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On the Accuracy of the Element-wise Jacobi Methods for PGEP
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We analyze the relative accuracy of two new element-wise Jacobi-type methods for the positive definite generalized eigenvalue
problem Ax = λBx, where A and B are symmetric matrices and B is positive definite. A detailed error analysis is used, and
the appropriate numerical tests are performed. If A and B are well-behaved positive definite matrices then the transformation
parameters will have small relative errors and numerical tests indicate the high relative accuracy of the methods.
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1 Introduction

We consider accuracy properties of two Jacobi methods for the positive definite generalized eigenvalue problem (PGEP),
Ax = λBx, x 6= 0, where A and B are symmetric matrices of order n and B is positive definite. If only A is positive definite
then we consider the eigenproblem Bx = λAx, x 6= 0. Note that these two eigenproblems have the same eigenvectors and
the reciprocal eigenvalues.

The most well known Jacobi method for solving PGEP is the Falk-Langemeyer (FL) method. It was introduced in [3]
and its asymptotic convergence and accuracy were studied in [7] and [5], respectively. A single FL-step annihilates the pivot
element at position (i, j), i < j by the congruence transformation A′ = FTAF , B′ = FTBF , where F is elementary plane
matrix with unit diagonal. The FL method is well defined for a wider class of definite pairs of symmetric matrices [7] and the
transformations can be efficiently applied by using BLAS1 saxpy operations. Nonetheless, the iteration matrices occasionally
need normalization during the process. When the FL method is used as a kernel algorithm for the block Jacobi method,
this can be a demanding task on contemporary CPU and GPU parallel computing machines [6]. Fortunately, one can use
other Jacobi methods as kernel algorithms, in particular the Hari-Zimmermann (HZ) and the Cholesky-Jacobi (CJ) method
(see [1, 8]) which can be seen as normalized versions of the FL method.

In this short communication, we shall concentrate on the HZ method. Unlike the FL method, it initially scales the matrix
B symmetrically, and then in each step, it maintains the unit diagonal of B. The method uses congruence transformations. In
each step, the transformation matrix F is obtained as a product of three matrices: Jacobi rotation for B, the diagonal matrix
which restores the unit diagonal of B and Jacobi rotation for the updated A. On the level of two by two pivot submatrices, the
transformation matrix has the form

F̃ =

[
cos(π4 ) − sin(π4 )
sin(π4 ) cos(π4 )

] 1√
1+bij

0

0 1√
1−bij

[ cos(θ − π
4 ) − sin(θ − π

4 )
sin(θ − π

4 ) cos(θ − π
4 )

]
=

1

τ

[
cosφ − sinφ
sinψ cosψ

]
. (1)

In [2] it has been shown that the angles are defined as follows

t2 = tan(2θ) =
2aij − (aii + ajj)bij

(aii − ajj)τ
, τ =

√
(1− bij)(1 + bij) , −π

4
≤ θ ≤ π

4
, (2)

cosφ = ρ cos θ − ξ sin θ, sinφ = ρ sin θ + ξ cos θ, cosψ = ρ cos θ + ξ sin θ, sinψ = ρ sin θ − ξ cos θ, (3)

where ρ = 0.5(
√
1− bij +

√
1 + bij ), ξ = bij/(2ρ). Here A = (art) and B = (brt) are the current iteration matrices

and i, j, i < j are the pivot indices. Now, if we use in each step, instead of Jacobi rotation, inverse of the (lower or upper)
Cholesky factor of B̃, we obtain the Cholesky-Jacobi (CJ) method. In each step we can choose the most appropriate algorithm
and the choice mostly depends on how accurately we can compute the elements of F̃ . In this way, we obtain a hybrid method
with the best properties. That is the reason for our detailed accuracy analysis of the methods. The global convergence of the
HZ and CJ methods has been proved in [2].

2 Accuracy of the HZ and CJ methods

To obtain better accuracy estimates we use the subtle error analysis from [4, 5] which does not neglect nonlinear parts of
the errors and takes into account the signs of the errors. By such approach, the error bounds can be greatly improved. The
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suppression and cancellation of the errors can occur In numerical computation and that error analysis can detect it. We assume
that the unit round-off (machine epsilon) u complies with the IEEE standard. We use the standard model of arithmetic where
the relative errors in the basic operations (+,−, ·, /,√ ) are not greater than the unit round-off. In the analysis we use the
exact expressions for the errors, like (1+ ε1)(1+ ε2) = 1+ ε1 + ε2 + ε1ε2, 1+ε1

1+ε2
= 1+ ε1− ε2 + ε2(ε2−ε1)

1+ε2
, etc., where the

linear and nonlinear parts are separated. Such expressions shed more light on the structure of the errors and enable obtaining
sharper error bounds. In particular, one can detect good situations when the initial errors are suppressed (multiplied by some
small factor) or canceled to a certain extent, and use such information to derive much smaller error bounds. In addition, one
can also detect the critical points in the algorithm where the errors can rapidly grow up.

Let us consider the HZ algorithm. One critical point in the algorithm comes from the subtraction in the numerator of
the quotient which defines 2θ in the relation (2). Using the subtle error analysis, for the computed value of t2 we obtain
fl(t2) = (1 + εt2)t2 with |εt2| ≤ (2µ+ 6.505)u provided that µ = max

{∣∣∣ 2aij
2aij−(aii+ajj)bij

∣∣∣ , ∣∣∣ (aii+ajj)bij
2aij−(aii+ajj)bij

∣∣∣} ≤ 1/
√
u.

Thus, inaccuracy can occur if µ is large which means that the pivot submatrices are in some sense close to proportionality.
Using the computed t2 we compute t = tan θ, sn = sin θ, cs = cos θ and obtain fl(t) = (1 + εt)t, fl(sn) = (1 + εsn)sn,
fl(cs) = (1 + εcs)cs, where

εt = ωt+
1√

1 + t22
εt2+ηt , εcs = ωsn+

t2

(1 + t2)
√
1 + t22

εt2+ηsn , εcs = ωcs+
1

(1 + t2)
√
1 + t22

εt2+ηcs . (4)

Here ωt, ωsn, ωcs are produced by current operations and ηt, ηsn, ηcs are the nonlinear parts of the errors. We obtained
|ωt|, |ωsn|, |ωcs| < 7u and |ηt|, |ηsn|, |ηcs| � u.

Now, let us assume that A and B belong to the class of positive definite matrices which can be well scaled symmetrically,
i.e. the condition numbers of AS = (diag(A))−1/2A(diag(A))−1/2 and BS = (diag(B))−1/2B(diag(B))−1/2 are small.
Note that BS = B, because B has unit diagonal. For such matrices each bij will be small, hence τ ≈ 1. If we express |t2|

from (2) in terms of scaled elements a(S)ij = aij/
√
aiiajj and b(S)ij = bij , we obtain |t2| = 2

√
aiiajj

aii+ajj

∣∣∣∣a(S)
ij

γ·τ

∣∣∣∣ · 1
µ =

∣∣∣∣ b(S)
ij

γ·τ

∣∣∣∣ · 1
µ ,

where γ =
aii−ajj
aii+ajj

is the relative gap. The error |εt2| can be large if µ is large, |εt2| = O(2µu), and then, for that class of

matrices, |t2| is small, |t2| = O(1/µ). Hence t ≈ t2
2 (1 −

t22

2 ) = O( 1
2µ ), sn ≈ t(1 − t2

2 ) = O( 1
2µ ), cs ≈ 1 − t2

2 ≈ 1.
From (4) we see that large |εt2| can cause large |εt| and |εsn| but |εcs| is reduced by the factor t2. Indeed, we have t2|εt2| =
O( 1

4µ2 ) · O(2µu) = O( u2µ ). So, the cosine is always computed accurately, |εcs| = O(u). Next, we apply the subtle error
analysis to the elements of the transformation matrix (1). In the expressions defining their errors the factors εcs and tεsn
appear. Since |εcs| = O(u) and |tεsn| = O( 1

2µ ·2µu) = O(u), we see that in spite of possible significant inaccuracy in fl(t2),
the transformation matrix will be computed to high relative accuracy.

The same result has been obtained for the CJ algorithm in which the numerical expressions are similar to those in HZ.

3 Future Work

The goal of this research that uses such kind of subtle error analysis is to prove the following theorem.
Theorem 3.1 On the class of pairs of symmetric positive definite matrices that can be well scaled symmetrically, the HZ

and CJ methods compute the eigenvalues of PGEP to high relative accuracy.
This conclusion is strongly supported by the numerical experiments (cf. [2]). Afterwards our next goal will be to prove the

high relative accuracy of the block Jacobi method which uses the HZ or CJ method as the kernel algorithm.
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[3] F. S. Langemeyer, Das Jacobische Rotations-Verfahren fũr reel symmetrische Matrizen-Paare I, II, Elektronische Datenverarbeitung,

30-43 (1960).
[4] J. Matejaš, Accuracy of the Jacobi Method on Scaled Diagonally Dominant Symmetric Matrices. SIAM. J. Matrix Anal. Appl. 31(1),

133-153 (2009).
[5] J. Matejaš, Accuracy of one step of the Falk-Langemeyer method. Numerical Algorithms 68(4), 645-670 (2015).
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