of the Cyclic Jacobi Methods for the Symmetric Matrix of Order 4
 Erna Begović Kovač and Vjeran Hari

University of Zagreb, Croatia

Abstract

We prove the global convergence of the general cyclic Jacobi method for symmetric matrices of order four. In particular, we study the method under the strategies that enable full parallelization of the method. These strategies, unlike the serial ones, can force the method to be very slow/fast within one cycle, depending on the underlying matrix. This implies that for the global convergence proof one has to consider several adjacent cycles.
Parallel strategies $(\mathbf{1 6} / \mathbf{1 2 0})$
Two representatives are:
$\left[\begin{array}{cccc}* & 4 & 0 & 2 \\ 4 & * & 3 & 1 \\ 0 & 3 & * & 5 \\ 2 & 1 & 5 & *\end{array}\right]$ and $\left[\begin{array}{llll}* & 4 & 2 & 0 \\ 4 & * & 1 & 3 \\ 2 & 1 & * & 5 \\ 0 & 3 & 5 & *\end{array}\right]$.

Jacobi method is an iterative method of the form

$$
A^{(k+1)}=R_{k}^{T} A^{(k)} R_{k}, \quad k \geq 0, \quad A^{(0)}=A
$$

where R_{k} are plane rotations and A is a symmetric matrix.
Off-norm of A is defined by

$$
S(A)=\frac{\sqrt{2}}{2}\|A-\operatorname{diag}(A)\|_{F}=\sqrt{\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{i j}^{2}}
$$

- The method is globally convergent if, for each starting $A, \lim _{k \rightarrow \infty} A^{(k)}$ is a diagonal matrix, which is equivalent to

$$
\lim _{k \rightarrow \infty} S\left(A^{(k)}\right)=0
$$

- It is sufficient to show that

$$
S^{2}\left(A^{(K)}\right) \leq \gamma S^{2}(A), \quad 0 \leq \gamma<1, K \in \mathbb{N}
$$

Pivot strategies

- Pivot strategy $I: k \mapsto(i(k), j(k)), \quad k \in \mathbb{N}$.
- Periodic strategy with period $T: I(k+T)=I(k)$, for all $k \geq 0$.
Cyclic strategy: $T=N \equiv \frac{n(n-1)}{2}$ and all off-diagonal elements are annihilated exactly once during one period.

$$
\text { Pivot ordering: } \mathcal{O}_{I}=I(0), \ldots, I(N-1)
$$

- A cyclic strategy I can be represented by the matrix $M_{I}=\left(m_{i j}\right)$, where

$$
m_{i j}=m_{j i}=k, \quad \text { if } I(k)=(i, j), i<j
$$

Equivalent, shift-equivalent and weakly equivalent strategies

- On order 4 matrix we can assume $I(0)=(1,2)$. There are $5!=120$ possible pivot orderings.

Nazareth strategies (11/120)

$$
\text { E.g. } \quad\left[\begin{array}{cccc}
* & 0 & 2 & 1 \\
0 & * & 3 & 5 \\
2 & 3 & * & 4 \\
1 & 5 & 4 & *
\end{array}\right] .
$$ is a constant γ that does not depend on I such that

Main theorem

Let $A \in \mathbb{C}^{4 \times 4}$ be a symmetric matrix. Let I be a cyclic strategy and by $A^{[2]}$ denote a matrix obtained from A after two full cycles of the Jacobi method defined by the strategy I, with rotation angles from the interval $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$. There

$$
S^{2}\left(A^{[2]}\right) \leq \gamma S^{2}(A), \quad 0 \leq \gamma<1
$$

Permutationally equivalent (23/120)
Two strategies I_{1} and I_{2} are permutationally equivalent if there is a permutation matrix P such that

$$
M_{I_{2}}=P^{T} M_{I_{1}} P
$$

