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S. Supplementary material. This is the supplementary material for the sec-
tions 4, 6 and 7 of the main paper, to which the reader is encouraged to refer.

S.1. Addendum to section 4. Figure S.1 shows ZVSCAL, a Fortran routine
similar to the one used in our code, that is a fully vectorized, cache-friendly alternative
to applying ZDSCAL with a non-unit stride in Algorithm 4.1 in the manuscript.

PURE SUBROUTINE ZVSCAL(M, DX, ZY)
IMPLICIT NONE
! alignment in bytes .EQ. cache line size
INTEGER, PARAMETER :: ALIGNMENT_IN_B = 64
INTEGER, INTENT(IN) :: M
DOUBLE PRECISION, INTENT(IN) :: DX(M)
DOUBLE COMPLEX, INTENT(INOUT) :: ZY(M)

INTEGER :: I
!DIR$ ASSUME_ALIGNED DX:ALIGNMENT_IN_B

!DIR$ VECTOR ALWAYS ASSERT
DO I = 1, M

ZY(I) = DX(I) * ZY(I)
END DO

END SUBROUTINE ZVSCAL

Fig. S.1. ZVSCAL, a Fortran routine for scaling the elements of a complex vector ZY by the
corresponding elements of a real vector DX, as a generalization of the ZDSCAL BLAS 1 routine.

Figure S.1 also illustrates the methods of vectorizing loops and specifying the
alignment requriements with the Intel Fortran compiler directives, used in our code.

In Algorithm 4.1, instead of NL ZDSCALs over rows of length NG, there could be
NG applications of ZVSCALs on the contiguous column sections of length NL. Timing
results of such a variant of Phase 1, obtained on [1], are given in Table S.1. The
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percentage of time spent in ZVSCALs is, on average (but not in each case), lower than
in ZDSCALs, indicating the former as a viable choice for Phase 1.

Table S.1
The average per-atom wall execution time (wtime) of Phase 1 with 24 and 48 threads. Since

the routine weights are rounded to the nearest per mil, their sum may not yield 100%. The first
weight corresponds to ZHEBPJ, the second one to ZGEMM, and the third one to ZVSCALs step of Phase 1.

ID average wtime [s] per atom routine weights %:%:%
24 threads 48 threads 24 threads 48 threads

A1 0.071674 0.112488 64.6 : 33.8 : 1.6 68.4 : 30.1 : 1.5

A2 0.046098 0.049334 15.3 : 80.9 : 3.8 15.5 : 80.9 : 3.5

A3 0.068751 0.072903 10.4 : 85.9 : 3.8 10.2 : 85.8 : 4.0

A4 0.094880 0.097327 7.0 : 89.3 : 3.7 6.9 : 89.5 : 3.5

B1 0.003533 0.004033 15.6 : 78.4 : 6.0 14.4 : 78.9 : 6.7

B2 0.005745 0.006444 9.7 : 83.1 : 7.3 9.0 : 82.4 : 8.6

B3 0.009061 0.010523 6.5 : 85.3 : 8.2 6.6 : 83.7 : 9.7

B4 0.013365 0.015121 4.1 : 87.1 : 8.7 4.8 : 84.2 : 11.1

S.2. Addendum to section 6. In Figures S.2 and S.3 the generalized eigen-
values Λ, obtained by the Phase 3 with 64 threads, are plotted for the entire dataset.
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Fig. S.2. Left to right, top to bottom: the generalized eigenvalues Λ(A1), Λ(A2), Λ(A3), Λ(A4).

Figures S.4 and S.5 show the relative errors (Λ̂i − Λ̃i)/Λ̃i in the computed and
ascendingly sorted generalized eigenvalues, where Λ̃i come from Phase 2 and the
Level 2 (BO) Phase 3 algorithm, while Λ̂i come from the ZHEGV routine in the left,
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Fig. S.3. Left to right, top to bottom: the generalized eigenvalues Λ(B1), Λ(B2), Λ(B3), Λ(B4).

and from the ZHEGVD routine in the right subfigures, in all cases with 64 threads.
Notice that the above expression preserves the directionality of the relative errors.

Table S.2 is an addendum to subsection 6.5.4 of the main paper. The results with
24 threads were obtained on [1], and those with 32 threads on an Intel Xeon Phi 7210.

Table S.2
The wall times for the explicit formation of H and S, combined with those for a LAPACK’s

generalized Hermitian eigensolver (ZHEGV or ZHEGVD), and the speedup vs. (?), with 32 and 24 threads.

ID # of (max. of 2 runs for H,S) wall time [s] for total wall time [s] with speedup vs. (?)

thrs. H = F̃ ∗J̃ F̃ S = G̃∗G̃ ZHEGV ZHEGVD ZHEGV (/) ZHEGVD (.) (?)/(/) (?)/(.)

A1 32 2.441 2.003 13.229 5.800 17.673 10.087 16.902 29.612
24 1.709 0.720 3.211 1.889 5.640 3.863 20.588 30.055

A2 32 7.175 4.432 44.349 24.058 55.925 35.665 19.647 30.809
24 3.599 1.951 13.933 10.106 19.467 15.628 21.480 26.756

A3 32 18.039 10.953 150.096 82.914 179.037 111.895 19.309 30.896
24 8.842 4.761 59.503 41.403 73.105 54.991 20.001 26.589

A4 32 40.471 23.477 404.234 242.245 467.785 306.193 21.775 33.267
24 19.376 10.557 190.010 123.832 219.942 153.662 20.129 28.812

B1 32 2.254 2.201 5.855 2.310 10.310 6.592 23.234 36.341
24 1.249 0.769 1.098 0.636 3.051 2.643 29.530 34.091

B2 32 7.340 4.343 20.335 8.764 31.754 20.447 22.836 35.465
24 3.381 1.885 4.817 3.220 9.973 8.486 27.240 32.015

B3 32 18.556 11.224 59.596 31.903 87.790 61.683 23.819 33.900
24 8.246 4.548 18.200 13.508 30.995 26.166 24.355 28.849

B4 32 38.886 22.372 162.476 91.045 223.733 151.706 23.217 34.240
24 18.096 10.175 55.711 43.620 83.982 71.541 23.860 28.009
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S.3. Addendum to section 7.

S.3.1. Computing the relative errors. The relative errors from (7.1) have to
be obtained in a higher precision that the one used for the rest of the computation, to
reduce the effects of the rounding errors. However, the exact (or “infinite” precision)
arithmetic is prohibitively expensive with the data of all but very small dimensions.

That implies using either the 128-bit quadruple (emulated in software and thus
slower) or the 80-bit Intel extended (hardware provided) floating-point types. We
chose the latter, but it is supported only by the GNU Fortran compiler with KIND=10.

The data is read in double precision and promoted to extended precision. The
column scalings by ΣF and ΣG, the matrix multiplications, and the Frobenius norm
computation are manually parallelized with OpenMP. The last operation is performed
by accumulating z̄ · z per each column (followed by a reduction and a square root),
but since the exponent range of the datatype is also significantly wider than what is
contained in the data, no overflow or underflow should occur.

Accuracy results. In Table S.3 the relative errors for the full dataset are shown.

Table S.3
The relative errors in the full GHSVD (from the Phases 3 and 4, with 32 and 64 threads),

obtained in extended precision. While ‖F‖F does not vary with the number of threads used in
Phase 2, ‖G‖F varies so negligibly that the rounding to the six decimal places shown is not affected.

ID ‖F‖F ‖G‖F
‖F − UΣFX‖F /‖F‖F ‖G− V ΣGX‖F /‖G‖F

32 threads 64 threads 32 threads 64 threads

A1 197.339487 57.118214 1.250533e−13 1.260103e−13 9.474358e−14 9.644613e−14

A2 318.701344 75.513862 1.618982e−13 1.609144e−13 2.064587e−13 2.069223e−13

A3 317.883120 85.813833 2.721798e−13 2.716406e−13 4.533952e−13 4.530720e−13

A4 385.297523 103.571436 3.510818e−13 3.517243e−13 8.234634e−13 8.234643e−13

B1 148.478058 40.515148 1.120428e−13 1.123317e−13 7.981249e−14 7.976024e−14

B2 275.148879 54.161577 2.244659e−13 2.234393e−13 1.569443e−13 1.566841e−13

B3 423.840558 66.447550 4.175919e−13 4.196549e−13 2.821371e−13 2.813644e−13

B4 565.824887 76.845006 7.181818e−13 7.223445e−13 4.731078e−13 4.733831e−13

An alternative definition of the relative errors. Another option to compute the
relative errors is to look at ‖FZ − UΣF ‖F /‖F‖F and ‖GZ − V ΣG‖F /‖G‖F , thus
avoiding Phase 4, but is neither general enough to be used for the other types of the
G(H)SVD algorithms, not it would account for the effects of Phase 4, should it be
employed after the execution of the algorithms described in the main paper.

For experimenting with different combinations of precision of arithmetic and in-
memory data, up to quadruple precision of either or both, a separate software distri-
bution is also freely available in https://github.com/venovako/MPHZ repository.

S.3.2. Comparison with ZGGSVD3. In Table S.4 the speedup of the Phase 3
followed by the Phase 4 (both with 32 threads) versus ZGGSVD3 is shown. Neither here
nor in Table 7.1 in the main paper the timings include the block column reordering,
necessary between the Phases 3 and 4, from the order given by the first step of a
parallel Jacobi strategy to the natural one, with the ascending block indices. How-
ever, that would amount to a permutation by copying (similarly to forming G̃P2 in
subsection 5.4.1 of the main paper in a combined implementation of those phases,
and from Table 5.1 in the main paper it follows that such reshuffling would have a

https://github.com/venovako/MPHZ
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Table S.4
The wall execution time (wtime) and the speedup of the Phases 3 (with J = I) and 4 versus the

ZGGSVD3 LAPACK routine on the set C, with 32 threads and n denoting the order of the matrices.

n
ZGGSVD3 Phase 3 Phase 4 Phases 3 & 4 speedup

wtime [s] (•) wtime [s] & sweeps wtime [s] wtime [s] (◦) (•)/(◦)
1000 367.13 6.10; 13 3.14 9.24 39.74

2000 5873.70 33.15; 14 22.06 55.21 106.40

3000 21991.07 100.28; 16 71.58 171.86 127.96

4000 54233.01 228.10; 17 199.02 427.11 126.98

5000 107167.78 436.18; 17 325.85 762.04 140.63

negligible impact on the overall speedup for the matrices large enough.
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Fig. S.4. From top to bottom: the errors in the generalized eigenvalues Λ(A1), Λ(A2), Λ(A3),
Λ(A4), from the LAPACK routines ZHEGV (left & blue) and ZHEGVD (right & red), relative to the
generalized eigenvalues computed by Phase 2 and then the Level 2 (BO) Phase 3 GHSVD.
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Fig. S.5. From top to bottom: the errors in the generalized eigenvalues Λ(B1), Λ(B2), Λ(B3),
Λ(B4), from the LAPACK routines ZHEGV (left & blue) and ZHEGVD (right & red), relative to the
generalized eigenvalues computed by Phase 2 and then the Level 2 (BO) Phase 3 GHSVD.
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