
Complex Cholesky-Jacobi Algorithm for PGEP

Vjeran Hari1,a)

1Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia.

a)hari@math.hr
URL: http://web.math.hr/˜ hari

Abstract. In this report, we derive a new diagonalization method for the generalized eigenvalue problem Ax = λBx with complex
Hermitian A and positive definite B. The method is a proper generalization to complex matrices of the real Cholesky-Jacobi method
that was introduced in [1]. The method seems to be high relative accurate on pairs of well-behaved positive definite matrices.

INTRODUCTION

The solutions of the generalized eigenvalue problem (GEP) Ax = λBx with Hermitian matrix A and Hermitian positive
definite B often appear in the course of solving practical problems of applied mathematics. Such problem is called
positive definite GEP or shorter PGEP.

If the matrices A and B have large dimension, the best methods for solving the problem on contemporary CPU
and GPU parallel computing machines are block Jacobi methods [3]. The block methods are designed to efficiently
use the cache memory hierarchy and other features of modern computers. Typically, if the dimension of A and B is
larger than 5000, then one block-column will include 32 or 64 adjacent columns. The block Jacobi methods should
utilize accurate and fast kernel algorithms for solving the GEP with pivots submatrices, which are in our example of
order 64 or 128. For that purpose, it is best to employ some element-wise Jacobi method because those methods are
very accurate. On nearly diagonal matrices they are extremely fast and accurate.

For the latest problem, PGEP with complex matrices of small or moderate dimension, we propose a new method
that we call Cholesky-Jacobi or shorter CJ method. It employs the Cholesky factorization of the pivot submatrix of
B followed by the Jacobi step which diagonalizes the updated pivot submatrix of A. In [1] that method was derived
for real symmetric matrices and here we derive it for complex Hermitian matrices. The numerical tests from [1]
revealed excellent numerical properties of the real CJ method which included the global convergence and high relative
accuracy on pairs of well-behaved positive definite matrices. A positive definite matrix H is well-behaved if there is
a real diagonal matrix D such that DHD has the small spectral condition number. The method presupposes that the
matrix B has unit diagonal. This can be accomplished by the initial congruence transformation DAD, DBD, with the
real diagonal matrix D = [diag(B)]−1/2. The CJ method maintains the unit diagonal of B.

In this short paper, we are limited to only the derivation of one step of the element-wise CJ method. The 2 × 2
pivot submatrices of A and B are denoted by Â and B̂ and their elements are subscripted by i and j. Here, (i, j),
i < j stands for the pivot pair which determines which rows and columns of the current iteration matrices will be
transformed.

THE DERIVATION OF THE COMPLEX CJ ALGORITHM

The CJ algorithm is comprised of two algorithms, the LL∗J and RR∗J algorithm. In each step the CJ method employs
the algorithm which is for the given input data more accurate.

The LL∗J Algorithm
Let us write the Cholesky factorization of B̂ by elements,[

1 bi j
b̄i j 1

]
= B̂ = L̂L̂∗ =

[
1 0
ā c̄

] [
1 a
0 c

]
=

[
1 ā
a |a|2 + |c|2

]
,

where ā and L̂∗ denote the complex conjugate a and Hermitian transpose of L̂. Assuming the real positive c, one
immediately obtains a = bi j, c =

√
1 − |bi j|

2. Hence, using the notation τ =
√

1 − |bi j|
2, we obtain

L̂ =

[
1 0

b̄i j τ

]
, L̂−1 =

1
τ

[
τ 0
−b̄i j 1

]
, L̂−∗ =

1
τ

[
τ −bi j
0 1

]
.

If we write F̂1 = L̂−∗, we obtain F̂∗1 B̂F̂1 = I2. We also have

F̂∗1ÂF̂1 =
1
τ2

[
τ 0
−b̄i j 1

][
aii ai j
ai j a j j

][
τ −bi j
0 1

]
=

 aii (ai j − bi jaii)/
√

1 − |bi j|
2

(āi j − b̄i jaii)/
√

1 − |bi j|
2 a j j −

ai jb̄i j+āi jbi j−(aii+a j j)|bi j |
2

1−|bi j |
2

 .
The final transformation F̂ has the form F̂ = F̂1R̂1, where R̂1 is the complex Jacobi rotation that annihilates the off-
diagonal element of F̂∗1ÂF̂1. Let us assume that the (1, 2)-element of R̂1 is −eıε1 sinϑ1. Then the angles ϑ1 and ε1 are
determined by the formulas

ε1 = arg(ai j − bi jaii),

tan(2ϑ1) =
2|ai j − aiibi j|

√
1 − |bi j|

2

aii − a j j + ai jb̄i j + āi jbi j − 2aii|bi j|
2
, −

π

4
≤ ϑ1 ≤

π

4
.

The transformation formulas for the diagonal elements of A read

a′ii = aii + tanϑ1 ·
|ai j − aiibi j|√

1 − |bi j|
2
,

a′j j = a j j −
ai jb̄i j + āi jbi j − (aii + a j j)|bi j|

2

1 − |bi j|
2 − tanϑ1 ·

|ai j − aiibi j|√
1 − |bi j|

2
.

In the case aii = a j j, ai j = aiibi j the expression for tan(2ϑ1) has the form 0/0, and then we choose ϑ1 = 0. In that case
F̂∗1ÂF̂1 = aiiI2, hence a′ii and a′j j are reduced to aii and a j j, respectively.

Let cϑ1 = cosϑ1, s±ϑ1
= e±ıε1 sinϑ1. The transformation matrix F̂ is obtained as follows.

F̂ =
1√

1 − |bi j|
2

[√
1 − |bi j|

2 −bi j
0 1

] [
cϑ1 −s+

ϑ1

s−ϑ1
cϑ1

]
=

1√
1 − |bi j|

2

[
cϑ̃1

−sϑ̃1

s−ϑ1
cϑ1

]
=

[
c1 −s1
s2 c2

]
,

where

cϑ̃1
= cϑ1

√
1 − |bi j|

2 − s−ϑ1
bi j,

sϑ̃1
= cϑ1 bi j + s+

ϑ1

√
1 − |bi j|

2,

c1 = cϑ1 − s−ϑ1
bi j/
√

1 − |bi j|
2, c2 = cϑ1/

√
1 − |bi j|

2,

s1 = cϑ1 bi j/
√

1 − |bi j|
2 + s+

ϑ1
, s2 = s−ϑ1

/
√

1 − |bi j|
2.

It is easy to verify that |cϑ̃1
|2 + |sϑ̃1

|2 = 1. This algorithm works well, but we can still reduce the number of floating
point operations per iteration step. This is acomplished by transforming the complex element c1 into |c1|. Formaly, we
postmultiply F̂ by the diagonal matrix diag(c̄ϑ̃1

/|cϑ̃1
| , 1), provided that cϑ̃1

, 0. That transforms s2 into s2 · c̄ϑ̃1
/|cϑ̃1
|.

The RR∗J Algorithm
Instead of LL∗, one can use RR∗ factorization of B̂. Then we have[

1 bi j
b̄i j 1

]
= B̂ = R̂R̂∗ =

[
c a
0 1

] [
c̄ 0
ā 1

]
=

[
|a|2 + |c|2 a

ā 1

]
.

Assuming positive c, one obtains a = bi j, c =
√

1 − |bi j|
2 = τ. Hence

R̂ =

[
τ bi j
0 1

]
, R̂−1 =

1
τ

[
1 −bi j
0 τ

]
, R̂−∗ =

1
τ

[
1 0
−b̄i j τ

]
.

If we write F̂2 = R̂−∗, then F̂∗2 B̂F̂2 = R̂−1B̂R̂−∗ = I2 and we have

F̂∗2ÂF̂2 =
1
τ2

[
1 −bi j
0 τ

] [
aii ai j
āi j a j j

] [
1 0
−b̄i j τ

]
=

 aii −
ai jb̄i j+āi jbi j−(aii+a j j)|bi j |

2

1−|bi j |
2 (ai j − a j jbi j)/

√
1 − |bi j|

2

(āi j − a j jb̄i j)/
√

1 − |bi j|
2 a j j

 . (1)

The final transformation F̂ has the form F̂ = F̂2R̂2, where R̂2 is the Jacobi transformation which annihilates the off-
diagonal element of F̂∗2ÂF̂2. Let us assume that the (1, 2)-element of R̂2 is −eıε2 sinϑ2. Then the angles ε2 and ϑ2 are
determined by the formulas

ε2 = arg(ai j − bi ja j j),

tan(2ϑ2) =
2|ai j − a j jbi j|

√
1 − |bi j|

2

aii − a j j − (ai jb̄i j + āi jbi j) + 2a j j|bi j|
2
, −

π

4
≤ ϑ2 ≤

π

4
.

The transformation formulas for the diagonal elements of A read

a′ii = aii −
ai jb̄i j + āi jbi j − (aii + a j j)|bi j|

2

1 − |bi j|
2 + tanϑ2 ·

|ai j − a j jbi j|√
1 − |bi j|

2
,

a′j j = a j j − tanϑ2 ·
|ai j − a j jbi j|√

1 − |bi j|
2
.

In the case aii = a j j, ai j = a j jbi j the angle ϑ2 is not well defined and then we choose ϑ2 = 0. In that case a′ii and a′j j
are read from the relation (1) and they reduce to aii and a j j, respectively.

Let cϑ2 = cosϑ2, s±ϑ2
= e±ıε2 sinϑ2. Then the pivot submatrix F̂ in the RR∗J algorithm has the following form.

F̂ =
1√

1 − |bi j|
2

[
1 0
−b̄i j

√
1 − |bi j|

2

] [
cϑ2 −s+

ϑ2

s−ϑ2
cϑ2

]
=

1√
1 − |bi j|

2

[
cϑ2 −s+

ϑ2

sϑ̃2
cϑ̃2

]
=

[
c1 −s1
s2 c2

]
,

where

cϑ̃2
= cϑ2

√
1 − |bi j|

2 + s+
ϑ2

b̄i j,

sϑ̃2
= s−ϑ2

√
1 − b2

i j − cϑ2 b̄i j,

c1 = cϑ2/
√

1 − |bi j|
2, c2 = cϑ2 + s+

ϑ2
b̄i j/
√

1 − |bi j|
2,

s1 = s+
ϑ2
/
√

1 − |bi j|
2+, s2 = s−ϑ2

− cϑ2 b̄i j/
√

1 − |bi j|
2.

It is easy to show that |cϑ̃2
|2 + |sϑ̃2

|2 = 1. Again, we can postmultiply F̂ by the diagonal matrix diag(1 , c̄ϑ̃2
/|cϑ̃2
|)

provided that cϑ̃2
, 0. This ensures that (the updated) F̂ has nonnegative diagonal elements.

The CJ Algorithm
The Cholesky-Jacobi is a hybrid algorithm which can be briefly defined as follows (cf. [1]): select the pivot pair (i, j)
and if aii ≤ a j j then employ the LL∗J algorithm, otherwise employ the RR∗J algorithm.

Our numerical tests show that neither LL∗J nor RR∗J is indicated as a high relative accurate algorithm on pairs of
well-behaved positive definite matrices. The same can be said for the hybrid algorithm that selects the LL∗J and RR∗J
algorithms in the opposite way, i.e. selects the RR∗J (LL∗J) algorithm when aii ≤ a j j (aii > a j j). By the numerical
tests, only the above definition seems to warrant the high relative accuracy of the algorithm. It is in complete agreement
with the behavior of the real LLT J, RRT J and CJ methods from [1]. To solve the global convergence problem of the
method, one can use the approach from [1] which uses the result from [2].

The first draft of the detailed pseudo code of the CJ algorithm is given below. The logical variable eivec deter-
mines whether the matrix of eigenvectors F = (frt) will be computed. More implementation details, especially those
addressing the stopping criterion of the method, will be published elsewhere.

%%% Complex CJ Algorithm
select the pivot pair (i, j)
if ai j , 0 or bi j , 0 then

β = |bi j |; ccb = con j(bi j), τ = sqrt((1 + β) ∗ (1 − β));

if aii ≤ a j j then σ = 1; α1 = aii; α2 = a j j;

else σ = −1; α1 = a j j; α2 = aii;

end; e = ai j − α1 ∗ bi j;

if e = 0 then ee = 0; ea = 1; cs = 1, sn = 0; t = 0;

else ee = abs(e); ea = e/ee; ct2 = (0.5 ∗ (α1 − α2) + Re(ai j ∗ ccb − α1 ∗ β
2)/(σ ∗ ee ∗ τ);

t = sign(ct2)/(abs(ct2) + sqrt(1 + ct22)); cs = 1/sqrt(1 + t2); sn = t/sqrt(1 + t2);

end
δ1 = σ ∗ t ∗ ee/τ; δ2 = δ1 + (2 ∗ Re(ai j ∗ ccb) − (α1 + α2) ∗ β2)/((1 − β) ∗ (1 + β)); α1 = α1 + δ1; α2 = α2 − δ2;

if σ > 0 then c2 = cs/τ; s2 = (sn/τ) ∗ con j(ea); c1 = cs − s2 ∗ bi j; s1 = sn ∗ ea + c2 ∗ bi j;

x = abs(c1); s2 = s2 ∗ con j(c1)/x; c1 = x; a′ii = α1; a′j j = α2;

else c1 = cs/τ; s1 = (sn/τ) ∗ ea; c2 = cs + s1 ∗ ccb; s2 = sn ∗ con j(ea) − c1 ∗ cbb;

x = abs(c2); s1 = s1 ∗ (cs + con j(s1) ∗ bi j)/x; c2 = x; a′ii = α2; a′j j = α1;

end; s2c = con j(s2);

a′i j = (c1 ∗ c2 ∗ ai j − s1 ∗ s2c ∗ con j(ai j)) + (c2 ∗ s2c ∗ a j j − c1 ∗ s1 ∗ aii); a′ji = con j(a′i j);

b′i j = (c1 ∗ c2 ∗ bi j − s1 ∗ s2c ∗ ccb + (c2 ∗ s2c − c1 ∗ s1); b′ji = con j(b′i j);

for k = 1, . . . , n, k , i, j

a′ki = c1 ∗ aki + s2 ∗ ak j; b′ki = c1 ∗ bki + s2 ∗ bk j; a′ik = con j(a′ki); b′ik = con j(b′ki);

a′k j = c2 ∗ ak j − s1 ∗ aki; b′k j = c2 ∗ bk j − s1 ∗ bki; a′jk = con j(a′k j); b′jk = con j(b′k j);

end
if eivec then, for k = 1, . . . , n, f ′ki = c1 ∗ fki + s2 ∗ fk j; f ′k j = c2 ∗ fk j − s1 ∗ fki; end, end

end

ACKNOWLEDGMENTS

This work has been fully supported by Croatian Science Foundation under the project: IP 09 2014 3670. The author
is thankful to the anonymous referees for the valuable comments.

REFERENCES

[1] V. Hari, Globally convergent Jacobi methods for positive definite matrix pairs, Numer Algor (2017).
https://doi.org/10.1007/s11075-017-0435-5.

[2] V. Hari, E. Begović Kovač, Convergence of the Cyclic and Quasi-cyclic Block Jacobi Methods. Electron. T.
Numer. Ana. (ETNA), 46 (2017) 107-147.

[3] V. Novaković, S. Singer, S. Singer, Blocking and Parallelization of the Hari-Zimmermann Variant of the Falk-
Langemeyer Algorithm for the Generalized SVD, Parallel Comput., 49 (2015) 136-152.

