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Abstract The paper derives and investigates the Jacobi methods for the generalized
eigenvalue problem Ax = λBx, where A is a symmetric and B is a symmetric positive
definite matrix. The methods first “normalize” B to have the unit diagonal and then
maintain that property during the iterative process. The global convergence is proved
for all such methods. That result is obtained for the large class of generalized serial
strategies from [10]. Preliminary numerical tests confirm a high relative accuracy of
some of those methods, provided that the both matrices are positive definite, and the
spectral condition numbers of ∆AA∆A and ∆BB∆B are small, for some nonsingular
diagonal matrices ∆A and ∆B.
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1 Introduction

In this paper we consider the global convergence of the Jacobi-type algorithms for
the positive definite generalized eigenvalue problem (PGEP)

Ax = λBx , x ̸= 0 ,

where A and B are the real symmetric matrices of order n and B is positive definite.
We first derive four algorithms, of which three are new, and one was derived in [4]
but has not been published since. These algorithms have a common property: they
require that B has ones along the diagonal. That property is maintained during the
iteration. Since the methods simultaneously diagonalize the pivot submatrices, we
call them briefly the Jacobi methods for PGEP.
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The most well-known Jacobi method for PGEP is the Falk–Langemeyer (FL)
method [2], which is well defined for a definite initial pair (A,B) (see [17]), i.e.,
for the case when αA+βB is positive definite for some real α and β . The asymp-
totic quadratic convergence and accuracy of that method were considered in [17]
and [12], respectively. Since the spectral norm of the transformation matrix used by
the FL method is larger than one, the norms of the iteration matrices A(k), B(k), and
of the matrix of accumulated transformations F(k), gradually increase. Thus, occa-
sionally, these matrices have to be “normalized”. Furthermore, the stopping criterion
uses the normalized matrices. In [13] it was shown that on parallel computers these
tasks can be demanding and it is better to work with the “normalized version” of the
FL method, which they call the Hari–Zimmermann variant of the Falk–Langemeyer
method. The method considered in [13] is a one-sided block version of the method
derived in [4], implemented as the one-sided block Jacobi method for the generalized
singular value problem. Then, to quote from [13], “it is almost perfectly paralleliz-
able, so parallel shared memory versions of the algorithm are highly scalable, and
their speedup almost solely depends on the number of cores used”. It compares fa-
vorably to the LAPACK’s DTGSJA algorithm. Hence, our first goal is to derive the
core algorithm for that block method.

The idea of the original element-wise, two-sided method had been briefly outlined
by Zimmermannn [20] and the algorithm was later derived and analyzed by Hari [4].
We call it simply the HZ method. Here, we consider only the element-wise, two-sided
methods.

The FL and HZ methods are extensions of the Jacobi method for symmetric ma-
trices, because they diagonalize the pivot submatrices in each step. The FL method
uses simplified transformation matrices, with the ones along the diagonal. The HZ
method uses simplified iteration matrices B(k), with the ones along the diagonal. So,
for the HZ method, a preliminary step is employed to make the diagonal elements of
B equal to one. In that step, the congruence transformation with the diagonal matrix
is used:

A → DAD, B → DBD, D = diag
(

b−1/2
11 ,b−1/2

22 , . . . ,b−1/2
nn

)
. (1.1)

Then (DAD,DBD) is the starting pair for the method. Actually, the transformation
(1.1) has a double effect. First, it normalizes and balances B in such a way that it ob-
tains the unit diagonal. Second, it nicely preconditions B. Namely, B now has almost
the optimal condition that can be obtained by a symmetric diagonal scaling [18].

Each one of these two methods, FL and HZ, has both some advantages and some
shortcomings. The advantage of the FL method is that it is well defined for a more
general initial matrix pair, and the transformations are somewhat cheaper to apply,
because the transformation matrices have the unit diagonal. The shortcoming lies in
the fact that the elements of A(k), B(k), and F(k) increase. On the contrary, the HZ
method has no need for renormalizations. It is a proper generalization of the standard
Jacobi method for the matrix A since the HZ method reduces to it when B = I. Its
weaker side lies in the fact that at least one of the matrices, A or B, has to be positive
definite. If A is such, then the method can be applied to the pair (B,A), which has the
same eigenvectors as (A,B), and reciprocal eigenvalues.
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The HZ method has a significance on its own, since it can be employed for solving
the PGEP with smaller matrices (say, for n ≤ 2000) on standard PCs. Even so, its
best role nowadays is to serve as a kernel algorithm for a block method, like the one
from [13]. That is a natural application, because the HZ method is very fast (just a
few sweeps are needed) and highly accurate (cf., [11]) on the pairs of almost diagonal
matrices.

In this paper we derive three similar Jacobi methods for the PGEP. The first two
are called LLT J and RRT J methods because, in step k, their algorithms are based
on the LLT and RRT factorizations of B̂(k), the pivot submatrix of B(k), followed by
the Jacobi transformation that diagonalizes the updated Â(k). The third method is a
combination of them. At each step it chooses the algorithm that is more accurate. In
this way a special hybrid method is defined that we call the CJ method. All these
methods are identical except in their method of transforming each B̂(k) to I2.

Furthermore, one can combine all three methods, HZ, LLT J and RRT J. Hence,
we introduce a hybrid method that employs in each step any of the three algorithms.
This leads us to a further generalization that we call a general Jacobi method for the
PGEP. Roughly speaking, it is any method that simultaneously diagonalizes the both
pivot submatrices, while maintaining the unit diagonal of B. All those methods can
serve as the kernel algorithms for the block Jacobi methods.

A kernel algorithm should at least be provably globally convergent. Hence, this
paper is devoted to proving the global convergence of all those methods. Recall that
the global convergence problem for the one-sided Jacobi methods reduces to the one
for the corresponding two-sided methods, so the global convergence is always linked
to the two-sided methods. The global convergence is proved for the large class of
the generalized serial strategies from [10]. In addition, the numerical tests have been
performed in MATLAB to inspect the high relative accuracy of the new methods.

The paper is divided into 6 sections. In Section 2 we derive a detailed algorithm
for the HZ method. In Section 3, we derive algorithms for the LLT J, RRT J and CJ
methods. We also define a hybrid and a general Jacobi method. In Section 4 we prove
the global convergence of all those methods. In Section 5 we provide preliminary
numerical tests in MATLAB which indicate the high relative accuracy of the HZ and
CJ methods. Finally, Section 6 gives a brief summary of this research and outlines
the future work.

2 The HZ Method

Here we derive the algorithm of the HZ method. In [4] the algorithm had been derived
for the complex Hermitian matrices, and then it was simplified by assuming that
the matrices were real symmetric. Here we derive the algorithm directly for the real
symmetric matrices A and B such that B is positive definite. The method has the form

A(k+1) = ZT
k A(k)Zk, B(k+1) = ZT

k B(k)Zk, k ≥ 0,

where A(0) = DAD, B(0) = DBD, and D is the diagonal matrix from the relation (1.1).
Each transformation matrix Zk is a nonsingular elementary plane matrix that defers
from the identity In in one principal submatrix of order 2. That submatrix is denoted
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by Ẑk and is called a pivot submatrix of Zk. We assume that it lies on the intersection
of the rows and columns i and j, so we can write

Ẑk =

[
z(k)ii z(k)i j

z(k)ji z(k)j j

]
, k ≥ 0.

The indices i, j, i < j, both depending on k, are the pivot indices, (i, j) is a pivot pair,
and a way how (i, j) is selected in each step is a pivot strategy. The role of Ẑk is to
diagonalize the corresponding (pivot) submatrices of A(k) and B(k) and to maintain
the unit diagonal of B(k).

The method is globally convergent if, for every initial pair of the symmetric ma-
trices (A,B) such that B is positive definite, the sequence of matrices (B(k), k ≥ 0)
tends to the identity matrix, while (A(k), k ≥ 0) tends to the diagonal matrix of the
eigenvalues of (A,B). In such a case, the columns of Z(k) = DZ0Z1 · · ·Zk approach the
set of the eigenvectors of the pair (A,B).

2.1 The derivation of the HZ algorithm

Here we derive the formulas related to one step of the method. To simplify the nota-
tion, we omit the indices k and k+1, and assume b11 = · · ·= bnn = 1. Then one step
of the method has the form A′ = ZT AZ, B′ = ZT BZ. For the pivot submatrices we
have

Â′ = ẐT ÂẐ, B̂′ = ẐT B̂Ẑ.

We first derive the algorithm for computing Ẑ. It is sought in the form of a product of
two Jacobi rotations and one diagonal matrix. We have two possibilities:

(a) Ẑ =

[ √
2

2 −
√

2
2√

2
2

√
2

2

] 1√
1+bi j

0

0 1√
1−bi j

[
cos(θ − π

4 ) −sin(θ − π
4 )

sin(θ − π
4 ) cos(θ − π

4 )

]
,

(b) Ẑ =

[ √
2

2

√
2

2
−

√
2

2

√
2

2

] 1√
1−bi j

0

0 1√
1+bi j

[
cos(θ + π

4 ) −sin(θ + π
4 )

sin(θ + π
4 ) cos(θ + π

4 )

]
.

The leftmost rotation is just the Jacobi rotation for B̂. The second transformation
reestablishes the unit diagonal of B̂. The rightmost rotation is the Jacobi rotation for
the transformed Â.

The both approaches yield the same matrix Ẑ, so we consider only the case (a).
The derivation of Ẑ in the case (b) is quite similar to the derivation presented below.

(a) Let us first consider how the matrices B̂ and Â are transformed. Recall that
Ẑ = R̂(π

4 )D+ R̂(θ − π
4 ) and the diagonal elements of B̂ are ones. If we write

B̂1 = R̂(
π
4
)T B̂R̂(

π
4
), B̂2 = DT

+B̂1D+, B̂′ = R̂(θ − π
4
)T B̂2R̂(θ − π

4
),

then a simple calculation yields

B̂1 =

[
1+bi j 0

0 1−bi j

]
, B̂2 =

[
1 0
0 1

]
= I2, B̂′ = I2.
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Now, let us consider the transformations on Â. If we write

Â1 = R̂(
π
4
)T ÂR̂(

π
4
), Â2 = DT

+Â1D+, Â′ = R̂(θ − π
4
)T Â2R̂(θ − π

4
),

we obtain

Â1 =
1
2

[
1 1

−1 1

][
aii ai j
ai j a j j

][
1 −1
1 1

]
=

1
2

[
aii +2ai j +a j j a j j −aii

a j j −aii a j j −2ai j +aii

]
,

Â2 =

 1√
1+bi j

0

0 1√
1−bi j

 Â1

 1√
1+bi j

0

0 1√
1−bi j

=
1
2

 aii+2ai j+a j j
1+bi j

a j j−aii√
1−(bi j)2

a j j−aii√
1−(bi j)2

a j j−2ai j+aii
1−bi j

 ,

Â′ =
1
2

 aii+2ai j+a j j
1+bi j

+ tan(θ– π
4 )

a j j−aii√
1−(bi j)2 0

0 a j j−2ai j+aii
1−bi j

− tan(θ– π
4 )

a j j−aii√
1−(bi j)2

 ,

where

tan
(

2(θ − π
4
)
)
=

2 a j j−aii√
1−(bi j)2

aii+2ai j+a j j
1+bi j

− a j j−2ai j+aii
1−bi j

=

√
1− (bi j)2 (a j j −aii)

2ai j − (aii +a j j)bi j
.

From the trigonometric identities

tan
(

2(θ − π
4
)
)
= tan

(
2θ − π

2

)
=−cot(2θ) =

1
− tan(2θ)

,

we obtain

tan(2θ) =
2ai j − (aii +a j j)bi j√
1− (bi j)2 (aii −a j j)

, −π
4
≤ θ ≤ π

4
. (2.1)

Since B is positive definite with the unit diagonal, such is also B̂, and we have |bi j|<
1. This implies

√
1− (bi j)2 > 0. Next, we derive a compact form for Ẑ. To this end,

let c = cosθ , s = sinθ . We have

cos(θ − π
4
) =

√
2

2
(c+ s) , sin(θ − π

4
) =

√
2

2
(s− c) ,

Ẑ =

√
2

2

 1√
1+bi j

− 1√
1−bi j

1√
1+bi j

1√
1−bi j

√
2

2

[
c+ s c− s
s− c c+ s

]
=

1√
1− (bi j)2

·1
2

[√
1−bi j(c+ s)−

√
1+bi j(s− c)

√
1−bi j(c− s)−

√
1+bi j(c+ s)√

1−bi j(c+ s)+
√

1+bi j(s− c)
√

1−bi j(c− s)+
√

1+bi j(c+ s)

]
.

We would like to obtain Ẑ in the form

Ẑ =
1√

1− (bi j)2

[
cosϕ −sinϕ
sinψ cosψ

]
.
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To this end we use the following identities, which hold for |x| ≤ 1:
√

1+ x−
√

1− x =
2x√

1+ x+
√

1− x
,

√
1+ x+

√
1− x = 2− 2x2

(1+
√

1+ x)(1+
√

1− x)(
√

1+ x+
√

1− x)
.

Let

ξ =
bi j√

1+bi j +
√

1−bi j
, η =

bi j

(1+
√

1+bi j)(1+
√

1−bi j)
, (2.2)

ρ = 1−ξ η = ξ +
√

1−bi j =
1
2
(
√

1+bi j +
√

1−bi j). (2.3)

A straightforward computation shows that we have ξ +ξ η2 −2η = 0. This is equiv-
alent to ρ2 +ξ 2 = 1. Now we have

cosϕ =
1
2

[
c(
√

1−bi j +
√

1+bi j)− s(
√

1+bi j −
√

1−bi j)
]
=

c−
cb2

i j

(1+
√

1+bi j)(1+
√

1−bi j)(
√

1+bi j +
√

1−bi j)
−

sbi j√
1+bi j +

√
1−bi j

= c−ξ (s+ηc) = ρ cosθ −ξ sinθ .

In the similar way, we obtain

cosϕ = cosθ −ξ (sinθ +η cosθ) = ρ cosθ −ξ sinθ ,
sinϕ = sinθ +ξ (cosθ −η sinθ) = ρ sinθ +ξ cosθ ,

cosψ = cosθ +ξ (sinθ −η cosθ) = ρ cosθ +ξ sinθ ,
sinψ = sinθ −ξ (cosθ +η sinθ) = ρ sinθ −ξ cosθ .

 (2.4)

From the relation (2.4) one obtains cos2 ϕ +sin2 ϕ = 1 and cos2 ψ+sin2 ψ = 1. Using
2ρξ = bi j, one easily obtains the following identities

cosϕ sinψ = cosθ sinθ −ρξ = 0.5(sin2θ −bi j), (2.5)
cosψ sinϕ = cosθ sinθ +ρξ = 0.5(sin2θ +bi j), (2.6)

cosϕ cosψ = ρ2 cos2 θ −ξ 2 sin2 θ , (2.7)
sinϕ sinψ = ρ2 sin2 θ −ξ 2 cos2 θ . (2.8)

Using the bounds for |ξ |, |η |, and ρ ,

|ξ | ≤
√

2/2, |η | ≤
√

2−1,
√

2/2 ≤ ρ ≤ 1, (2.9)

we obtain

min{cosϕ , cosψ} ≥ ρ cosθ −
|bi j|
2ρ

|sinθ | ≥ (ρ −
|bi j|
2ρ

)cosθ > 0, (2.10)

max{cosϕ , cosψ} = ρ cosθ + |ξ sinθ |= cos(|θ |−ζ )≥ cos(|θ |)≥
√

2
2

. (2.11)

Here, ζ is defined by cosζ = ρ , sinζ = |ξ |. Thus tanζ = |ξ |/ρ ≤ 1, and therefore
0 ≤ ζ ≤ π/4.
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2.2 The HZ algorithm

Here we collect the obtained formulas and write down a detailed algorithm for one
step of the method. In step k, input to the algorithm consists of the matrices A, B, and
the pivot pair (i, j). The pivot submatrices are given by the relation (2.12) below

Â =

[
aii ai j
ai j a j j

]
, B̂ =

[
1 bi j

bi j 1

]
, |bi j|< 1. (2.12)

If ai j = 0 and bi j = 0, we set Z = I, and continue with the next step. If this is not
the case, we compute the pivot submatrix of Z, i.e.,

Ẑ =
1√

1− (bi j)2

[
cosϕ −sinϕ
sinψ cosψ

]
=

[
c1 −s1
s2 c2

]
. (2.13)

Here cosϕ , sinϕ , cosψ , sinψ are given by the relations (2.4), (2.2), (2.3).
If aii = a j j and 2ai j = (aii + a j j)bi j, then the expression for the angle θ in the

relation (2.1) reduces to the form 0/0. In that case Â and B̂ are proportional, and we
choose θ = 0. Then we have

Ẑ =
1√

1− (bi j)2

[
ρ −ξ
−ξ ρ

]
=

1√
1− (bi j)2

[
ρ − bi j

2ρ

− bi j
2ρ ρ

]
.

It is easy to show that in this case a′ii = aii and a′j j = a j j.
In the general case, the diagonal elements of B̂′ are ones, while the diagonal ele-

ments of Â′ can be computed as follows:

a′ii = aii +
1

1−b2
i j

[
(b2

i j − sin2 ϕ)aii +2cosϕ sinψ ai j + sin2 ψ a j j
]

= aii +[(
b2

i j

1−b2
i j
− s12)aii +2c1s2ai j + s22a j j] (2.14)

a′j j = a j j −
1

1−b2
i j

[
(sin2 ψ −b2

i j)a j j +2cosψ sinϕ ai j − sin2 ϕ aii
]

= a j j − [(s22 −
b2

i j

1−b2
i j
)a j j +2c2s1ai j − s12aii] (2.15)

Here, the relations (2.5) and (2.6) can be used. The pivot elements are set to zero:
bi j = 0, b′ji = 0, ai j = 0, a′ji = 0, while the off-diagonal elements are transformed
using the formulas

a′ki = c1 ·aki + s2 ·ak j, b′ki = c1 ·bki + s2 ·bk j, a′ik = a′ki, b′ik = b′ki, k ̸= i, j,

a′k j = c2 ·ak j − s1 ·aki, b′k j = c2 ·bk j − s1 ·bki, a′jk = a′k j, b′jk = b′k j, k ̸= i, j.

It can immediately be seen that in the case bi j = 0, the quantities ξ and η become
zero. Then the transformation Z becomes the Jacobi rotation for the matrix A. There-
fore this method is a proper generalization of the simple Jacobi method for A to the
positive definite pair (A,B), under the constraint that B has ones on the diagonal.
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When considering the two-sided methods it is advantageous to express the up-
dated diagonal elements in the form a′ii = aii + δaii, a′j j = a j + δa j j. For the HZ
method, δaii and δa j j are the expressions within brackets in the relations (2.14) and
(2.15), respectively. Then contributions to the diagonal elements coming from all
steps within the current sweep can be accumulated separately, and at the end of the
sweep, added to the diagonal elements that are saved prior to the sweep [15]. An-
other set of formulas for the diagonal elements is derived in Section 4 (see (4.9),
(4.10)). Next, we have to decide whether it is better to set the pivot elements zero or
to compute them. Numerical tests with badly conditioned matrices have shown that
it is better to compute a′i j while b′i j can be set zero. This leads to the algorithm which
is displayed below.

There are many open problems connected with a way to implement the algorithm
and they will be addressed elsewhere. Say, if |bi j| = 1− ε for a tiny ε > 0, then the
spectral condition of F is as large as 1/

√
ε and it may have bad impact on accuracy

of the computed eigenvalues and eigenvectors. Such a case indicates a huge condition
number of B(0). Recall that κ2(X) = ∥X∥2∥X−1∥2 is the spectral condition number of
X , where ∥X∥2 =

√
spr(X∗X) is the spectral norm of X .

If A is positive definite, then a possible remedy is to work with the pair (B,A)
instead of (A,B). If A is indefinite, one can try with the FL method or with the J-
Jacobi method [19,7,8] applied to (B,A).

%%% Algorithm HZ
select the pivot pair (i, j)

if ai j ̸= 0 or bi j ̸= 0 then
ρ = 0.5∗ (sqrt(1+bi j)+ sqrt(1−bi j)); ξ = bi j/(2∗ρ); τ = sqrt((1+bi j)∗ (1−bi j));

t2 = 2∗ai j − (aii +a j j)∗bi j;

if t2 = 0 then t = 0;

else ct2 = τ ∗ (aii −a j j)/t2; t = sign(ct2)/(abs(ct2)+(1+ sqrt(1+ ct22));

end;
cs = 1/sqrt(1+ t2); sn = t/sqrt(1+ t2); c1 = (ρ ∗ cs−ξ ∗ sn)/τ;
c2 = (ρ ∗ cs+ξ ∗ sn)/τ; s1 = (ρ ∗ sn+ξ ∗ cs)/τ; s2 = (ρ ∗ sn−ξ ∗ cs)/τ;
a′i j = (c1∗ c2− s1∗ s2)∗ai j +(c2∗ s2∗a j j − c1∗ s1∗aii); a′ji = a′i j; b′i j = 0; b′ji = b′i j;

δi = (bi j/τ − s1)∗ (bi j/τ + s1)∗aii +(2∗ c1∗ai j + s2∗a j j)∗ s2; a′ii = aii +δi;

δ j = (s2−bi j/τ)∗ (s2+bi j/τ)∗a j j +(2∗ c2∗ai j − s1∗aii)∗ s1; a′j j = a j j −δ j;

for k = 1, . . . ,n, k ̸= i, j do
a′ki = c1∗aki + s2∗ak j; b′ki = c1∗bki + s2∗bk j; a′ik = a′ki; b′ik = b′ki;

a′k j = c2∗ak j − s1∗aki; b′k j = c2∗bk j − s1∗bki; a′jk = a′k j; b′jk = b′k j;

end
end

3 The LLT J, RRT J and CJ Algorithms

Looking at the derivation of the HZ algorithm, one can see that instead of applying the
Jacobi step followed by a diagonal transformation to B̂, one can apply a congruence
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transformation with the inverse of the Cholesky factor of B̂. Actually, we have two
possibilities: (a) using the LLT and (b) using the RRT factorization of B̂. After each
of these transformations the algorithm proceeds with the Jacobi step, as in the HZ
algorithm. This approach yields two algorithms which we call the LLT J and the RRT J
algorithm. We denote the transformation matrix in these algorithms by F .

Numerical investigation has shown that neither of these two algorithms has fa-
vorable accuracy properties. Fortunately, there is a combination of these algorithms
with excellent accuracy properties. We call it the Cholesky-Jacobi, or shorter, the CJ
algorithm.

3.1 The LLT J algorithm

Let us write the Cholesky factorization of B̂ by elements,[
1 bi j

bi j 1

]
= B̂ = L̂L̂T =

[
1 0
a c

][
1 a
0 c

]
=

[
1 a
a a2 + c2

]
.

Assuming positive c, one immediately obtains a = bi j, c =
√

1−b2
i j, hence

L̂ =

[
1 0

bi j

√
1−b2

i j

]
and L̂−1 =

1√
1−b2

i j

[√
1−b2

i j 0
−bi j 1

]
.

If we write F̂1 = L̂−T , then F̂T
1 B̂F̂1 = I2, and we have

F̂T
1 ÂF̂1 =

[
1 0
fi j f j j

][
aii ai j
ai j a j j

][
1 fi j
0 f j j

]
=

[
aii fi jaii + f j jai j

fi jaii + f j jai j f 2
i jaii +2 fi j f j jai j + f 2

j ja j j

]

=

 aii (ai j −bi jaii)/
√

1−b2
i j

(ai j −bi jaii)/
√

1−b2
i j a j j −

2ai j−(aii+a j j)bi j

1−b2
i j

bi j

 ,

where fi j = −bi j/
√

1−b2
i j, f j j = 1/

√
1−b2

i j. The final transformation F̂ has the

form F̂ = F̂1R̂, where R̂ is a Jacobi rotation that annihilates the (1,2)-element of
F̂T

1 ÂF̂1. Its angle ϑ1 is determined by the formula

tan(2ϑ1) =
2(ai j −bi jaii)

√
1−b2

i j

aii −a j j +2(ai j −bi jaii)bi j
, −π

4
≤ ϑ1 ≤

π
4
. (3.1)

The transformation formulas for the diagonal elements of A read

a′ii = aii + tanϑ1 ·
ai j −aiibi j√

1−b2
i j

, (3.2)

a′j j = a j j −
2ai j −bi j(aii +a j j)

1−b2
i j

bi j − tanϑ1 ·
ai j −aiibi j√

1−b2
i j

. (3.3)
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In the case aii = a j j, ai j = aiibi j the expression for tan(2ϑ1) has the form 0/0, and
then we choose ϑ1 = 0. In that case a′ii and a′j j reduce to aii and a j j, respectively.

The transformation matrix has a simpler form than in the HZ method. We have

F̂ =
1√

1−b2
i j

[√
1−b2

i j −bi j

0 1

][
cϑ1 −sϑ1
sϑ1 cϑ1

]
=

1√
1−b2

i j

[
cϑ̃1

−sϑ̃1
sϑ1 cϑ1

]

=

[
c1 −s1
s2 c2

]
,

cϑ̃1
= cϑ1

√
1−b2

i j − sϑ1 bi j,

sϑ̃1
= cϑ1 bi j + sϑ1

√
1−b2

i j,
(3.4)

c1 = cϑ1 − sϑ1 bi j/
√

1−b2
i j, c2 = cϑ1/

√
1−b2

i j,

s1 = cϑ1 bi j/
√

1−b2
i j + sϑ1 , s2 = sϑ1/

√
1−b2

i j.

It is easy to verify that c2
ϑ̃1

+ s2
ϑ̃1

= 1.

3.2 The RRT J algorithm

Instead of the LLT one can use the RRT factorization of B̂. Then we have[
1 bi j

bi j 1

]
= B̂ = R̂R̂T =

[
c a
0 1

][
c 0
a 1

]
=

[
a2 + c2 a

a 1

]
.

Assuming positive c, one obtains a = bi j, c =
√

1−b2
i j. If we write F̂2 = R̂−T , then

F̂T
2 B̂F̂2 = R̂−1B̂R̂−T = I2, and we have

F̂T
2 ÂF̂2 =

 aii −
2ai j−(aii+a j j)bi j

1−b2
i j

bi j (ai j −bi ja j j)/
√

1−b2
i j

(ai j −bi ja j j)/
√

1−b2
i j a j j

 . (3.5)

The final transformation F̂ is given by F̂ = F̂2R̂, where R̂ is a Jacobi transformation
that annihilates (1,2)-element of F̂T

2 ÂF̂2. Its angle ϑ2 is determined from

tan(2ϑ2) =
2(ai j −bi ja j j)

√
1−b2

i j

aii −a j j −2(ai j −bi ja j j)bi j
, −π

4
≤ ϑ2 ≤

π
4
. (3.6)

The transformation formulas for the diagonal elements of A read

a′ii = aii −
2ai j − (aii +a j j)bi j

1−b2
i j

bi j + tanϑ2 ·
ai j −a j jbi j√

1−b2
i j

, (3.7)

a′j j = a j j − tanϑ2 ·
ai j −a j jbi j√

1−b2
i j

. (3.8)

In the case aii = a j j, ai j = a j jbi j the angle ϑ2 is chosen to be 0. In that case a′ii and
a′j j are read from the relation (3.5), and they reduce to aii and a j j, respectively.
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This leads to the pivot submatrix F̂ of the RRT J algorithm:

F̂ =
1√

1−b2
i j

[
1 0

−bi j

√
1−b2

i j

][
cϑ2 −sϑ2
sϑ2 cϑ2

]
=

1√
1−b2

i j

[
cϑ2 −sϑ2
sϑ̃2

cϑ̃2

]

=

[
c1 −s1
s2 c2

]
,

cϑ̃2
= cϑ2

√
1−b2

i j + sϑ2 bi j,

sϑ̃2
= sϑ2

√
1−b2

i j − cϑ2 bi j,
(3.9)

c1 = cϑ2/
√

1−b2
i j, c2 = cϑ2 + sϑ2 bi j/

√
1−b2

i j,

s1 = sϑ2/
√

1−b2
i j, s2 = sϑ2 − cϑ2 bi j/

√
1−b2

i j.

Again, it is easy to prove that c2
ϑ̃2

+ s2
ϑ̃2

= 1.

3.3 The CJ algorithm

The third algorithm is a combination of the LLT J and the RRT J algorithms, and we
describe it briefly as follows:

select the pivot pair (i, j);
if aii ≤ a j j then choose the LLT J algorithm, else choose the RRT J algorithm.

Collecting the formulas (3.1)–(3.9) we can write it in more detail. One simple version
is given below. In section 5 we shall justify the importance of the CJ algorithm.

%%% Algorithm CJ
select the pivot pair (i, j)

if ai j ̸= 0 or bi j ̸= 0 then
β = bi j; τ = sqrt((1+β )∗ (1−β ));
if aii ≤ a j j then σ = 1; α1 = aii; α2 = a j j;

else σ =−1; α1 = a j j; α2 = aii;

end; e = ai j −β ∗α1; ct2 = (0.5∗ (α1 −α2)+ e∗β )/(σ ∗ e∗ τ);
t = sign(ct2)/(abs(ct2)+sqrt(1+ ct22)); cs = 1/sqrt(1+ t2); sn = t/sqrt(1+ t2);

δ1 = σ ∗ t ∗ e/τ; δ2 = δ1 +(β/τ)∗ (2∗ai j − (aii +a j j)∗β )/τ; α1 = α1 +δ1; α2 = α2 −δ2;

if σ > 0 then c2= cs/τ; s2= sn/τ; c1= cs−s2∗β; s1= sn+c2∗β; a′ii =α1; a′j j =α2;

else c1= cs/τ; s1= sn/τ; c2= cs+s1∗β; s2= sn−c1∗β; a′ii =α2; a′j j =α1;

end;
a′i j = (c1∗ c2− s1∗ s2)∗ai j +(c2∗ s2∗a j j − c1∗ s1∗aii); a′ji = a′i j;

b′i j = (c1∗ c2− s1∗ s2)∗bi j +(c2∗ s2− c1∗ s1); b′ji = b′i j;

for k = 1, . . . ,n, k ̸= i, j do
a′ki = c1∗aki + s2∗ak j; b′ki = c1∗bki + s2∗bk j; a′ik = a′ki; b′ik = b′ki;

a′k j = c2∗ak j − s1∗aki; b′k j = c2∗bk j − s1∗bki; a′jk = a′k j; b′jk = b′k j;

end
end
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3.4 The hybrid and the general PGEP Jacobi method

Recall that the CJ algorithm has been obtained by combining the LLT J and the RRT J
algorithms. Actually, at each step we can combine more algorithms, say by including
the HZ algorithm in the selection list of algorithms. Yet we cannot make decision
what is the best combination of algorithms in each step, because we need to inspect
the high relative accuracy and the asymptotic behavior of so obtained methods. Such
research can be complex if it incudes the case of the close and the multiple eigen-
values of the initial pair [5,6]. In that case, in the later stage of the process, the
algorithms operate on the pair of almost diagonal symmetric matrices with a special
intrinsic structure. That structure can cause the formulas for the angles to become
unstable, and some modifications of the algorithms could be needed [4].

For that reason, in this paper we focus on just one important property of the
methods, which is the global convergence. This property is not influenced by the
stability of the algorithms. Even more, the global convergence can be proved for
the pretty general Jacobi methods, which combine all known algorithms in the most
general way.

Definition 3.1 Let A, B be the symmetric matrices of the same dimension such that
B is positive definite with the ones on the diagonal. Let H denote a collection of the
Jacobi methods for the generalized eigenvalue problem Ax = λBx, which satisfy in
each step k the following two rules:
1. the pivot submatrix Â(k) is diagonalized and B̂(k) is transformed to I2,
2. at least one of the two diagonal elements of F̂k is not smaller than

√
2/2.

An element of H is called a general PGEP Jacobi method. A hybrid Jacobi method
is any method from H that uses in each step either the HZ, the LLT J, or the RRT J
algorithm.

In Definition 3.1 the pivot strategy is not specified, hence any can be used. If the
Jacobi method uses only the HZ (LLT J, RRT J, CJ) algorithm, it will be called the
HZ (LLT J, RRT J, CJ) method.

In Section 4.1 we prove that the HZ, the LLT J, the RRT J, and the CJ methods
are in H . They are the special cases of the hybrid (Jacobi) method. The general
PGEP Jacobi method can choose, in any step, any conceivable algorithm satisfying
the above two rules. We shall briefly call it a general Jacobi method.

4 The Global Convergence

In this section we prove the global convergence of the four methods which have
been derived so far, plus of the hybrid and of the general Jacobi method. The global
convergence is proved under the class of generalized serial strategies from [10, Def-
inition 3.7]. That class of cyclic strategies includes the weakly wavefront strategies
from [16], and many more.

For each method we use the same notation for the iteration matrices: A(k) = (a(k)rs ),
B(k) = (b(k)rs ), k ≥ 0. The first rule in Definition 3.1 implies that all diagonal elements
of each B(k), k ≥ 0, are equal to 1.
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4.1 The hybrid method belongs to H

Here we also examine the general form of the transformation matrix F̂ which simul-
taneously diagonalizes the pivot submatrices Â and B̂. This form is used in the global
convergence proof from Subsection 4.4.

We denote the elements of Â and B̂ as in the relation (2.12). The elements of F̂
are denoted as the elements of Ẑ in the relation (2.13). Furthermore, let

γ = ϕ −ψ.

We first examine the matrix F̂ from the HZ algorithm, i.e., the matrix Ẑ from the
relation (2.13). The relations (2.5) – (2.8) and (2.9) imply

sinγ = sin(ϕ −ψ) = sinϕ cosψ − sinψ cosϕ = 2ξ ρ = bi j, (4.1)

cosγ = cos(ϕ −ψ) = cosϕ cosψ + sinψ sinϕ = ρ2 −ξ 2 ≥ 0. (4.2)

Hence cosγ =
√

1−b2
i j, γ has the same sign as bi j, and since |bi j| < 1, we have

−π/2 < γ < π/2. The relations (2.5)–(2.8) imply

ϕ +ψ = 2θ , hence ϕ = θ + γ/2, ψ = θ − γ/2. (4.3)

The matrix F̂ from the HZ algorithm has the form

F̂ =
1

cosγ

[
cosϕ −sinϕ
sinψ cosψ

]
, −π

2
< γ = ϕ −ψ <

π
2
, sinγ = bi j. (4.4)

From the relations (2.10), (2.11) we see that cosϕ > 0, cosψ > 0 and the smaller
angle is from the segment [−π/4 , π/4]. Thus, the HZ method is an element of H .

Let us examine F̂ from the LLT J algorithm. From the relation (3.4), we conclude
that the angle ψ equals to the angle ϑ1 from the relation (3.1), while ϕ =ψ+γ , where
cosγ =

√
1−b2

i j, sinγ = bi j. Hence, the form of F̂ is as in the relation (4.4), with the

same γ . We have cosψ ≥
√

2/2, while cosϕ ≥ 0 if and only if tanψ b/
√

1−b2
i j ≤ 1.

In particular, if |bi j| ≤
√

2/2 then cosϕ ≥ 0. So, the LLT J method is also from H .
The matrix F̂ from the RRT J algorithm also has the form as in the relation (4.4).

From the relation (3.9), we see that ϕ is just ϑ2 from the relation (3.6). Hence cosϕ ≥√
2/2, while cosψ ≥ 0 if and only if tanϕ b/

√
1−b2

i j ≥−1. In particular, if |bi j| ≤
√

2/2 then cosψ ≥ 0. It is also seen that ψ = ϕ −γ , with cosγ =
√

1−b2
i j, sinγ = bi j,

so γ is as in the relation (4.4). Hence the RRT J method is also from H .
We immediately conclude that every hybrid method belongs to the class H . In

particular, the CJ method is an element of H . Furthermore, every pivot submatrix F̂
appearing in the hybrid method satisfies the relation (4.4).

All these results are in accordance with the Gose’s result [3], which in the case
when the positive definite matrix B̂ has ones on the diagonal, takes the following
form:

every matrix F̂ satisfying F̂T B̂F̂ = I2 has the form as in the relation (4.4).



14 Vjeran Hari

Gose’s result has important implications, which we state as a remark.

Remark 4.1 Note that bi j = 0 (i.e., B̂ = I2) if and only if γ = 0 (i.e., F̂ from the
hybrid method is just the Jacobi rotation for Â). Hence, bi j ̸= 0 if and only if γ ̸= 0,
i.e., 0 < cosγ < 1. In that case |cosϕ |+ |cosψ |= |cos(ψ + γ)|+ |cosψ |> 0, hence
at least one diagonal element of F̂ must be nonzero. This fact is notable but it does
not warrant that the second rule in Definition 3.1 is satisfied.

Suppose that F̂ is such that only the first rule in Definition 3.1 is satisfied. Then
F̂ has the form as in the relation (4.4), but cosϕ and cosψ can be negative, zero or
smaller than

√
2/2. If so, F̂ can be updated to additionally satisfy the second rule.

Indeed, either from

ˆ̃F = F̂
[

0 ς1
−ς1 0

]
or from ˆ̃F = F̂

[
ς1 0
0 ς1

]
, ς1 ∈ {−1,1},

we see that the value of ς1 can be chosen in such a way that at least one diagonal
element of ˆ̃F is not smaller than

√
2/2. So updated F̂ still diagonalizes Â and B̂,

maintains the ones on the diagonal of B̂ and maintains the difference between the
new ϕ and ψ (one can easily check that the angle shifts can be ±π/2, ±π and 0).
This justifies the appearance of

√
2/2 in the second rule in Definition 3.1.

For example, if F̂ satisfies F̂T B̂F̂ = I2 and F̂T ÂF̂ = diag(a′ii,a
′
j j), then −F̂ sat-

isfies the same relations. This change corresponds to the shift of the angles ϕ and ψ
by π , which does not change the difference ϕ −ψ = γ , but it can make the diagonal
element(s) of F̂ positive.

4.2 The results for the general Jacobi method

Let us now consider the general Jacobi method, i.e., an arbitrary element from H . In
each step we have

F̂T ÂF̂ = diag(a′ii,a
′
j j), F̂T B̂F̂ = I2, bii = b j j = 1. (4.5)

From (4.5) one obtains ÂF̂ = F̂−T diag(a′ii,a
′
j j) and B̂F̂ = F̂−T , where F̂ is (by the

Gose’s result) from the relation (4.4). Writing these relations by elements, we have

1
cosγ

[
aii ai j
ai j a j j

][
cosϕ −sinϕ
sinψ cosψ

]
=

[
cosψ −sinψ
sinϕ cosϕ

][
a′ii

a′j j

]
, (4.6)

1
cosγ

[
1 bi j

bi j 1

][
cosϕ −sinϕ
sinψ cosψ

]
=

[
cosψ −sinψ
sinϕ cosϕ

]
. (4.7)

The relations (4.7), (4.6) and (4.5) imply

cosγ =
cosϕ
cosψ

+bi j tanψ =
cosψ
cosϕ

−bi j tanϕ , (4.8)

a′ii =
1

cosγ

(
aii

cosϕ
cosψ

+ai j tanψ
)

=
aii +ai j

sinψ
cosϕ

1+bi j
sinψ
cosϕ

, (4.9)
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a′j j =
1

cosγ

(
a j j

cosψ
cosϕ

−ai j tanϕ
)

=
a j j −ai j

sinϕ
cosψ

1−bi j
sinϕ
cosψ

, (4.10)

2cos(ϕ +ψ)ai j = aii sin(2ϕ)−a j j sin(2ψ). (4.11)

If bi j = 0, we have γ = 0, hence ϕ = ψ . Then the relations (4.9)–(4.11) take the
familiar form

a′ii = aii +ai j tanϕ , a′j j = a j j −ai j tanϕ , tan(2ϕ) = 2ai j/(aii −a j j),

which is associated with the standard Jacobi method. If bi j ̸= 0, then at least one of
the two expressions for each diagonal element is well defined (the denominator is not
zero), and it can be used in computation. Actually, the formulas (4.9)–(4.10) are very
attractive alternatives to the formulas (2.14)–(2.15), (3.2)–(3.3) and (3.7)–(3.8).

Next, we derive two auxiliary relations which are used in the global convergence
proof. Using ϕ = ψ + γ and some trigonometric identities, one straightforwardly ob-
tains

cos(ϕ +ψ) = cos(2ψ + γ) = cos(2ψ)−2sin(ϕ +ψ − γ
2
)sin(

γ
2
)

= cos(2ϕ − γ) = cos(2ϕ)+2sin(ϕ +ψ +
γ
2
)sin(

γ
2
),

sin(2ϕ) = sin(2ψ +2γ) = sin(2ψ)+2cos(ϕ +ψ)sinγ.

These identities, together with the relation (4.11), yield

2ai jcos(2ψ)–(aii-a j j)sin(2ψ)=4ai jsin(2ψ+
γ
2
)sin(

γ
2
)+2aii cos(2ψ+γ)sinγ, (4.12)

2ai jcos(2ϕ)–(aii-a j j)sin(2ϕ)=–4ai j sin(2ϕ –
γ
2
)sin(

γ
2
)+2a jj cos(2ϕ –γ)sinγ. (4.13)

We end this subsection by showing that the matrices generated by the general
Jacobi method are bounded. To this end we need the notion of spectral radius.

The spectral radius of the positive definite pair (A,B) is defined by the formula

µ = max
λ∈σ(A,B)

|λ |, σ(A,B) is the spectrum of (A,B).

We obviously have σ(A,B) = σ(A(k),B(k)), k ≥ 0. Using the Cholesky factorization
of B(k) and the min-max theorem for the eigenvalues of symmetric matrices, one
obtains

µ = max
x ̸=0

|xT A(k)x|
xT B(k)x

= max
∥x∥2=1

|xT A(k)x|
xT B(k)x

, k ≥ 0. (4.14)

Lemma 4.1 The sequences of matrices (A(k), k ≥ 0) and (B(k), k ≥ 0) generated by
the general Jacobi method from H are bounded. In particular, we have

∥B(k)∥2 < n, ∥A(k)∥2 ≤ µ∥B(k)∥2 < nµ , k ≥ 0, (4.15)

where µ is the spectral radius of (A(0),B(0)).
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Proof For the sequence (B(k), k ≥ 0) the assertion (4.15) is obvious since

∥B(k)∥2 ≤ ∥B(k)∥∞ < n, k ≥ 0.

The first inequality follows from the fact that each B(k) is symmetric. The second one
follows from the fact that all off-diagonal elements of B(k) lie in the open interval
(−1,1). From the relation (4.14) we have, for each k,

|xT A(k)x| ≤ µ xT B(k)x ≤ µ ∥B(k)∥2 for any unit vector x.

Since each A(k) is symmetric, there is some zk, ∥zk∥2 = 1, such that |zT
k A(k)zk| =

∥A(k)∥2. This proves the second assertion of Lemma 4.1. ⊓⊔

4.3 Some auxiliary and preparatory results

The global convergence proof of the methods from H is based on the following
proposition whose proof is just a repetition of the corresponding proof from [3]. How-
ever, for the sake of completeness of the exposition, we present it here.

Proposition 4.1 Let B be a symmetric positive definite matrix with the unit diagonal.
Consider the Jacobi-type iterative process of the form

B(k+1) = FT
k B(k)Fk, k ≥ 0; B(0) = B, (4.16)

where Fk, k ≥ 0, are the nonsingular elementary plane matrices. Suppose the pivot
submatrices F̂k of Fk are chosen to satisfy the requirement F̂T

k B̂(k)F̂k = I2, k ≥ 0.
Then under any pivot strategy the following assertions hold:

(i) limk→∞ b(k) = 0, where b(k) = b(k)i(k) j(k) is the pivot element of B(k)

(ii) There is a sequence of plane rotations (Rk, k ≥ 0) such that Fk −Rk → 0 as
k → ∞ .

Proof The assumptions imply that each B(k) is a symmetric positive definite with the
ones on the diagonal. Hence the absolute value of each off-diagonal element of B(k)

is smaller than 1. The Gose’s result [3] implies that each F̂k has the form

F̂k =
1

cosγk

[
cos(ψk + γk) −sin(ψk + γk)

sinψk cosψk

]
, sinγk = b(k), −π

2
< γk <

π
2
. (4.17)

Let B(k) = (b(k)rs ), k ≥ 0 and

H(B(k)) =
det(B(k))

b(k)11 b(k)22 · · ·b(k)nn

= det(B(k)), k ≥ 0.

By the Hadamard’s inequality we have

0 < H(B(k))≤ 1, k ≥ 0. (4.18)

Since det(Fk) = det(F̂k) = 1/cosγk, the relation (4.16) implies
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H(B(k+1)) = det(B(k+1)) = det2(Fk)det(B(k)) =
1

cos2 γk
H(B(k)), k ≥ 0. (4.19)

From the relations (4.19) and (4.18) we see that H(B(k)) is a nondecreasing sequence
of positive real numbers, bounded above by 1. Hence it is convergent with limit ζ , 0<
ζ ≤ 1. By taking the limit on the both sides of the equation (4.19), after cancelation
with ζ , one obtains

1 = lim
k→∞

cos2 γk = lim
k→∞

(1− (b(k))2) = 1− lim
k→∞

(b(k))2 .

This proves the assertion (i).

(ii) Since γk → 0 as k → ∞, the relation (4.17) implies

F̂k − R̂k =
1

cosγk

[
cos(ψk + γk) −sin(ψk + γk)

sinψk cosψk

]
−
[

cosψk −sinψk
sinψk cosψk

]
→ 0

as k → ∞. This implies the second assertion and completes the proof. ⊓⊔

In the following corollaries we show how Proposition 4.1 applies to the HZ, the
LLT J, the RRT J, the hybrid and the general Jacobi method. To simplify notation we
use a(k)ii , a(k+1)

ii instead of a(k)i(k)i(k), a(k+1)
i(k)i(k), respectively, and similar for a(k)j j , a(k+1)

j j ,

a(k)i j .

Corollary 4.1 Let ξ (k), η(k), ρ(k), ϕ (k), ψ(k), γ(k) and θ (k) denote the quantities ξ ,
η , ρ , ϕ , ψ , γ and θ , respectively, related to the HZ method in step k, k ≥ 0. Then
under any pivot strategy, the following relations hold

lim
k→∞

ξ (k) = 0, lim
k→∞

η(k) = 0, lim
k→∞

ρ(k) = 1 lim
k→∞

γ(k) = 0

lim
k→∞

|ϕ (k)−θ (k)|= 0 lim
k→∞

|ψ(k)−θ (k)| = 0 (4.20)

lim
k→∞

|a(k+1)
ii −a(k)ii −a(k)i j tanθ (k)| = 0 (4.21)

lim
k→∞

|a(k+1)
j j −a(k)j j +a(k)i j tanθ (k)| = 0 (4.22)

lim
k→∞

∣∣ (a(k)ii −a(k)j j )sin(2θ (k))−2a(k)i j cos(2θ (k))
∣∣ = 0. (4.23)

We also have −π/4 ≤ θ (k) ≤ π/4 for all k ≥ 0.

Proof The assertions hold because Proposition 4.1(i) applies to the HZ method. For
the pivot element of B(k) we have b(k) → 0 as k → ∞. In particular, the first two
assertions are implied by the relations (2.2) – (2.3) and (4.1) – (4.3). The assertions
(4.21) and (4.22) are implied by the relations (4.9) – (4.10), (4.20), and Lemma 4.1.
The assertion (4.23) is implied by the relation (2.1) and Lemma 4.1. The last assertion
is implied by the relation (2.1). ⊓⊔



18 Vjeran Hari

The angle θ (k) in the assertions (4.20)–(4.23) can be replaced by ϕ (k) or ψ(k).

Corollary 4.2 Let ϕ (k) = ϑ̃ (k)
1 , ψ(k) = ϑ (k)

1 (ϕ (k) = ϑ (k)
2 , ψ(k) = ϑ̃ (k)

2 ) denote the
angles ϑ̃1, ϑ1 (ϑ2, ϑ̃2), respectively, related to the LLT J (RRT J) method in step k,
k ≥ 0. Then under any pivot strategy, the following relations hold

lim
k→∞

γ(k) = 0, where γ(k) = ϕ (k)−ϕ (k) (4.24)

lim
k→∞

|a(k+1)
ii −a(k)ii −a(k)i j tanψ(k)| = 0 (4.25)

lim
k→∞

|a(k+1)
j j −a(k)j j +a(k)i j tanψ(k)| = 0 (4.26)

lim
k→∞

∣∣ (a(k)ii −a(k)j j )sin(2ψ(k))−2a(k)i j cos(2ψ(k))
∣∣ = 0. (4.27)

In the relations (4.25)–(4.27), the angle ψ(k) can be replaced by ϕ (k). In addition, for
the LLT J (RRT J) method we have −π/4 ≤ ψ(k) ≤ π/4, k ≥ 0 (−π/4 ≤ ϕ (k) ≤ π/4,
k ≥ 0).

Proof Again, the assertions hold because Proposition 4.1(i) applies to these two
methods. Hence the pivot element b(k) of B(k) tends to 0 as k → ∞.

To prove the first assertion (4.24), one uses the relation (3.4) (resp. (3.9)).
For the LLT J (RRT J) method, the assertions (4.25) and (4.26) are implied by the

relations (3.2)–(3.3) (resp. (3.7)–(3.8)), the assertion (4.24), and Lemma 4.1.
The assertion (4.27) is implied by the relation (3.1) (resp. (3.6)), (4.24), and

Lemma 4.1.
Because of the assertion (4.24) and Lemma 4.1, the angle ψ(k) in the assertions

(4.25)–(4.27) can be replaced by ϕ (k). ⊓⊔

The next corollary summarizes the common assertions of the preceding results.

Corollary 4.3 Suppose that for the hybrid method from H , the angles ϕ (k) and ψ(k)

have the same meaning as those in Corollary 4.1 and Corollary 4.2, depending on the
method that is chosen in step k. Then the relations (4.24)–(4.27) hold and every ap-
pearance of ψ(k) (ϕ (k)) in the relations (4.25)–(4.27) can be replaced by ϕ (k) (ψ(k)).
In addition, for every ε > 0 there is k0 ≥ 0 such that

max{|ϕ (k)| , |ψ(k)|} ≤ π/4+ ε, k ≥ k0. (4.28)

Proof The assertion (4.28) is implied by the second rule in the definition of H and
|ϕ (k)−ψ(k)| → 0 as k → ∞. ⊓⊔

In particular, Corollary 4.3 implies that the relations (4.24)–(4.27) hold for the CJ
method. It remains to prove the same result for the general Jacobi method. To make
a difference between the hybrid and the general method, the angles appearing in the
general method shall be subscripted.

Corollary 4.4 Let ϕk, ψk, and γk denote the angles ϕ , ψ , and γ from the relation
(4.4) that are obtained in step k, when the general Jacobi method from H is applied
to (A,B). Then the relations (4.24)–(4.28) hold, provided that the angle superscripts
are replaced by the subscripts. In the relations (4.25)–(4.27) the angles ψk and ϕk
can be interchanged.
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Proof The first assertion (4.24) is implied by the Gose’s result [3] and Proposi-
tion 4.1(i), because sinγk = b(k), k ≥ 0, where b(k) is the pivot element of B(k).

To prove the assertion (4.28) note that the second rule in the definition of H
ensures that at least one of the angles ϕk or ψk is from [−π/4 , π/4]. By the first
assertion we have ϕk −ψk → 0 as k → ∞. Hence, the both angles must satisfy the
relation (4.28).

To prove (4.25) and (4.26), we use the following trigonometric identities

1
cosγk

cosϕk

cosψk
=

cos(ψk + γk)

cosγk cosψk
= 1− tanψk tanγk,

1
cosγk

= 1+
2sin2(γk/2)

cosγk
,

1
cosγk

cosψk

cosϕk
=

cos(ϕk − γk)

cosγk cosϕk
= 1+ tanϕk tanγk, tanϕk = tanψk +

(1+tan2 ψk) tanγk

1–tanψk tanγk
.

Now, from the relations (4.9), (4.10), and the assertion (4.15) of Lemma 4.1, we have

|a(k+1)
ii −a(k)ii −a(k)i j tanψk| = |a(k)i j

2sin2(γk/2)
cosγk

−a(k)ii tanγk| | tanψk|≤ νk| tanψk|

|a(k+1)
j j −a(k)j j +a(k)i j tanϕk| = |a(k)i j

2sin2(γk/2)
cosγk

−a(k)j j tanγk| | tanϕk| ≤ νk| tanϕk|

 (4.29)

where
νk = 2nµ |sin(γk/2)|/cos(γk), k ≥ 0. (4.30)

Here we have used the Cauchy-Schwarz inequality and the estimates

max{
√

(a(k)i j )
2 +(a(k)ii )2 ,

√
(a(k)i j )

2 +(a(k)j j )
2} ≤ ∥Â(k)∥2 ≤ ∥A(k)∥2 ≤ nµ , k ≥ 0.

By the Gose’s result and Proposition 4.1(i) we have ϕk−ψk = γk → 0 as k →∞. Hence
νk → 0 as k → ∞ and limk→∞(tanϕk − tanψk) = 0. Since min{| tanϕk|, | tanψk|} ≤ 1,
this proves the assertions (4.25) and (4.26) in which ϕ (k) and ψ(k) are replaced by ϕk
and ψk, respectively.

To prove the remaining assertion, we use the relations (4.12) and (4.13). In step k
we obtain

|2a(k)i j cos(2ψk)− (a(k)ii −a(k)j j )sin(2ψk)| ≤ 2nµ |2sin(
γk

2
)+ sinγk|, (4.31)

|2a(k)i j cos(2ϕk)− (a(k)ii −a(k)j j )sin(2ϕk)| ≤ 2nµ |2sin(
γk

2
)+ sinγk|. (4.32)

Here, we have used maxr,s |a(k)rs | ≤ ∥A(k)∥2, Lemma 4.1 and the fact that sin( γk
2 ) and

sinγk have the same sign. Since limk→∞ γk = 0, the relation (4.27) is proved. ⊓⊔
The assertions (4.23), (4.27) and the relations (4.31), (4.32) imply that both angles

ϕk and ψk “asymptotically” satisfy the known equation for the angle of the Jacobi
rotation. The same holds for the diagonal elements updates since νk → 0 as k → ∞.

From the relation (4.30) and the two relations preceding it, we have for k ≥ 0

max{|a(k+1)
ii −a(k)ii | , |a(k+1)

j j −a(k)j j |} ≤ max{| tanϕk| , | tanψk|}(|a
(k)
i j |+νk). (4.33)
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4.4 The convergence theorem

In the global convergence considerations we shall use the quantity S(A(k),B(k)), which
measures how close is the pair (A(k),B(k)) from the set of pairs of diagonal matrices.
Here

S(X ,Y ) =
[
S2(X)+S2(Y )

] 1
2 , S(X) =

√
2

2
∥X −diag(X)∥F ; X = XT , Y = Y T ,

where ∥X∥F =
√

trace(XT X) stands for the Frobenius norm of X . The condition
limk→∞ S(A(k),B(k)) = 0 means that A(k) approaches the set of diagonal matrices and
B(k) tends to In.

To prove the global convergence of the HZ, the LLT , the RRT , the CJ, the hybrid
and the general Jacobi method, one can use either [9, Corollary 5.8] or [10, Corol-
lary 5.3]. The proof is the same except at the place where one of these two references
is invoked. The first reference presumes that the pivot strategy is weakly equivalent
to the row-cyclic one (the so-called weakly wavefront strategy from [16]). The sec-
ond reference presumes that any generalized serial strategy is used. We shall choose
the latter choice because the set of generalized serial strategies is much larger and it
includes the set of weakly wavefront strategies. We note that Corollary 5.3 from [10]
holds for the block Jacobi methods, but if the partition which defines the matrix block-
partition is specified to be (1,1, . . . ,1), then it holds for the element-wise methods and
has the following form.

Lemma 4.2 ([10], Corollary 5.3) Let H ̸= 0 be a symmetric matrix of order n and
let the sequence H(0) = H, H(1), . . . be generated by the Jacobi-type process

H(k+1) = FT
k H(k)Fk +E(k), k ≥ 0,

where Fk are nonsingular elementary plane matrices. Let the sequence (H(k), k ≥ 0)
be bounded, limk→∞ S(E(k)) = 0 and let the following three assumptions hold:

A1 the pivot strategy of the process is generalized serial
A2 there is a sequence of orthogonal elementary plane matrices (Uk, k ≥ 0), such

that
lim
k→∞

(Fk −Uk) = 0

A3 the diagonal element f (k)ii of Fk satisfies the relation liminf
k→∞

| f (k)ii |> 0.

Then the following two conditions are equivalent

(i) lim
k→∞

h(k+1)
i j = 0,

(ii) lim
k→∞

S(H(k)) = 0.

Here H(k) = (h(k)rs ), k ≥ 0, and (i, j) is the pivot pair in step k.

Note that in A3 the diagonal element f (k)ii can be replaced by f (k)j j . This is true

because the assumption A2 implies limk→∞(| f
(k)
ii | − | f (k)j j |) = 0. We recall that the

pivot indices i and j are functions of k, i.e. i = i(k), j = j(k), k ≥ 0.
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While Lemma 4.2 is used to prove that S(A(k),B(k)) tends to zero, the following
lemma is used to prove the convergence of the diagonal elements. To formulate it, we
need more notation.

Let the eigenvalues of the pair (A,B) be nonincreasingly ordered,

λ1 = · · ·= λs1 > λs1+1 = · · ·= λs2 > · · · > λsp−1+1 = · · ·= λsp . (4.34)

The case p = 1 is not interesting, because it implies A = λ1B. Then every nonzero
vector is an eigenvector belonging to the only eigenvalue λ1. So, let p > 1.

If we set s0 = 0 in (4.34), we conclude that nr = sr − sr−1 is the multiplicity of
λsr . Furthermore, if we set λs0 = λ0 = ∞, λsp+1 =−∞, then 3δr, where

3δt = min{λst−1 −λst ,λst −λst+1}, 1 ≤ t ≤ p,

is the absolute gap in the spectrum of (A,B) associated with λsr . Let

δ = min
1≤r≤p

δr, δ0 =
δ

1+µ2 . (4.35)

We see that 3δ is the minimum absolute gap in the spectrum and δ0 < δ .

Lemma 4.3 Let A, B be the symmetric matrices of order n such that B is positive
definite with the unit diagonal. Let the eigenvalues of (A,B) be ordered as in the
relation (4.34) and δ0 be as in the relation (4.35). If

S(A,B)< δ0,

then there is a permutation matrix P such that for the matrix A′ = PT AP = (a′rt) we
have

2
n

∑
l=1

|a′ll −λl |2 ≤
S4(A,B)

δ 2
0

. (4.36)

Proof The proof is just a reformulation of [5, Corollary 3.3], using δ0. ⊓⊔

Now, we can formulate and prove the main convergence theorem.

Theorem 4.1 The HZ, the LLT J, the RRT J, and the CJ, are globally convergent
under the class of generalized serial strategies. The hybrid and the general Jacobi
method are globally convergent under the same class of cyclic strategies.

Proof Let us prove that S(A(k),B(k))→ 0 as k → ∞ for each method. To this end, we
apply Lemma 4.2 to the sequences of matrices (A(k), k ≥ 0) and (B(k), k ≥ 0).

For all considered methods the pivot elements are annihilated, i.e., a(k+1)
i j = 0,

b(k+1)
i j = 0. Hence the condition (i) of Lemma 4.2 is fulfilled. We also have E(k) = 0,

k ≥ 0. Next, we know that Lemma 4.1 holds for all considered methods. Hence the
both sequences, (A(k), k ≥ 0) and (B(k), k ≥ 0), are bounded.

It remains to check the assumptions A1–A3. The first assumption is just a selec-
tion of the pivot strategy. The second assumption is implied by Proposition 4.1(ii),
and it holds for all considered methods. Finally, the assumption A3 holds because the
relation ϕk −ψk = γk → 0 as k → ∞ and the assumption A2 hold for all considered
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methods. In addition, the relation (4.28) also holds for all considered methods, and it
implies liminfk→∞ | f (k)ii | ≥

√
2/2. Hence S(A(k),B(k))→ 0 as k → ∞. Since each B(k)

has the unit diagonal, this implies limk→∞ B(k) = In.
It remains to prove that the diagonal elements of A(k) converge. If p = 1, the proof

is completed because then A(k) = λ1 B(k) for each k and B(k) → In as k → ∞.
So, let p > 1. We have to show that for large enough k the diagonal elements of

A(k) cannot change their affiliation to the eigenvalues of the initial pair (A,B). It is
sufficient to prove it for the general Jacobi method.

Since limk→∞ γk = 0 and limk→∞ S(A(k),B(k)) = 0, the relations (4.29), (4.30), and
(4.28) with ϕk, ψk, imply that there is an integer k1 such that

νk <
δ
2
, max{| tanϕk|, | tanψk|}< 1.05, S(A(k),B(k))<min{δ0,

δ
2
}, k ≥ k1. (4.37)

Here δ and δ0 are from the relation (4.35). By Lemma 4.3, for k ≥ k1, all diagonal
elements of A(k) are contained in the union of open intervals ∪p

r=1Dr, where

Dr = {x; |x−λsr |< (
√

2/4)δ}, 1 ≤ r ≤ p.

This is implied by the relations (4.36) and (4.37). Indeed, we have

S2(A(k),B(k))√
2δ0

<
1√
2

S(A(k),B(k))<
1√
2

1
2

δ =

√
2

4
δ , k ≥ k1.

Let a(k)ii ∈ Dr, a(k)j j ∈ Dt , r ̸= t. Using the relations (4.33) and (4.37), we have

|a(k+1)
ii −λsr | ≤ |a(k+1)

ii −a(k)ii |+ |a(k)ii −λsr |< 1.05(|a(k)i j |+νk)+

√
2

4
δ

< 1.05(
δ
2
+

δ
2
)+

√
2

4
δ = (1.05+

√
2

4
)δ < 1.404δ ,

and in the similar way we obtain |a(k+1)
j j −λst |< 1.404δ . Hence for k ≥ k1 the diag-

onal elements of A(k) cannot change their affiliation to the eigenvalues. ⊓⊔

5 The High Relative Accuracy Experiments

Here we present several experiments in MATLAB which deal with high relative ac-
curacy of the methods derived in earlier sections. The tests have been made on a PC
with Intel(R) Core(TM) i7-2620M CPU and with 8 GiB of installed memory, under
the 64-bit operating system Windows 8.1 Enterprise, using MATLAB R2016a.

Our goal is to check numerically whether some of the derived methods compute
the eigenvalues of the positive definite pairs with high relative accuracy. First, we
have to find a class of “well-behaved” matrix pairs. Roughly speaking, a well be-
haved (positive definite) pair of matrices is the pair that allows only small relative
perturbations of the eigenvalues and eigenvectors if the perturbation matrices are
sufficiently small in some norm. Such a pair of matrices has additional properties and
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its perturbations are also somewhat special. Once we find a well-behaved pair, we
can apply to it the methods and see how accurately the eigenvalues are computed. A
method has high relative accuracy on that pair if it generates in finite arithmetic (in
each step and cumulatively), errors that belong to that special kind of perturbations.

Our choice of well-behaved pairs is based on the following result of Drmač.

Theorem 5.1 [1, Theorem 3.2] Let A and B be symmetric positive definite matrices
of order n and let λ1 ≥ λ2 ≥ ·· · ≥ λn be the eigenvalues of the pair (A,B). Let AS =

D−1/2
A AD−1/2

A , BS = D−1/2
B BD−1/2

B , where DA = diag(A), DB = diag(B). Let δA and
δB be symmetric perturbations and λ̃1 ≥ λ̃2 ≥ ·· · ≥ λ̃n be the eigenvalues of the
pair (A+ δA,B+ δB). Let (δA)S = D−1/2

A δAD−1/2
A , εAS = ∥(δA)S∥2/∥AS∥2 and

(δB)S = D−1/2
B δBD−1/2

B , εBS = ∥(δB)S∥2/∥BS∥2. If

εAS κ2(AS) = ∥(δA)S∥2∥A−1
S ∥2 < 1 and εBS κ2(BS) = ∥(δB)S∥2∥B−1

S ∥2 < 1,

then

max
1≤i≤n

|λ̃i −λi|
λi

≤
εAS κ2(AS)+ εBS κ2(BS)

1− εBS κ2(BS)
. (5.1)

From the theorem it follows that our class of well-behaved pairs is comprised of the
pairs of symmetric positive definite matrices that can be well scaled symmetrically,
i.e., for which κ2(AS) and κ2(BS) are small numbers. In addition, if the perturbation
matrices can be well scaled symmetrically, i.e., if εAS and εBS are small, then the
relative perturbations in all eigenvalues will be small.

Next, we have to find what methods generate small ε
A(k)

S
κ2(A

(k)
S ) and ε

B(k)
S

κ2(B
(k)
S )

in each step. Such a proof requires a detailed rounding error analysis which is a de-
manding task. The rounding error analysis is also used to show that all errors appear-
ing in the process can be moved in some way to A(0) and B(0). Then Theorem 5.1 can
be applied just once to so perturbed starting pair (A(0),B(0)).

Let us apply the Cauchy-Schwarz inequality to the numerator on the right-hand

side of (5.1). We obtain εAS κ2(AS) + εBS κ2(BS) ≤
√

κ2
2 (AS)+κ2

2 (AS)
√

ε2
BS
+ ε2

BS
.

Recall that for all considered methods the starting matrix B(0) is just B(0)
S .

If some Jacobi method has high relative accuracy, then the relation

ρ(A,B) = max
1≤i≤n

|λ̃i −λi|
λi

/

√
κ2

2 (A
(0)
S )+κ2

2 (B
(0))≤ f (n)u, (5.2)

should hold for the pairs from our class of well-behaved pairs. In the relation (5.2),
λ̃i, 1 ≤ i ≤ n are the computed eigenvalues of the starting pair (A(0),B(0)), f (n) is a
slowly growing function of n and u is the machine round-off. A strong indication that
the method has high relative accuracy can be obtained from a larger sample of pairs
from our class of well-behaved pairs. We shall call it ϒ .

The relation (5.2) should hold regardless of the condition number κ2(A(0)). There-
fore, it makes sense to investigate how ρ(A,B) behaves with respect to χ(A,B), where

χ(A,B) =
√

κ2
2 (A

(0))+κ2
2 (B

(0)) .
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For the given sample of pairs ϒ , we shall make for each method its “graph of relative
errors” E , which is defined by

E = {(χ(A,B) , ρ(A,B)) : (A,B) ∈ϒ}.

In MATLAB we can compute “nearly exact” eigenvalues λi using the variable preci-
sion arithmetic (vpa). The eigenvalues λ̃i are computed by the method that is tested
with the standard double precision. Hence it is easy to compute the quantities ρ(A,B)
and χ(A,B). The graph E will be displayed using the MATLAB scatter(x,y,3)

function. The method will be indicated as high relative accurate if the y-values of the
points on the graph are scattered around the machine epsilon, u ≈ 2.2 ·10−16.

Next, we describe how to generate the pairs of symmetric positive definite ma-
trices for numerical tests. They are determined by 4 diagonal matrices with positive
diagonal elements: ∆A, ∆B, Σ , ∆ and two orthogonal matrices U , V of order n. The
starting pair (A(0),B(0)) is computed in two steps:

(1) F =UΣV T , A = FT ∆AF , B = FT ∆BF ,

(2) B(0) = D−1/2
B BD−1/2

B (= BS), A(0) = ∆D−1/2
A AD−1/2

A ∆ (= ∆AS∆ ),

where DA and DB are the diagonal parts of A and B, as is defined in Theorem 5.1.
The magnitudes of κ2(A

(0)
S ) and κ2(B(0)) can be controlled by the magnitudes of the

diagonal entries of ∆A, ∆B, Σ . Indeed, by [18] we have κ2(A
(0)
S ) ≤ nκ2

2 (Σ)κ2(∆A),

κ2(B(0))≤ nκ2
2 (Σ)κ2(∆B), and almost always κ2(A

(0)
S ) and κ2(B(0)) are much smaller

than these bounds. To simplify the construction, we have set ∆B = In.
Note that κ2(A(0))≤ κ2(A

(0)
S )κ2

2 (∆). If a method has high relative accuracy, ρ(A,B)

from the relation (5.2) should not depend on κ2(A(0)), which is controlled by κ2(∆).
If we set ∆ = In and (A(0),B(0)) = (D−1/2

B AD−1/2
B ,BS), then we know the eigen-

values of (A(0),B(0)) in advance. They are the quotients (∆A)ll/(∆B)ll , 1≤ l ≤ n. This
can be used when considering the matrix pairs with multiple eigenvalues.

The diagonal matrices are constructed via the MATLAB function diag(d), where
d is a vector. The vectors are constructed by the MATLAB function logspace.
We use it to make the diagonal matrices Σ and ∆A. For the construction of ∆ we
use our m-function scalvec(k1,k2,k3,n,k) that generates vector d of length n,
d = [10k1, . . . ,10k2, . . . ,10k3]. Here k determines position of 10k2 among the com-
ponents of d. To compute ∆ , scalvec is used within a 3-level loop, controlled by
k1, k2, and k3. Altogether our main m-file uses a 7-level loop, 3 for computing ∆ ,
2 for Σ , and 2 for ∆A. The orthogonal matrices U and V are computed using the QR
factorization of the random matrices of order n. For example, for computing U the
command [Q,∼]=qr(rand(n)) is used.

Once we have obtained A(0), B(0), we convert their copies to symbolic type. Then
we apply the variable precision arithmetic (vpa) to those copies. We use vpa with 80
decimal digits to compute the reference eigenvalues and eigenvectors.

We have made tests for the following methods: the MATLAB eig function,
the HZ method (m-function dsyhz), the LLT J method (dsyllt), the RRT J method
(dsyrrt), and the hybrid CJ method (dsylrt). As a control method, we have used
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MATLAB eig function employing vpa with 80 decimal digits. We have considered
only the accuracy of the computed eigenvalues.

On input all those m-functions accept a pair (A,B) of the symmetric matrices
such that B is positive definite. The m-functions use only the upper-triangles of the
matrices A and B. On output each m-function yields the eigenvector matrix F , the di-
agonal matrix of eigenvalues and number of sweeps needed to terminate the process.
We consider output of the control method accurate, and use it to compute the relative
errors of the eigenvalues obtained by other methods.

Altogether, we have generated 18900 pairs of positive definite matrices of order
10. These pairs make the sample ϒ for testing high relative accuracy of the HZ, the
LLT J, the RRT J, and the CJ method.

5.1 The results

Instead of displaying the m-files, which are used in the tests, we display figures.
First, we use the MATLAB scatter(x,y,3) and scatter3(x,y,z,3) functions
to display the sets

{(κ2(BS),κ2(AS)) : (A,B) ∈ϒ} and {(κ2(BS),κ2(AS),κ2(A,B)) : (A,B) ∈ϒ},

where κ2(A,B) =
√

κ2
2 (A

(0))+κ2
2 (B

(0)) is the “spectral condition” of the pair (A,B).
To this end, the vectors x, y, z of length 18900 hold the values of the scaled

condition numbers of the starting matrices and of κ2(A,B). The ith entry of these
vectors is as follows: x(i)= κ2(BS) = κ2(B(0)), y(i)= κ2(AS), z(i)= κ2(A,B),
where (A,B) is the ith matrix pair in the experiment. The following two figures are
obtained:
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The 7 “regions” in the figures correspond to the 7-level loop that is used for
generating the matrix pairs.

To display E for the given method we use scatter(x,y,3) with x(i)= κ2(A,B),
y(i)= ρ(A,B), where ρ(A,B) is from the relation (5.2). The first two figures display the
graphs of the results of MATLAB eig(A,B) function and of the HZ method:

100 105 1010 1015 1020 1025 1030 1035
10-20

10-15

10-10

10-5

100

105

1010
Relative errors,   MATLAB eig(A,B)

100 105 1010 1015 1020 1025 1030 1035
10-20

10-18

10-16

10-14

10-12
Relative errors,   HZ method,  m-file dsyhz



26 Vjeran Hari

The figures indicate high relative accuracy of the HZ method, an important property
that is not shared with the eig(A,B) function. Since A and B are symmetric posi-
tive definite, eig(A,B) computes by default the generalized eigenvalues using the
Cholesky factorization of B.

For testing the LLT J and the RRT J methods we have used almost the same main
and auxiliary m-scripts. The difference (in respect to the HZ method) comes from
invoking different m-functions (dsyllt and dsyrrt instead of dsyhz). Here are the
figures of the graph E for these methods:
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We see that the relative accuracy of the LLT J and the RRT J methods is similar to that
of the MATLAB eig(A,B) function. We have made many modifications to dsyllt

and dsytrrt m-functions in hope to enhance the relative accuracy of the computed
eigenvalues. The only modification which made a huge difference was when we ap-
plied deRijk [14] pivot strategy. That strategy tries to ensure that at each step the
diagonal element a(k)ii is larger than a(k)j j . We have discovered that the LLT J and the
RRT J algorithms have to be combined in the special way, which yielded the hybrid
CJ method.

We end this section with a figure of the graph E of the hybrid CJ method:
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It indicates that the CJ method has high relative accuracy property.

6 Conclusion and Future Work

In this paper we have derived several new element-wise, two-sided Jacobi methods
for the PGEP. For all considered methods, the global convergence has been proved
under a large class of the generalized serial strategies from [10]. The numerical tests
indicate that two of them, the HZ and the CJ method, have high relative accuracy
property on a sample of the well-behaved pairs of positive definite matrices. This
makes them competitors to the FL method for the role of the best kernel algorithm
for the PGEP block Jacobi method.
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As a continuation of this research, future work will try to rigorously prove high
relative accuracy of these methods. Then one-sided versions of these methods can be
compared with the one-sided method from [1] which, by intention, firstly transforms
the initial GSVD problem to the standard SVD problem. A very interesting problem
is the asymptotic rate of convergence of the Jacobi methods in the case of multiple
eigenvalues. However, the most important immediate problems are proving the global
convergence and high relative accuracy of the block Jacobi methods for PGEP.

Finally, all those methods, element-wise and block, can be extended to the case of
complex matrices. The above mentioned problems for real methods are also opened
for the complex methods.
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