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Abstract. The paper considers a Jacobi-type method for solving the generaigea/alue problenAx = ABx, whereA andB

are complex Hermitian matrices alis positive definite. The method is a proper generalization of the standeotiJmethod

for Hermitian matrices since it reduces to it whBris diagonal. Originally, it is a two-sided method, but it can be implemented
as one-sided method and then it solves the generalized singular vabierprdo further enhance itdfieiency on contemporary
CPU and GPU architectures, it can be implemented as a block Jacobi-gthednThe one-sided block method has proved to be
very dlicient and compares favorably to the LAPACK DTGSJA algorithm. Thesesaveral open problems related to the original
method and more to its one-sided and block versions. The problemgaéfes global and asymptotic convergence, high relative
accuracy and speed. The aim of this short communication is to brieftyideghe element-wise method and to report how well it
is understood.

INTRODUCTION

The method is devised to solve the positive definite gerrerdigéigenvalue problem (PGEP)
Ax=1Bx, x#0, 1)

whereA andB are Hermitian matrices of ordarandB is positive definite. The idea of the element-wise method has
been briefly outlined by Zimmermannn [1] and the algorithra haen derived and analyzed by Hari [2]. In particular,
the asymptotic quadratic convergence of the method unéegeheral cyclic and the serial pivot strategies has been
proved in [2]. The method is related to the Falk-Langemefy) (nethod [3], since they both are diagonalization
methods for the generalized eigenvalue problem. Like thenéthod, the HZ method diagonalizes the pivot subma-
trices at each step. But instead of simplifying the transftion matrices (by requiring ones along the diagonal) it
simplifies the iteration8X (also by requiring ones along the diagonal). So, the pratmyi step for the HZ method
reduces the diagonal elementsBifo ones by the diagonal congruence transformation

A A9 =DAD, Br BO=DBD, D =diag(b;;% by ....05%). @)
Then A©), BO)) is taken as the initial pair for the algorithm.

Each of these two approaches has its advantages and shimgsoithe advantage of the FL method is that it is
defined for a more general initial matrix pair, the so callefirdte pair. A pair of Hermitian matrice\(B) is definite
provided thatxA + 8B is positive definite for some realandg. Also, each step of the method requires somewhat less
flops because the diagonal elements of the transformatitrixraae ones. Its asymptotic quadratic convergence and
stability have been proved in [4] and [5], respectively. Bhertcoming of the FL method lies in the fact that norms
of the iteration matrice® andB® increase. So, periodically one has to check the norndgbandBX, and decide
whether to apply an appropriate congruence transformatiénormalize” them. This slows down the computation,
especially on distributed memory parallel machines, beeaach check for renormalization costs. And there is no
simple rule when to make a check, since it depends on the athasdics of the matrices. Also, the FI method for
complex matrices has not yet been published.

On the contrary, the HZ method has no problem with renorratidins. It is a proper generalization of the stan-
dard Jacobi method. Its real and complex algorithms have tedved in [2], where also the asymptotic quadratic



convergence has been proved for the case of simple eigesvabince its real algorithm is specially related to the
FL method [2], the HZ method should have the same stabiliperty. The shortcoming of the method lies in a little
more expensive transformations. Actually, this is no drasksince numerical tests on large matrices, on parallel ma-
chines, have confirmed the advantage of the HZ approach],lthgsreal method has been implemented as one-sided
block method for the generalized singular value probleneriihis almost perfectly parallelizable, so parallel share
memory versions of the algorithm are highly scalable, ard 8peedup almost solely depends on the number of cores
used.

Since the original element-wise method is relatively umangthis short report is devoted to shed some light on
it. The element-wise method has its own merit, althoughdelyifits for the role of the kernel algorithm for the block
method. Here we briefly present the algorithms of the comahekreal method. They both are more complicated than
those for the standard complex and real Jacobi algorithmtie final stage of the process some new phenomena can
appear, which are not met by the standard Jacobi method, hiothi way have impact on accuracy and speed of the
method. Our aim is to shed more light to those problems.

The paper is divided into three sections. In the next one, nedly present the algorithms. In the third one, we
briefly report on those new phenomena, and how they can irdutire performance of the method.

Description of the Method

Let A andB be complex Hermitian matrices of ordeand letB be positive definite. The initial step of the method is
described by the relation (2). The HZ method is iterativecpss of the form

AR — 2 A, B — FrBWE, k>0, (3)

whereA© andB© are defined by (2). In the relation (3) each transformatiotrim& is an elementary plane matrix.

It is a nonsingular matrix which ffers from the identity matrix, in two diagonal elementg((t))i(k), fj((klz)j(k) and the

two corresponding f6-diagonal element§® . % where 1< i(k) < j(k) < n. The subscripts = i(k), j = j(k)

) . A LR TiRiKk)
are calledpivot indices (i, j) is pivot pairand
(0§00
(0 } k=0, (4)
ji i

Fi=

is pivot submatrivof Fy. If Fy is as in (4), we shall denote it by, = (fi(jk)). The transition A®, BY) - (Al+D Bk+1))

is called thekth step of the method. The way of selecting pivot paiigk), j(k)) is called pivot strategy The

most common (pivot) strategies are the column- and rowicysies, which consist of repeatitg = n(n — 1)/2

steps which make oneycle of the method. For the column-cyclic strategy the cycle indel by the sequence of

pivot pairs (12), (1,3), (2,3), (1,4), (2,4), (3.4), ..., (1,n), (2,n), ..., (n = 1,n), while for the row-cyclic one by

(1,2), (1,3), ..., (L,n), (2.3), (2,4), ..., (2,n), (3,4), ..., (n—1,n). The common name for these two pivot strate-

gies isserial (pivot) strategies. The transitiod{t-DN+D, B(=DN+D) -, (AN BIN)) is called thetth cycleor sweep
The algorithm for computing the elementskafis derived in [2]. It is based on the following theorem, whish

a generalization to complex matrices, of the Gose’s reglilt [

Theorem 1 ([8]) LetB = (bij) and B = diag(bj;, b;) be positive definite Hermitian matrices of order two. Then

there exist a nonsingular matrix of order two, such thal®’ = F*BF. EachF satisfying that property has the form

1 e VB’

F=_——
cosy

Vo

wherew;, w; are real, ¢,y,y € [0, g], siny =

Vi cos¢ €sing
-e®siny  cosy

gwi \/b_jj/ > (5)

‘b'_" and | cos¢ cosy + € sing siny| = cosy holds.

To simplify F, we can require that; = w; = 0, i.e. that the diagonal elementsfofre real and nonnegative.
Let AW = (&), BY = (b9), k > 0. At stepk the matrixFy is sought to satisfy the following conditions

k+1 k+1 k+1 k+1 K K
al™=o0 blP=0  bfP=1 blP=1 ¥>0 ¥=0 (6)



wherei = i(K), j = j(k) for everyk > 0. Since the diagonal elements of e&f are ones, the matrik, is sought in
the form

A 1 [ COSoyi €% singy
Fk = ———

OS¢ . 7)
—e e sin co (
- Ibi(}()lz Yk Sk

In [2], Fi has been looked for in the forf = RVDWRYO®. HereRY, RY are complex rotations arid®, d®

are diagonal matricesh® being also unitary. The rotatioRl¥ is used as Jacobi rotation to diagonalize the pivot
submatrixB¥. Since the transformeB® by RY, does not necessarily have ones on the diagonal, the trareion
with D® is used to make them 1 again. Nd® has become identity matrix of order 2 aR{f is used to diagonalize

the (already) transforme8®. Finally, ®® is used to make the diagonal element$-phonnegative. The described
procedure yields the following formulas for the elementd-pf(see [2]) which we present in the form suitable for

programming.
K [ K K 1, &=0

Set
Computeuy, Vk, COSyx, Sinyk, COS B, Sin By, COSPy, Sinyy, €% singy, e« sinyy, where

_ (K)
U+ = @960 31(}()7 tanyy = 26k§, -5<w<3
20— (a0 +al9)by
tand, = g————=2—, -T<@f <t
R G A
2cog ¢y = 1+ bysinXy + t, cOS By COSyx, O<¢<% 9
2coSy = 1-—Dbysin B + t, cos Dy COSy, O<yx<3 )
rargt!d)
%k s = £ [sin 6y — by — i, cOS Dy Sinyy]
e singy coss, [SIN Dk — b — 1ty k SINYk
. sargeld) .
e P sinyy echaﬁk [Sin 26 + by + 1ty cOS Dy sinyy] .

Execute the transformation (3), wifx determined byF, whose elements are given by the relations (7)—(9).

If bi(}‘) = 0, then in the above formulas abfﬁ) is replaced by arg(}‘)). ThenFy is reduced to the (complex)
Jacobi rotation foA®. If in addition ai(;‘) =0, thenu, = Vi = yk = 6k = ¢k = Yk = 0, henceFy is the identity matrix.

If AandB are real, ther\®, B® andFy are real for alk > 0. In that case the algorithm simplifies. In particular,
in the relation (7) we havey = gk = 0, the relation (8) is replaced by

0 B0
§= .= (10)
J1+6 + 16 (1+ J1+b9)a+ (1-bY)

and the relation (9) is replaced by

(K) () A(K)y 1K)
28’ —(a;” +a;) by;

tan®y = AL 1o o1

~ e . . o
COSpx = C€OSO + &(Sindy — m cosby),  Singy = sink — &(Cosbk + i Sinby)
COSyk = COSO — &k(Sindk + i cosby),  sinyy = Sindy + &c(Cosb — 1 Sinb).

. . 1/2
To measure advancement of the method, we can use the m&(suR) = [||A— d|ag(A)||§ +||B - d|ag(B)||§] ,

where||X||[r = +itrace*X) is the Frobenius norm oX. The HZ method is convergent on the pad; B) if the
sequence of generated pairs satisfid® (BY) — (A, 1,), whereA is diagonal and, is the identity. It converges

globally if it converges on every (positive definite) inltigair. The cyclic method is (asymptotically) quadratigall
convergent if

S(AN, BN) < ¢,S?(A@, B®)  wheneverS(A©, B?) is suficiently small
Herec, is a constant which may depend on



Latest Research

Lately, we have considered several theoretical probletasactto the element-wise HZ method. The first one is the
global convergence problem under a new large claggeokralized serial strategieand under the class of quasi-
cyclic strategies that is related to it (see [9, 10]). Thdasses of pivot strategies include the known weak-wavéfron
strategies. So far, the global convergence of the Jacplei{tyocesses has been considered almost exclusively for the
serial strategies. Now we have much larger classes of “egam¢’ cyclic and “convergent” quasi-cyclic strategies. T
obtain those classes, we have used a new equivalence madatibe set of pivot strategies (permutation equivalence),
a new notion of inverse (or reverse) pivot strategy, andsteoth as Jacobi annihilators and operators. So far, we have
proved the global convergence of the real and complex HZ ogetimder those new classes of pivot strategies. We
hope to obtain the same result for the block HZ methods.

The second research which is underway is the stability ofeaéand complex HZ method. We would like to
prove high relative accuracy of the two-sided, elementewethods in the case when the both matrices are positive
definite and well behaved. This means thdDaADA) < k2(A), k2(DgBDg) < «2(B) holds for some diagondDa,

Dg, andk»(X) is the spectral condition ok. Once we have it proved, we can use it to prove the same forltio& b
methods, since then their kernel algorithms will have highative accuracy. This would be an extension of the known
result for the case wheR is identity. That problem is somewhat challenging becaus&awe an intrinsic instability

in the formulas when the paiA(B) has multiple eigenvalues and the matriéés, BX are almost diagonal. &¥ lies
within a diagonal block associated with a multiple eigeneathen we shall have severe cancelation in the numerator
and denominator of the quotient which defines t&n Zhis deteriorates relative accuracy of the computed cosl

sing and thus of the elements Bf.. This inaccuracy alone has bad impact on the reducti@(af?, B®), hence the
process will be prematurely stalled. That results in inaacy of the output data.

Even worse, all the elements bf will be large, which will preclude the quadratic asymptatvergence of the
method. This is our third problem we deal with. For the metihateans severe convergence slowdown and premature
termination of the process (too many sweeps). This resattemly in inaccurate output data, but in lodfieiency of
the method (slower and inaccurate). To solve the secondhamtigroblem, a subtle error analysis is needed which
will precisely point to when, where and how to modify the nwethio avoid the drawback of loss of the asymptotic
guadratic convergence and high relative accuracy of thbadet
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