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Abstract. The paper considers a Jacobi-type method for solving the generalized eigenvalue problemAx = λBx, whereA andB
are complex Hermitian matrices andB is positive definite. The method is a proper generalization of the standard Jacobi method
for Hermitian matrices since it reduces to it whenB is diagonal. Originally, it is a two-sided method, but it can be implemented
as one-sided method and then it solves the generalized singular value problem. To further enhance its efficiency on contemporary
CPU and GPU architectures, it can be implemented as a block Jacobi-type method. The one-sided block method has proved to be
very efficient and compares favorably to the LAPACK DTGSJA algorithm. There are several open problems related to the original
method and more to its one-sided and block versions. The problems refer to the global and asymptotic convergence, high relative
accuracy and speed. The aim of this short communication is to briefly describe the element-wise method and to report how well it
is understood.

INTRODUCTION

The method is devised to solve the positive definite generalized eigenvalue problem (PGEP)

Ax= λBx, x , 0 , (1)

whereA andB are Hermitian matrices of ordern andB is positive definite. The idea of the element-wise method has
been briefly outlined by Zimmermannn [1] and the algorithm has been derived and analyzed by Hari [2]. In particular,
the asymptotic quadratic convergence of the method under the general cyclic and the serial pivot strategies has been
proved in [2]. The method is related to the Falk-Langemeyer (FL) method [3], since they both are diagonalization
methods for the generalized eigenvalue problem. Like the FLmethod, the HZ method diagonalizes the pivot subma-
trices at each step. But instead of simplifying the transformation matrices (by requiring ones along the diagonal) it
simplifies the iterationsB(k) (also by requiring ones along the diagonal). So, the preliminary step for the HZ method
reduces the diagonal elements ofB to ones by the diagonal congruence transformation

A 7→ A(0) = DAD, B 7→ B(0) = DBD, D = diag
(

b−1/2
11 ,b−1/2

22 , . . . ,b−1/2
nn

)

. (2)

Then (A(0), B(0)) is taken as the initial pair for the algorithm.
Each of these two approaches has its advantages and shortcomings. The advantage of the FL method is that it is

defined for a more general initial matrix pair, the so called definite pair. A pair of Hermitian matrices (A, B ) is definite
provided thatαA+ βB is positive definite for some realα andβ. Also, each step of the method requires somewhat less
flops because the diagonal elements of the transformation matrix are ones. Its asymptotic quadratic convergence and
stability have been proved in [4] and [5], respectively. Theshortcoming of the FL method lies in the fact that norms
of the iteration matricesA(k) andB(k) increase. So, periodically one has to check the norms ofA(k) andB(k), and decide
whether to apply an appropriate congruence transformationto “normalize” them. This slows down the computation,
especially on distributed memory parallel machines, because each check for renormalization costs. And there is no
simple rule when to make a check, since it depends on the characteristics of the matrices. Also, the Fl method for
complex matrices has not yet been published.

On the contrary, the HZ method has no problem with renormalizations. It is a proper generalization of the stan-
dard Jacobi method. Its real and complex algorithms have been derived in [2], where also the asymptotic quadratic



convergence has been proved for the case of simple eigenvalues. Since its real algorithm is specially related to the
FL method [2], the HZ method should have the same stability property. The shortcoming of the method lies in a little
more expensive transformations. Actually, this is no drawback since numerical tests on large matrices, on parallel ma-
chines, have confirmed the advantage of the HZ approach. In [6], the real method has been implemented as one-sided
block method for the generalized singular value problem. Then it is almost perfectly parallelizable, so parallel shared
memory versions of the algorithm are highly scalable, and their speedup almost solely depends on the number of cores
used.

Since the original element-wise method is relatively unknown, this short report is devoted to shed some light on
it. The element-wise method has its own merit, although it nicely fits for the role of the kernel algorithm for the block
method. Here we briefly present the algorithms of the complexand real method. They both are more complicated than
those for the standard complex and real Jacobi algorithms. In the final stage of the process some new phenomena can
appear, which are not met by the standard Jacobi method, and which may have impact on accuracy and speed of the
method. Our aim is to shed more light to those problems.

The paper is divided into three sections. In the next one, we briefly present the algorithms. In the third one, we
briefly report on those new phenomena, and how they can influence the performance of the method.

Description of the Method

Let A andB be complex Hermitian matrices of ordern and letB be positive definite. The initial step of the method is
described by the relation (2). The HZ method is iterative process of the form

A(k+1) = F∗kA(k)Fk, B(k+1) = F∗kB(k)Fk, k ≥ 0, (3)

whereA(0) andB(0) are defined by (2). In the relation (3) each transformation matrix Fk is an elementary plane matrix.
It is a nonsingular matrix which differs from the identity matrixIn in two diagonal elementsf (k)

i(k)i(k), f (k)
j(k) j(k) and the

two corresponding off-diagonal elementsf (k)
i(k) j(k), f (k)

j(k)i(k), where 1≤ i(k) < j(k) ≤ n. The subscriptsi = i(k), j = j(k)
are calledpivot indices, (i, j) is pivot pair and
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is pivot submatrixof Fk. If F̂k is as in (4), we shall denote it bŷFk = ( f (k)
i j ). The transition (A(k), B(k)) 7→ (A(k+1), B(k+1))

is called thekth step of the method. The way of selecting pivot pairs (i(k), j(k)) is called pivot strategy. The
most common (pivot) strategies are the column- and row-cyclic ones, which consist of repeatingN = n(n − 1)/2
steps which make onecycleof the method. For the column-cyclic strategy the cycle is defined by the sequence of
pivot pairs (1,2), (1,3), (2,3), (1,4), (2,4), (3,4), . . . , (1,n), (2,n), . . . , (n − 1,n), while for the row-cyclic one by
(1,2), (1,3), . . . , (1,n), (2,3), (2,4), . . . , (2,n), (3,4), . . . , (n− 1,n). The common name for these two pivot strate-
gies isserial (pivot) strategies. The transition (A((t−1)N+1), B((t−1)N+1)) 7→ (A(tN), B(tN)) is called thetth cycleor sweep.

The algorithm for computing the elements ofF̂k is derived in [2]. It is based on the following theorem, whichis
a generalization to complex matrices, of the Gose’s result [7].

Theorem 1 ([8]) Let B̂ = (bi j ) and B̂′ = diag(b′ii ,b
′
j j ) be positive definite Hermitian matrices of order two. Then

there exist a nonsingular matrix̂F of order two, such that̂B′ = F̂∗B̂F̂. EachF̂ satisfying that property has the form

F̂ =
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cosφ eıα sinφ
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, (5)

whereωi , ω j are real, φ, ψ, γ ∈ [0 ,
π

2
], sinγ = |bi j |√

bii b j j
, and | cosφ cosψ + eı(α−β) sinφ sinψ| = cosγ holds.

To simplify F̂, we can require thatωi = ω j = 0, i.e. that the diagonal elements ofF̂ are real and nonnegative.

Let A(k) = (a(k)
lr ), B(k) = (b(k)

lr ), k ≥ 0. At stepk the matrixFk is sought to satisfy the following conditions

a(k+1)
i j = 0, b(k+1)

i j = 0, b(k+1)
ii = 1, b(k+1)

j j = 1, f (k)
ii ≥ 0, f (k)

j j ≥ 0, (6)



wherei = i(k), j = j(k) for everyk ≥ 0. Since the diagonal elements of eachB(k) are ones, the matrix̂Fk is sought in
the form

F̂k =
1

√

1− |b(k)
i j |2

[

cosφk eıαk sinφk

−e−ıβk sinψk cosψk

]

. (7)

In [2], F̂k has been looked for in the form̂Fk = R̂(k)
1 D̂(k)R̂(k)

2 Φ̂
(k). HereR̂(k)

1 , R̂(k)
2 are complex rotations and̂D(k), Φ̂(k)

are diagonal matrices,̂Φ(k) being also unitary. The rotation̂R(k)
1 is used as Jacobi rotation to diagonalize the pivot

submatrixB̂(k). Since the transformed̂B(k) by R̂(k)
1 , does not necessarily have ones on the diagonal, the transformation

with D̂(k) is used to make them 1 again. Now,B̂(k) has become identity matrix of order 2 andR̂(k)
2 is used to diagonalize

the (already) transformed̂A(k). Finally, Φ̂(k) is used to make the diagonal elements ofF̂k nonnegative. The described
procedure yields the following formulas for the elements ofF̂k (see [2]) which we present in the form suitable for
programming.

Set
bk = |b(k)

i j |, tk =
√

1− b2
k, ek = a(k)

j j − a(k)
ii , ǫk =

{

1, ek ≥ 0
−1, ek < 0 . (8)

Computeuk, vk, cosγk, sinγk, cos 2θk, sin 2θk, cosφk, sinψk, eıαk sinφk, e−ıβk sinψk, where

uk + ı vk = e−ı arg(b(k)
i j ) a(k)

i j , tanγk = 2ǫk
vk

ek
, − π2 < γk ≤ π

2

tan 2θk = ǫk
2uk−(a(k)

ii +a(k)
j j )bk

tk
√

e2
k+4v2

k

, − π4 < θk ≤ π
4

2 cos2 φk = 1+ bk sin 2θk + tk cos 2θk cosγk, 0 ≤ φk ≤ π
2

2 cos2ψk = 1− bk sin 2θk + tk cos 2θk cosγk, 0 ≤ ψk ≤ π
2

eıαk sinφk = e
ıarg(b(k)

i j )

2 cosψk

[

sin 2θk − bk − ıtk cos 2θk sinγk
]

e−ıβk sinψk = e
−ıarg(b(k)

i j )

2 cosφk

[

sin 2θk + bk + ıtk cos 2θk sinγk
]

.
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(9)

Execute the transformation (3), withFk determined byF̂k whose elements are given by the relations (7)—(9).

If b(k)
i j = 0, then in the above formulas arg(b(k)

i j ) is replaced by arg(a(k)
i j ). Then F̂k is reduced to the (complex)

Jacobi rotation forÂ(k). If in additiona(k)
i j = 0, thenuk = vk = γk = θk = φk = ψk = 0, henceFk is the identity matrix.

If A andB are real, thenA(k), B(k) andFk are real for allk ≥ 0. In that case the algorithm simplifies. In particular,
in the relation (7) we haveαk = βk = 0, the relation (8) is replaced by

ξ =
b(k)

i j
√

1+ b(k)
i j +

√

1− b(k)
i j

, η =
b(k)

i j

(1+
√

1+ b(k)
i j )(1+

√

1− b(k)
i j )

(10)

and the relation (9) is replaced by

tan 2θk =
2a(k)

i j −(a(k)
ii +a(k)

j j ) b(k)
i j

√

1−(b(k)
i j )2(a(k)

j j −a(k)
ii )
, − π4 < θk ≤ π

4

cosφk = cosθk + ξk(sinθk − ηk cosθk), sinφk = sinθk − ξk(cosθk + ηk sinθk)

cosψk = cosθk − ξk(sinθk + ηk cosθk), sinψk = sinθk + ξk(cosθk − ηk sinθk).































(11)

To measure advancement of the method, we can use the measureS(A, B) =
[

‖A− diag(A)‖2F + ‖B− diag(B)‖2F
]1/2

,

where‖X‖F =
√

trace(X∗X) is the Frobenius norm ofX. The HZ method is convergent on the pair (A, B) if the
sequence of generated pairs satisfies (A(k), B(k)) → (Λ, In), whereΛ is diagonal andIn is the identity. It converges
globally if it converges on every (positive definite) initial pair. The cyclic method is (asymptotically) quadratically
convergent if

S(A(N), B(N)) ≤ cnS2(A(0), B(0)) wheneverS(A(0), B(0)) is sufficiently small.

Herecn is a constant which may depend onn.



Latest Research

Lately, we have considered several theoretical problems related to the element-wise HZ method. The first one is the
global convergence problem under a new large class ofgeneralized serial strategiesand under the class of quasi-
cyclic strategies that is related to it (see [9, 10]). These classes of pivot strategies include the known weak-wavefront
strategies. So far, the global convergence of the Jacobi-type processes has been considered almost exclusively for the
serial strategies. Now we have much larger classes of “convergent” cyclic and “convergent” quasi-cyclic strategies. To
obtain those classes, we have used a new equivalence relation on the set of pivot strategies (permutation equivalence),
a new notion of inverse (or reverse) pivot strategy, and tools such as Jacobi annihilators and operators. So far, we have
proved the global convergence of the real and complex HZ method under those new classes of pivot strategies. We
hope to obtain the same result for the block HZ methods.

The second research which is underway is the stability of thereal and complex HZ method. We would like to
prove high relative accuracy of the two-sided, element-wise methods in the case when the both matrices are positive
definite and well behaved. This means thatκ2(DAADA) ≪ κ2(A), κ2(DBBDB) ≪ κ2(B) holds for some diagonalDA,
DB, andκ2(X) is the spectral condition ofX. Once we have it proved, we can use it to prove the same for the block
methods, since then their kernel algorithms will have high relative accuracy. This would be an extension of the known
result for the case whenB is identity. That problem is somewhat challenging because we have an intrinsic instability
in the formulas when the pair (A, B) has multiple eigenvalues and the matricesA(k), B(k) are almost diagonal. If̂A(k) lies
within a diagonal block associated with a multiple eigenvalue, then we shall have severe cancelation in the numerator
and denominator of the quotient which defines tan 2θk. This deteriorates relative accuracy of the computed cosθ and
sinθ and thus of the elements ofF̂k. This inaccuracy alone has bad impact on the reduction ofS(A(k), B(k)), hence the
process will be prematurely stalled. That results in inaccuracy of the output data.

Even worse, all the elements ofF̂k will be large, which will preclude the quadratic asymptoticconvergence of the
method. This is our third problem we deal with. For the methodit means severe convergence slowdown and premature
termination of the process (too many sweeps). This results not only in inaccurate output data, but in low efficiency of
the method (slower and inaccurate). To solve the second and third problem, a subtle error analysis is needed which
will precisely point to when, where and how to modify the method to avoid the drawback of loss of the asymptotic
quadratic convergence and high relative accuracy of the method.
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