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Abstract

We develop an error analysis for the generalized singular values of the pair (F,G) com-
puted by the implicit Hari–Zimmermann algorithm. We obtain that, after one step of
independent transformations, the generalized singular values are computed with high
relative accuracy if the norms of columns of F and G have similar magnitudes. Similar
holds for the generalized singular values obtained after completion of the algorithm.
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1. Introduction

The Generalized Singular Value Decomposition (GSVD) of the matrix pair (F,G)
can be computed in various ways. For example, LAPACK double precision routine
DGGSVD consists of the preprocessing step (subroutine DGGSVP, to make F and G triangu-
lar and G nonsingular), and the modified Kogbetliantz algorithm (subroutine DTGSJA).

The GSVD of a matrix pair (F,G) with G nonsingular can be viewed as the Gener-
alized Eigenvalue Problem (GEP) for the pair (A, B) := (F∗F,G∗G). Therefore all the
methods for the GEP can implicitly be applied to the pair (F,G).

In [6], implicit application of the Hari–Zimmermann method (normalized variant of
the Falk–Langemeyer method) for the computation of the GSVD is studied. Numerical
tests show that the proposed method can be significantly faster and more accurate than
the corresponding LAPACK routine DTGSJA. In this paper we derive a proof of accuracy
of the implicit Hari–Zimmermann method.
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The paper is organized as follows. Section 2 contains brief description of the one-
sided Hari–Zimmermann algorithm for the computation of the generalized singular val-
ues. In Section 3 we give perturbation bounds for a single Hari–Zimmermann trans-
formation, while in Section 4 we present the perturbation bound for the sequence of
independent transformations, as well as the main perturbation theorem.

2. The one-sided Hari–Zimmermann algorithm for the GSVD

For the sake of completeness, we will present here the Hari–Zimermann method
constructed in [3] for the GEP, and modified in [6] for the GSVD.

To apply the method, matrix G in the pair (F,G) must be of full column rank, and
for an efficient implementation, matrices F and G should be square. If pair (F,G) is
not already in the required form, that can be achieved by the applying the LAPACK
subroutine DGGSVP.

Since G is of full column rank, pair (F,G) can be scaled from the right-hand side to
make the norms of the columns of the newly computed matrix G(1) equal to one. This
task is easily performed by taking

D = diag
(

1
‖g11‖2

,
1

‖g22‖2
, . . . ,

1
‖gkk‖2

)
,

and the pair (F,G) is transformed into

F(1) := FD, G(1) := GD.

Note that the new pair (F(1),G(1)) has the same generalized singular values as the pair
(F,G).

The one-sided Hari–Zimmermann method constructs a sequence of matrix pairs

F(`+1) = F(`)Z`, G(`+1) = G(`)Z`, ` ∈ N. (2.1)

In step `, matrix Z` in (2.1) is chosen to orthogonalize columns i and j in the matrix
pair (F(`),G(`)), and to keep the column norms of G(`) equal to one. If the matrix Z, that
orthogonalizes the columns of the pair (F,G) is needed, the accumulation procedure for
Z is very similar to (2.1), i.e.,

Z(1) = I, Z(`+1) = Z(`)Z`.

Instead of one unknown angle in a plane rotation, matrix Z` has two unknown angles,
to be able to orthogonalize two pairs of columns—one pair in each matrix F and G. The
transformations are easier to be written in terms of elements of the pair (A(`), B(`)) :=
([F(`)]T F(`), [G(`)]TG(`)). If the pivot columns of F(`) and G(`) are denoted by f (`)

i , f (`)
j ,
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g(`)
i , and g(`)

j , then the elements of Â(`) and B̂(`) are the inner products of pivot columns
of F(`) and G(`), respectively,

a(`)
ii = ‖ f (`)

i ‖
2
2, a(`)

j j = ‖ f (`)
j ‖

2
2, a(`)

i j = [ f (`)
i ]T f (`)

j , b(`)
i j = [g(`)

i ]T g(`)
j . (2.2)

Then, the corresponding 2 × 2 pivot pair of (A(`), B(`)) is denoted by (Â(`), B̂(`)), where

Â(`) =

a(`)
ii a(`)

i j

a(`)
i j a(`)

j j

 , B̂(`) =

b(`)
ii b(`)

i j

b(`)
i j b(`)

j j

 . (2.3)

The matrix Z` is the identity matrix, except in the plane (i, j), where its restriction Ẑ`
is equal to

Ẑ` =
1√

1 −
(
b(`)

i j
)2

[
cosϕ` sinϕ`
− sinψ` cosψ`

]
, (2.4)

with

cosϕ` = cosϑ` + ξ`(sinϑ` − η` cosϑ`),

sinϕ` = sinϑ` − ξ`(cosϑ` + η` sinϑ`),

ξ` =
b(`)

i j√
1 + b(`)

i j +

√
1 − b(`)

i j

,

cosψ` = cosϑ` − ξ`(sinϑ` + η` cosϑ`),

sinψ` = sinϑ` + ξ`(cosϑ` − η` sinϑ`),

η` =
b(`)

i j(
1 +

√
1 + b(`)

i j

)(
1 +

√
1 − b(`)

i j

) ,
tan(2ϑ`) =

2a(`)
i j −

(
a(`)

ii + a(`)
j j
)
b(`)

i j(
a(`)

j j − a(`)
ii

)√
1 −

(
b(`)

i j
)2
, −

π

4
< ϑ` ≤

π

4
.

(2.5)
There are some special cases. If a(`)

i j = b(`)
i j = 0, obviously both pivot submatrices are

already diagonal, and we can choose ϑ` = 0 to make the transformation identity, i.e., not
to apply it. If a(`)

ii = a(`)
j j , and 2a(`)

i j =
(
a(`)

ii + a(`)
j j
)
b(`)

i j , then the matrices Â(`) and B̂(`) are

proportional. Hence, we set ϑ` = π
4 , unless a(`)

i j = b(`)
i j = 0.

Hari in his Ph.D. thesis proved [3, Proposition 2.4] that

min{cosϕ`, cosψ`} > 0, (2.6)

and
−1 < tanϕ` tanψ` ≤ 1, (2.7)

with tanϕ` tanψ` = 1, if and only if ϑ` = π
4 . Therefore Ẑ` is nonsingular. More precisely,

it holds (see [6])

det(Ẑ`) =
1√

1 −
(
b(`)

i j
)2
> 0. (2.8)
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It is easy to show that the condition number of Ẑ`, the restriction of the transformation
matrix, is

‖Ẑ`‖2 =
| cos(ψ` − ϕ`)|

1 − | sin(ψ` − ϕ`)|
=
|(1 − ξ`η`)

2 − ξ2
` |

1 − |2ξ
`
(1 − ξ

`
η
`
)|
.

The last equality shows that it does not depend explicitly on ϑ`, since the previous for-
mula can be written in terms of b(`)

i j . As we expected, the condition number depends only

on the distance of the submatrix B̂(`) from the singularity, i.e., how far is |b(`)
i j | from 1 (the

effect of the size of |b(`)
i j | on the condition number of Ẑ` is shown in Figure 2.1). The one-

sided Hari–Zimmerman algorithm is given in Algorithm 2.1.
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Figure 2.1: Effect of size of the element b(`)
i j on the condition number of Ẑ.

3. Backward error analysis of the implicit Hari–Zimmermann algorithm

In this section we will prove that the implicit Hari–Zimmermann method is backward
stable, and, if the matrices permit, computes the generalized singular values with small
relative errors.

Let F ⊂ R denote the set of exactly representable floating–point numbers, without
the gradual underflow range. In other words, if γ ∈ F, then γ = 0, or |γ| lies within the
underflow and overflow limits. Let f`( ) denote the computed value of the argument, in
the finite precision floating–point arithmetic with the unit roundoff error ε. We assume
that f` satisfies the following relations (see [5])

f`(x ◦ y) = (1 + ε◦)(x ◦ y), |ε◦| ≤ ε, (3.1)

f`(
√

x) = (1 + ε√ )
√

x, |ε√ | ≤ ε, (3.2)

f`(x · y + z)) = (1 + εfma)(x · y + z)), |εfma| ≤ ε, (3.3)
4



Algorithm 2.1: Implicit cyclic Hari–Zimmermann algorithm.
Description: Algorithm HZ Orthog computes the generalized singular values of a

matrix pair (F,G) (full GSVD algorithm is given in [6]). Constant
max sw denotes the maximal number of allowed sweeps. No trans-
formations in a sweep means that all the transformations have been
computed as the identity matrices.

HZ Orthog(inout :: F, G, Z, in :: k, acc, max sw);
begin

it = 0;
repeat // sweep loop

it = it + 1;
for all pairs (i, j), 1 ≤ i < j ≤ k do

compute Â and B̂ from (2.2);
compute the elements of Ẑ by using (2.5);
// transform F and G
[ fi, f j] = [ fi, f j] · Ẑ;
[gi, g j] = [gi, g j] · Ẑ;

end for
until (no transf. in this sweep) or (it ≥ max sw);
// compute the generalized singular values of (F,G)
for i = 1 to k do

σi = ‖ fi‖2;
end for

end

where ◦ is any of the four elementary arithmetic operations, whenever the input argu-
ments of f` belong to F, and the correctly rounded result is within the range of F. The
operation in (3.3) is known as the “fused multiply and add” (FMA), performed with only
one rounding, which is implemented in many modern processors. If FMA is not sup-
ported, then the error in (3.3) is bounded by 2ε, and all the results below are still valid,
but with slightly larger numerical constants in all bounds. From now on, ε1, ε2, . . ., with
numerical subscripts, denote the relative errors of individual operations, i.e., the quanti-
ties absolutely bounded by the unit roundoff error.

The pointwise one-sided transformations on the matrices F(`) and G(`) in Algo-
rithm 2.1 are equivalent to the respective congruence (2.1) on the matrix pair(

A(`), B(`)) :=
(
(F(`))T F(`), (G(`))TG(`)).

These transformations do not alter the generalized eigenvalues of A and B, i.e., the gen-
eralized singular values of F and G, regardless of how we compute the parameters of the
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transformation matrix Ẑ` in (2.4), as long as the transformation has the same structure
as in (2.4) and is nonsingular. Therefore, the stability of the algorithm depends solely
on how much the computed matrices after the transformation differ from exact results of
some transformation (not necessarily the same) with the structure (2.4). In the backward
stability terms, the computed results are interpreted as the exact results of a “structure
preserving” transformation from (2.4), applied on somewhat perturbed initial matrices
F + δF and G + δG, with perturbed generalized singular values. Structure preservation
implies that the “backwardly” perturbed generalized singular values are exactly equal to
the computed ones.

3.1. Backward stability of a single Hari–Zimmermann transformation
The Hari–Zimmermann transformation Ẑ` in (2.4) is determined by the following

three parameters: sinϕ`, sinψ`, and b(`)
i j . From (2.6), both cosines are positive, i.e., they

are uniquely determined by the sines

cosϕ` =

√
1 − sin2 ϕ`, cosψ` =

√
1 − sin2 ψ`, (3.4)

thus avoiding the first formula in (2.5). In practice, it pays off to compute the cosines
by using (3.4), to preserve the essential structure of the transformation in presence of
rounding errors, because (3.4) yields a slightly better error bound than (2.5). In exact
arithmetic, B(`) is always positive definite, so |b(`)

i j | < 1, and from (2.7) it follows that the
transformation is nonsingular.

Quite generally, regardless of the pivot strategy, each step of the one-sided algorithm
can be viewed as a multiplication of both working matrices from the right-hand side,
by a certain Hari–Zimmermann transformation W. If (i, j) is the pivot pair at that step,
then W is equal to the identity matrix, except for the pivot submatrix Ŵ of order 2 in the
(i, j)-plane, where

Ŵ =

[
ŵ11 ŵ12
ŵ21 ŵ22

]
=

1
√

1 − b2

[
cos ϕ̃ sin ϕ̃
− sin ψ̃ cos ψ̃

]
. (3.5)

To simplify the notation, we will omit the step index `, while discussing the accuracy
of a single step. The step begins with working matrices F and G. First, it computes the
transformation matrix, and then transforms the pivot columns i and j, to obtain the trans-
formed matrices FW and GW. In floating–point arithmetic, each computation involves
rounding errors, so let W′ = f`(W) be the actually computed transformation matrix, and
let F′ = f`(FW′) and G′ = f`(GW′) be the computed matrices after the transformation.

Similarly to Ẑ` above, the pivot submatrix Ŵ is determined by the following three
parameters: sin ϕ̃, sin ψ̃, and b. These parameters are actually computed in the earlier
part of the step, from the annihilation relations (2.5), but, for the transformation itself,
they can be regarded simply as given values, that are exactly representable floating–point
numbers, i.e., they belong to F. From (3.5), these three values must satisfy

f`(1 − b2) > 0, | sin ϕ̃| ≤ 1, | sin ψ̃| ≤ 1. (3.6)
6



Moreover, to preserve the full column rank of F and G, and for the backward error
bound, it is necessary that the exact Ŵ is nonsingular, i.e.,

cos ϕ̃ · cos ψ̃ + sin ϕ̃ · sin ψ̃ = cos(ϕ̃ − ψ̃) , 0. (3.7)

To compute the elements of Ŵ, first we compute the cosines, as in (3.4), and then we
divide all four elements by

√
1 − b2. In this process, an expression of the form

√
1 − γ2

is evaluated for three different arguments γ (all three parameters of Ŵ). The following
proposition gives the relative error bound for the computed results.

Proposition 3.1. Let γ ∈ F, such that |γ| ≤ 1. If the expression
√

1 − γ2 is evaluated in
the floating–point arithmetic, the computed value is

f`
(√

1 − γ2
)

= (1 + εγ)
√

1 − γ2, |εγ| ≤ 1.5ε.

Proof. By using (3.1)–(3.3) and the standard linearization, i.e., by neglecting the terms
of order O(ε2), we obtain

f`
(√

1 − γ2
)

= (1 + ε√ )
√

(1 + εfma)(1 − γ2) ≈ (1 + ε√ )
(
1 +

εfma

2

) √
1 − γ2

≈

(
1 + ε√ +

εfma

2

) √
1 − γ2 = (1 + εγ)

√
1 − γ2,

where |εγ| ≤ 1.5ε.

The same type of linearized error analysis will be used henceforward. Proposi-
tion 3.1 implies that the cosines are computed with the relative error bounded by 1.5ε.
Since f`(

√
1 − b2) is also computed with the relative error εb bounded by 1.5ε, the final

division of all four elements by this value increases their respective relative error bounds
by 2.5ε. A detailed proof of this fact is as follows. Let γ̃ denote the computed value of
either the sine or the cosine in (3.5). Then γ̃ = (1 + εγ)γ, where the relative errors for
sines are εγ = 0, and for cosines |εγ| ≤ 1.5ε. For the division by f`(

√
1 − b2), from (3.1)

it follows that

f`

 γ̃

f`
(√

1 − b2)
 = (1 + ε/)

(1 + εγ)γ

(1 + εb)
(√

1 − b2) ≈ (1 + ε/ + εγ − εb)
γ

√
1 − b2

,

where |ε/| ≤ ε, so |ε/ + εγ − εb| ≤ |εγ| + 2.5ε.
We conclude that the computed pivot submatrix W̃ = f`(Ŵ) satisfies

W̃ =

[
w̃11 w̃12
w̃21 w̃22

]
=

[
(1 + εbc1)ŵ11 (1 + εbs1)ŵ12
(1 + εbs2)ŵ21 (1 + εbc2)ŵ22

]
, (3.8)

with componentwise relative errors bounded by

|εbc1|, |εbc2| ≤ 4ε, |εbs1|, |εbs2| ≤ 2.5ε. (3.9)
7



Now we analyze the errors introduced by applying the computed transformation W′

to the original matrices F and G in floating–point arithmetic. The computed matrices
F′ = f`(FW′) and G′ = f`(GW′) can be written as perturbed results of the exact trans-
formation by the original matrix W

F′ = FW + δF′, G′ = GW + δG′, (3.10)

where δF′ and δG′ denote the forward perturbations caused by rounding errors through-
out the computation, starting from W, F and G. Since both W and W′ differ from the
identity matrix only in the (i, j)-plane, the transformation in (3.10) changes only the pivot
columns i, j in F and G. Consequently, only these two columns are possibly nonzero in
both perturbation matrices δF′ and δG′.

The analysis for F and G is exactly the same, so we will do it only for F, and G will
be mentioned only when necessary. The transformation of pivot columns is determined
by the pivot submatrices of W and W′

[ f ′i , f ′j ] = f`([ fi, f j] · W̃) = [ fi, f j] · Ŵ + [δ f ′i , δ f ′j ]. (3.11)

The computation of each element is organized in such a way to minimize the error bound.
First, the element of W̃ with the smaller error bound (originating from the sine) is in-
volved in an extra multiplication, and the final value is computed by a single FMA
operation, as follows

f ′pi = f`(w̃11 fpi + w̃21 fp j) = f`
(
w̃11 fpi + f`(w̃21 fp j)

)
,

f ′p j = f`(w̃12 fpi + w̃22 fp j) = f`
(

f`(w̃12 fpi) + w̃22 fp j
)
.

In terms of the original values in F and Ŵ, and rounding errors caused by these opera-
tions, from (3.1), (3.3) and (3.8), we have

f ′pi = (1 + εfma1)
[
(1 + εbc1)ŵ11 fpi + (1 + ε1)(1 + εbs2)ŵ21 fp j

]
,

f ′p j = (1 + εfma2)
[
(1 + ε2)(1 + εbs1)ŵ12 fpi + (1 + εbc2)ŵ22 fp j

]
.

(3.12)

From (3.11) and (3.12), it follows that the corresponding perturbations δ f ′pi and δ f ′p j are

δ f ′pi ≈ (εfma1 + εbc1)ŵ11 fpi + (εfma1 + ε1 + εbs2)ŵ21 fp j,

δ f ′p j ≈ (εfma2 + ε2 + εbs1)ŵ12 fpi + (εfma2 + εbc2)ŵ22 fp j.

By using (3.9) and |εfma1|, |εfma2| ≤ ε, we get the following pointwise absolute error
bounds

|δ f ′pi| ≤ ε
(
5 |ŵ11| · | fpi| + 4.5 |ŵ21| · | fp j|

)
,

|δ f ′p j| ≤ ε
(
4.5 |ŵ12| · | fpi| + 5 |ŵ22| · | fp j|

)
.
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Finally, it is easy to see that the forward perturbations of pivot columns satisfy the fol-
lowing normwise bounds

‖δ f ′i ‖2 ≤ ε
(
5 |ŵ11| · ‖ fi‖2 + 4.5 |ŵ21| · ‖ f j‖2

)
,

‖δ f ′j ‖2 ≤ ε
(
4.5 |ŵ12| · ‖ fi‖2 + 5 |ŵ22| · ‖ f j‖2

)
.

By using the second equality in (3.5), and the fact that both cosines are nonnegative, we
get a more convenient form of these bounds

‖δ f ′i ‖2 ≤
ε

√
1 − b2

(
5 cos ϕ̃ · ‖ fi‖2 + 4.5 | sin ψ̃| · ‖ f j‖2

)
,

‖δ f ′j ‖2 ≤
ε

√
1 − b2

(
4.5 | sin ϕ̃| · ‖ fi‖2 + 5 cos ψ̃ · ‖ f j‖2

)
.

(3.13)

The same relations hold for the perturbations δg′i , δg
′
j of pivot columns in G′, with the

addition that the initial pivot columns gi, g j have unit norms.
On the other hand, in backward terms, the computed matrices in (3.10) can be viewed

as exact results of the transformation W, but applied to perturbed original matrices F and
G

F′ = (F + δF)W, G′ = (G + δG)W, (3.14)

where δF and δG now denote the backward perturbations, provided that such matrices
exist. Again, only the pivot columns are possibly nonzero in δF and δG. For the pivot
columns of F, (3.14) reduces to the exact transformation by the pivot submatrix Ŵ

[ f ′i , f ′j ] =
(
[ fi, f j] + [δ fi, δ f j]

)
Ŵ. (3.15)

From (3.11) and (3.15) we see that the forward and backward perturbations are related
by [δ f ′i , δ f ′j ] = [δ fi, δ f j]Ŵ. By assumptions (3.6) and (3.7), the exact matrix Ŵ is
nonsingular. Hence, (3.15) can be written as

[δ fi, δ f j] = [δ f ′i , δ f ′j ]Ŵ
−1, (3.16)

which proves the existence of backward perturbations in (3.14).
From (3.5) it follows that

Ŵ−1 =

√
1 − b2

cos ϕ̃ cos ψ̃ + sin ϕ̃ sin ψ̃

[
cos ψ̃ − sin ϕ̃
sin ψ̃ cos ϕ̃

]
=

√
1 − b2

cos(ϕ̃ − ψ̃)

[
cos ψ̃ − sin ϕ̃
sin ψ̃ cos ϕ̃

]
,

and (3.16) now becomes

[δ fi, δ f j] =

√
1 − b2

cos(ϕ̃ − ψ̃)
[
cos ψ̃ · δ f ′i + sin ψ̃ · δ f ′j , − sin ϕ̃ · δ f ′i + cos ϕ̃ · δ f ′j

]
.
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For brevity, let ci j = 1/| cos(ϕ̃ − ψ̃)|. The Euclidean norm of backward perturbations is
then bounded in terms of forward perturbations

‖δ fi‖2 ≤ ci j

√
1 − b2 (

cos ψ̃ · ‖δ f ′i ‖2 + | sin ψ̃| · ‖δ f ′j ‖2
)
,

‖δ f j‖2 ≤ ci j

√
1 − b2 (

| sin ϕ̃| · ‖δ f ′i ‖2 + cos ϕ̃ · ‖δ f ′j ‖2
)
.

First, we substitute the bounds from (3.13) into these inequalities. Since both cosines are
nonnegative, we can take |ϕ̃|, |ψ̃| ≤ π/2. By using the standard trigonometric identities
(like | sin γ| = sin |γ|, for |γ| ≤ π), we obtain the normwise bounds for the backward
perturbations in terms of the original pivot columns

‖δ fi‖2 ≤ εci j
[
(5 cos ϕ̃ · cos ψ̃ + 4.5 | sin ϕ̃| · | sin ψ̃|) · ‖ fi‖2 + 9.5 cos ψ̃ · | sin ψ̃| · ‖ f j‖2

]
≤ εci j

[
5 cos(|ϕ̃| − |ψ̃|) · ‖ fi‖2 + 4.25 sin(2|ψ̃|) · ‖ f j‖2

]
≤ εci j

(
5‖ fi‖2 + 4.25‖ f j‖2

)
,

‖δ f j‖2 ≤ εci j
[
9.5 cos ϕ̃ · | sin ϕ̃| · ‖ fi‖2 + (5 cos ϕ̃ · cos ψ̃ + 4.5 | sin ϕ̃| · | sin ψ̃|) · ‖ f j‖2

]
≤ εci j

[
4.25 sin(2|ϕ̃|) · ‖ fi‖2 + 5 cos(|ϕ̃| − |ψ̃|) · ‖ f j‖2

]
≤ εci j

(
4.25‖ fi‖2 + 5‖ f j‖2

)
.

(3.17)
The same bounds hold for ‖δgi‖2 and ‖δg j‖2, with ‖gi‖2 = ‖g j‖2 = 1, i.e.,

‖δgi‖2 ≤ 9.25εci j = 9.25εci j‖gi‖2, ‖δg j‖2 ≤ 9.25εci j = 9.25εci j‖g j‖2. (3.18)

Theorem 3.2. Let F and G be of full column rank k, and let all columns of G be of unit
Euclidean norm. Let W be a nonsingular Hari–Zimmermann transformation as in (3.5).
Then each step of the one-sided Hari–Zimmermann algorithm is backward stable.

Proof. We have shown already that there exist perturbation matrices δF and δG such
that (3.14) holds, and the only possible nonzero columns in these matrices are bounded
in norm by (3.17) and (3.18), with respect to the original pivot columns in F and G.

3.2. Backward stability with annihilation parameters
Note that Theorem 3.2 holds regardless of how the initial parameters sin ϕ̃, sin ψ̃,

and b of Ŵ are given, as long as they are exactly representable and satisfy the as-
sumptions (3.6) and (3.7). The actual values of these parameters in step ` of the Hari–
Zimmermann algorithm are computed from (2.5), i.e.,

b = f`(b(`)
i j ), sin ϕ̃ = f`(sinϕ`), sin ψ̃ = f`(sinψ`), (3.19)

with the aim to annihilate a(`+1)
i j and b(`+1)

i j after the transformation. In one-sided algo-
rithms, these aims are equivalent to the orthogonalization of pivot columns in the newly
computed matrices F(`+1) and G(`+1). One of the main advantages of the one-sided al-
gorithm is that it does not involve the explicit annihilation, meaning that none of the
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computed elements is actually set to zero. Instead, the new pivot columns are computed,
and there is no big harm if they are not perfectly orthogonal. Therefore, the parame-
ters of the “annihilator” transformation Ŵ = Ẑ` do not have to be computed with the
ultimate precision—the pivot columns can be “fully” orthogonalized in the later steps.
In that respect, the one-sided algorithm is self-correcting, in contrast to the two-sided
algorithm.

From (2.2), b = f`(b(`)
i j ) is computed as the inner product of the pivot columns g(`)

i ,

g(`)
j of G(`), which have unit norms. The floating–point error bounds for this computation

can be found in [4, Section 3.1.]. If b violates the first assumption in (3.6), i.e., |b| ' 1−ε,
then the pivot submatrix B̂(`) = [g(`)

i , g(`)
j ]T [g(`)

i , g(`)
j ] in (2.3) is not positive definite, so

the pivot columns are linearly dependent to the working precision. This can happen only
when G(`) is severely ill-conditioned. Since the pivot submatrix is given by

B̂(`) =

 1 b(`)
i j

b(`)
i j 1

 ,
the Cauchy interlace theorem implies that

σ2
min

(
G(`)) = λmin

(
B(`)) ≤ λmin

(
B̂(`)) = 1 − |b(`)

i j |,

σ2
max

(
G(`)) = λmax

(
B(`)) ≥ λmax

(
B̂(`)) = 1 + |b(`)

i j |.

In exact arithmetic, if |b(`)
i j | ≥ 1 − ε, then the condition of G(`) is at least

κ
(
G(`)) =

σmax
(
G(`))

σmin
(
G(`)) ≥

√
2 − ε
ε

.

For a moderately conditioned starting matrix G, it is reasonable to assume that all com-
puted values of b = f`(b(`)

i j ) throughout the algorithm are uniformly bounded away from
1, so that f`(1 − b2) > 0 in (3.6). Then there exists a (moderate) real constant cb such
that

1
√

1 − b2
≤ cb. (3.20)

Note that global convergence of the algorithm (see [3]) guarantees that B(`) → I, i.e.,
b(`)

i j → 0, so the highest value of 1/
√

1 − b2 occurs in the first few sweeps of the algo-
rithm.

The remaining two parameters of Ŵ in (3.19), namely, sin ϕ̃ = f`(sinϕ`) and sin ψ̃ =

f`(sinψ`), are computed from (2.5). A tedious analysis of rounding errors (skipped here
for brevity) shows that both computed values have small absolute errors—within a small
multiple of ε, compared to the exact values. The same also holds for cos ϕ̃ and cos ψ̃, if
they are computed from (2.5), instead of (3.4).
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When any one of the exact sines is very close to ±1, in an extremely rare case of
unfavorable rounding, we can get | sin ϕ̃| > 1 or | sin ψ̃| > 1, thus violating the assump-
tions (3.6). If this happens, we set sin ϕ̃ = ±1 or sin ψ̃ = ±1, and the signs are chosen
to match the signs of the initially computed values. By doing so, we actually reduce the
magnitude of the error (both absolute and relative) in the computed parameters of Ŵ. It
should be said that such a case never occurred during the course of numerical testing.

Finally, we discuss the assumption (3.7) and possible sizes of the factors ci j in (3.17)
and (3.18). From (2.8), it follows that the exact annihilation parameters must satisfy

cos(ϕ` − ψ`) = cosϕ` cosψ` + sinϕ` sinψ` =

√
1 −

(
b(`)

i j
)2. (3.21)

Whenever the computed parameter b = f`(b(`)
i j ) satisfies f`(1 − b2) > 0, the earlier

analysis ensures that
√

1 − b2 is computed with (at most) a small absolute error, even if
it is close to zero. The same holds for the computed sines and cosines in (3.5). Therefore,
(3.21) is also valid for the computed values, with (at most) a small absolute error

cos(ϕ̃ − ψ̃) = cos ϕ̃ cos ψ̃ + sin ϕ̃ sin ψ̃ ≈
√

1 − b2.

For annihilating transformations Ŵ = Ẑ`, the scale factor ci j in (3.17) and (3.18) satisfies

ci j =
1

| cos(ϕ̃ − ψ̃)|
≈

1
√

1 − b2
,

and from (3.20), it follows that all ci j are (approximately) bounded from above by cb.
To get an exact bound, the value of cb in (3.20) may have to be increased slightly. From
now on, we assume that cb has been increased already, if necessary, so that ci j ≤ cb holds
exactly, for all steps `.

4. Accuracy of the implicit Hari–Zimmermann algorithm

4.1. Backward bound for a sequence of independent transformations
Backward bounds (3.17) and (3.18) are valid for a single step of the one-sided (im-

plicit) Hari–Zimmermann algorithm with the pivot pair (i, j), irrespective of the chosen
pivoting strategy in the whole algorithm. The important thing is that both perturbation
matrices have at most two nonzero columns—these are exactly the pivot columns.

In the so-called parallel pivot strategies (e.g., the modified modulus strategy), we can
independently orthogonalize k/2 pairs of pivot columns in both working matrices. Such
a block of k/2 transformations, which transforms all columns in both working matrices,
will be called a stage of the algorithm. For the discussion below, it does not matter if the
stage is implemented in parallel, or performed sequentially.

To simplify the notation, let F and G denote the starting matrices at the beginning
of a stage, i.e., we can take F = F(`) and G = G(`) at the end of any step ` of the
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algorithm. The algorithm then performs a stage of k/2 independent transformations, and
let F′ and G′ now denote the computed matrices at the end of the stage, so we can take
F′ = F(`+k/2) and G′ = G(`+k/2). Then, by a repeated application of Theorem 3.2, there
exist perturbation matrices δF and δG, such that

F′ = (F + δF)Ws, G′ = (G + δG)Ws, (4.1)

where Ws is the product of all transformations applied in the stage. To get nice bounds
for these perturbations, we need the following lemma.

Lemma 4.1. Let α, β, νi, ν j ∈ R, such that αβ ≥ 0. Then

(ανi + βν j)2 + (βνi + αν j)2 ≤ (α + β)2(ν2
i + ν2

j ).

Proof. By straightforward manipulation we obtain

(ανi + βν j)2 + (βνi + αν j)2 = α2ν2
i + 2αβνiν j + β2ν2

j + β2ν2
i + 2αβνiν j + α2ν2

j

= (α + β)2(ν2
i + ν2

j ) − 2αβ(νi − ν j)2

≤ (α + β)2(ν2
i + ν2

j ),

where the inequality follows from αβ ≥ 0.

For any pivot pair (i, j) in a stage, consider the sum of squares of the two relations
in (3.17). Let α = 5εci j, β = 4.25εci j, νi = ‖ fi‖2, and ν j = ‖ f j‖2. Then, Lemma 4.1 gives

‖δ fi‖22 + ‖δ f j‖
2
2 ≤ (9.25εci j)2(‖ fi‖22 + ‖ f j‖

2
2
)
. (4.2)

The same relation for G follows from (3.18), with ‖gi‖
2
2 + ‖g j‖

2
2 = 2.

Theorem 4.2. After a stage of k/2 independent Hari–Zimmermann transformations, the
backward perturbations δF and δG in (4.1) are bounded by

‖δF‖F ≤ 9.25εcs‖F‖F , ‖δG‖F ≤ 9.25εcs‖G‖F = 9.25εcs
√

k,

where ‖ ‖F denotes the Frobenius norm of a matrix, and cs := max ci j over all pairs of
pivot indices (i, j) at this stage of the algorithm.

Proof. Since the k/2 independent pivot pairs (i, j) in a stage cover all columns of both
matrices, by summing (4.2) over these pivot pairs, and using ci j ≤ cs, we get

k∑
p=1

‖δ fp‖
2
2 ≤ (9.25εcs)2

k∑
p=1

‖ fp‖
2
2.
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For any matrix S with columns sp, p = 1, . . . , k, the Frobenius norm of S can be written
in terms of the Euclidean norm of its columns as

‖S ‖F =

√√√ k∑
p=1

‖sp‖
2
2.

Hence, we obtain the following bound

‖δF‖F ≤ 9.25εcs‖F‖F .

The bound for δG follows from ‖G‖F =
√

k.

In terms of the spectral norm, by using the norm equivalence inequalities ‖S ‖2 ≤
‖S ‖F ≤

√
k‖S ‖2, the results of Theorem 4.2 can be expressed in a slightly weaker form

‖δF‖2 ≤ 9.25εcs
√

k ‖F‖2, ‖δG‖2 ≤ 9.25εcs
√

k.

4.2. Accuracy of the one-sided Hari–Zimmermann algorithm
A typical proof of the accuracy of a Jacobi-type algorithm (for example, of the Jacobi

SVD algorithm, see [1]) uses the fact that the absolute value of the tangent of the rotation
angle is less or equal to 1. This is required to establish a connection between the norms
of the pivot columns before and after the transformation, so that the perturbation of each
pivot column can be expressed in terms of the same column (instead of both columns).
With such bounds it is easy to use some of the standard theorems about the relative
accuracy of singular values.

Unfortunately, in the Hari–Zimmermann algorithm we have two “rotation” angles ϕ̃
and ψ̃, and from (2.7), there is no guarantee that the tangents of both angles are bounded.
To get the required form of bounds, we simply use the actual ratio of norms of pivot
columns.

For simplicity, we assume that the indices in each pivot pair (i, j) are ordered so that
‖ fi‖2 ≥ ‖ f j‖2. Since F is of full column rank, then ‖ f j‖2 = ri j‖ fi‖2, with 0 < ri j ≤ 1,
and (3.17) can be written as

‖δ fi‖2 ≤ εci j(5 + 4.25ri j)‖ fi‖2, ‖δ f j‖2 ≤ εci j

(
4.25
ri j

+ 5
)
‖ f j‖2. (4.3)

Generally speaking, these bounds are quite pessimistic. A closer look at (3.17) reveals
that the final bounds in (3.17), and, consequently, the bounds in (4.3) are obtained by
taking

sin(2|ψ̃|) ≤ 1, sin(2|ϕ̃|) ≤ 1.

In later stages of the algorithm, both angles tend to zero, which damps the effect of the
other pivot column in (3.17), and the terms containing ri j in (4.3).

The relative accuracy of the implicit Hari–Zimmermann method is based on the fol-
lowing perturbation result by Drmač [2, Corollary 2.8].
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Theorem 4.3 (Drmač). Let F and G be of full column rank k, and let the columns of
perturbation matrices δF and δG satisfy the following bounds

‖δ fp‖2 ≤ ε‖ fp‖2, ‖δgp‖2 ≤ ε‖gp‖2, p = 1, . . . , k, (4.4)

for some constant ε, such that 0 ≤ ε < 1. Then, the relative errors in the perturbed
generalized singular values σ̃p of the pair (F + δF,G + δG) are bounded by

|σ̃p − σp|

σp
≤

(
1 +

σmin(GS )
σmin(FS )

)
ε
√

q
σmin(GS ) − ε

√
q
, p = 1, . . . , k, (4.5)

where FS = F diag
(
‖ fp‖

−1
2

)
, GS = G diag

(
‖gp‖

−1
2

)
, and q is the maximal number of

nonzero elements in any row of δF and δG.

Note that the column norms of scaled matrices FS and GS are all equal to 1. Since
the original G in the Hari–Zimmermann algorithm is already scaled in such a way, we
have GS = G.

The result of Theorem 4.3 can be applied for one transformation with the pivot pair
(i, j), and for a whole stage of k/2 independent transformations. To apply it for the
whole process, we need to know the total number of transformations, or the total number
of stages needed for “full” orthogonalization of columns in F and G to the working
precision.

For one transformation W, we can take F = F(`) and G = G(`) as the starting matri-
ces. Since ri j ≤ 1, from (4.3) and (3.18), it follows that the required bounds (4.4) hold
with

ε := εci j

(
4.25
ri j

+ 5
)
,

as all other non-pivot columns in δF and δG are equal to zero. From (3.14), it follows
that the generalized singular values of the computed pair (F′ = F(`+1),G′ = G(`+1)) after
the transformation W, are equal to those of the perturbed initial pair (F + δF,G + δG).
If ε < 1, then (4.5) with q = 2 gives the relative error bound for the perturbation of the
generalized singular values induced by that transformation (in both the forward and the
backward sense).

For a stage of k/2 independent transformations, we proceed in exactly the same
manner. Let F = F(`) and G = G(`) be the starting matrices at the beginning of the
stage. From (4.1), it follows that the generalized singular values of the computed pair
(F′ = F(`+k/2),G′ = G(`+k/2)) after the stage, are equal to those of the perturbed initial
pair (F + δF,G + δG).

Similarly as in Theorem 4.2, let rs := min ri j over all pairs of pivot indices (i, j) at
this stage of the algorithm. From (4.3) and (3.18), it follows that the bounds (4.4) hold
with

ε := εcs

(
4.25
rs

+ 5
)
.
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In general, all the columns in δF and δG are nonzero. If ε < 1, then (4.5) with q = k gives
the relative error bound for the perturbation of the generalized singular values caused by
the product Ws of all transformations in the stage.

If in each transformation (stage), ri j (rs) is reasonably bounded from below, and
ci j (cs) is reasonably bounded from above, the one-sided Hari–Zimmermann algorithm
computes the generalized singular values with high relative accuracy, provided that the
initial scaled matrices FS and GS are well-conditioned.

In particular, if the columns of G are nearly orthonormal, i.e., if the matrix GTG is
near to the identity, then the algorithm inherits a good behavior from the ordinary one-
sided Jacobi SVD algorithm—all values ci j are close to 1, which, from the start, damps
the effect of possibly small ratios ri j.

From Theorem 4.2 it is easy to bound the perturbations for all stages of the one-
sided Hari–Zimmermann algorithm. Note that Theorem 4.2 is valid for each stage of the
orthogonalization process. In stage i, i ≥ 0, formula (4.5) has the following form

|σ̃(i)
p − σ̃

(i−1)
p |

σ̃(i−1)
p

≤

1 +
σmin(G(i−1)

S )

σmin(F(i−1)
S )

 ε
√

q(i−1)

σmin(G(i−1)
S ) − ε

√
q(i−1)

:= Ci, (4.6)

where p = 1, . . . , k, F(i)
S = F(i) diag

(
‖ f (i)

p ‖
−1
2

)
, G(i)

S = G(i) diag
(
‖g(i)

p ‖
−1
2

)
, and q(i) is the

maximal number of nonzero elements in any row of δF(i) and δG(i). In addition, we
define σp = σ̃(0)

p .

Theorem 4.4. Let F and G be of full column rank k, and let the columns of perturbation
matrices δF(i) and δG(i) in each stage of the algorithm satisfy the following bounds

‖δ f (i)
p ‖2 ≤ ε‖ f

(i)
p ‖2, ‖δg(i)

p ‖2 ≤ ε‖g
(i)
p ‖2,

for p = 1, . . . , k, and some constant ε, such that 0 ≤ ε < 1. Then, the relative errors in
the perturbed generalized singular values σ̃p := σ(N)

p of the pair (F + δF,G + δG) after
the N stages of the algorithm are bounded

|σ̃p − σp|

σp
≤ C1 + C2(1 + C1) + · · · + CN(1 + C1) · · · (1 + CN), (4.7)

for all generalized singular values σp, p = 1, . . . , k.

Proof. From (4.6) it follows

(1 −Ci)σ̃
(i−1)
p ≤ σ̃(i)

p ≤ (1 + Ci)σ̃
(i−1)
p i = 1, . . . ,N.

By repetition of the same argument, we obtain

σ̃(i)
p ≤ (1 + Ci)σ̃

(i−1)
p ≤ (1 + Ci)(1 + Ci−1)σ̃(i−2)

p ≤ · · · ≤ (1 + Ci) · · · (1 + C1)σp. (4.8)
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Directly form Theorem 4.3 it follows

|σ̃p − σp|

σp
≤
|σ̃(N)

p − σ̃
(N−1)
p |

σp
+ · · · +

|σ̃(1)
p − σ̃

(0)
p |

σp
≤ CN

σ̃(N)
p

σp
+ · · · + C2

σ̃(2)
p

σp
+ C1.

By substitution of σ̃(i)
p from (4.8) for i = 1, . . . ,N into the previous equation, we imme-

diately obtain (4.7).

5. Conclusion

In this paper we proved that the implicit Hari–Zimmermann method for computation
of the generalized singular values of matrix pairs, is backward stable, and, if the matrices
permit, computes the generalized singular values with small relative errors.
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