
Numerical Algorithms
 

On Complex Falk-Langemeyer Method
--Manuscript Draft--

 
Manuscript Number:

Full Title: On Complex Falk-Langemeyer Method

Article Type: Original Research

Keywords: generalized eigenvalue problem;  complex Hermitian matrices;  definite matrix pair;
diagonalization method

Corresponding Author: Vjeran Hari, Ph. D.
University of Zagreb
Zagreb, CROATIA

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University of Zagreb

Corresponding Author's Secondary
Institution:

First Author: Vjeran Hari, Ph. D.

First Author Secondary Information:

Order of Authors: Vjeran Hari, Ph. D.

Order of Authors Secondary Information:

Funding Information: Hrvatska Zaklada za Znanost
(IP 09 2014 3670)

Prof. Vjeran Hari

Abstract: A new algorithm for the simultaneous diagonalization of two complex Hermitian
matrices is derived. It is a proper generalization of the known Falk-Langemeyer
algorithm which was originally derived in 1960 for a pair of positive definite matrices. It
is proved that the complex Falk-Langemeyer algorithm is well defined for a pair of
Hermitian matrices which make a definite pair. Special attention is paid to the stability
of the formulas for the transformation parameters in the case when the pivot
submatrices are almost proportional. Numerical tests show the high relative accuracy
of the method if both matrices are definite and well-behaved, i.e. if they can be well-
scaled symmetrically.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Numerical Algorithms manuscript No.
(will be inserted by the editor)

On Complex Falk-Langemeyer Method

Vjeran Hari

Received: date / Accepted: date

Abstract A new algorithm for the simultaneous diagonalization of two complex Her-
mitian matrices is derived. It is a proper generalization of the known Falk-Langemeyer
algorithm which was originally derived in 1960 for a pair of positive definite matri-
ces. It is proved that the complex Falk-Langemeyer algorithm is well defined for a
pair of Hermitian matrices which make a definite pair. Special attention is paid to
the stability of the formulas for the transformation parameters in the case when the
pivot submatrices are almost proportional. Numerical tests show the high relative ac-
curacy of the method if both matrices are definite and well-behaved, i.e. if they can
be well-scaled symmetrically.
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1 Introduction

In 1960 S. Falk and P. Langemeyer [3] proposed a method for the simultaneous di-
agonalization of two real symmetric positive definite matrices. Their method solves
the generalized eigenvalue problem (GEP) Ax = λBx, x 6= 0. Later Slapničar and Hari
[17] proved the asymptotic quadratic convergence of the method under the serial pivot
strategies. In [17] it was also proved that the method was well-defined for a definite
pair of symmetric matrices [18]. In 2015 Matejaš [12] considered accuracy proper-
ties of the method. Although the paper did not consider the high relative accuracy of
the method in the case of positive definite matrices A, B, it provided a very detailed
error analysis of the method. Our numerical tests indicate that the method computes
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the eigenvalues and eigenvectors of the pair (A,B) to high relative accuracy provided
that A and B are well-behaved positive definite matrices. It means that the condi-
tion numbers of DAADA and DBBDB are small for some diagonal matrices DA and
DB (see [1,2]). We note that this important property of the FL method is not shared
with the QZ, QR and other methods which reduce the problem to the eigenproblem
for one symmetric tridiagonal matrix (see [9]). Typically, if the starting matrices are
ill-conditioned with respect to matrix inversion or if a positive definitizing shift [10]
µ is not known in advance (but still, shifting A 7→ A− µB can cause problems with
high relative accuracy of the computed eigenvalues) then the Falk-Langemeyer (FL)
method is a good choice. It can be made faster if its inherent parallelism is com-
bined with the BLAS1 saxpy computational routine. Also, additional accuracy can
be obtained if the floating-point fused multiply and add operation is used, computing
αβ + γ with a single rounding, which is now an IEEE-754 standard operator. As a
Jacobi-type method, it is very fast and accurate when A and B are nearly diagonal (cf.
[11]). This happens in the course of modeling the parameters of a system. Although
the global convergence of the FL method has not been considered yet, much is known
since it can be linked to the globally convergent HZ method from [9] (see [17], [4,
21]). In conclusion, the FL method is a reliable, accurate and fast Jacobi-type method
for the definite GEP. On contemporary CPU and GPU parallel computing machines
its main application is to serve as a kernel algorithm for the block Jacobi methods
which are used to compute GSVD or solve definite GEP (see[13]). The block Jacobi
methods are almost perfectly parallelizable, parallel shared memory versions of the
methods are highly scalable, and their speed up almost solely depends on the number
of cores used [13]. They compare favorably to the LAPACK DTGSJA algorithm.

In this paper, we derive complex FL (CFL) method. Although the obtained for-
mulas are the proper generalizations of the ones in the real case, their derivation is
far from trivial. Like in the real case, the formulas for the transformation parameters
become useless when the pivot submatrices are proportional. In such a case we pro-
vide additional stable formulas. Since the new algorithm is the proper generalization
of the real one, the quadratic asymptotic convergence of the CFL can be proved in a
straightforward way using the analysis from [17] together with the results from [5,
6]. The global convergence can be proved by linking the method to the complex HZ
method from [4], for which the global convergence proof is almost identical to that
from [9]. Our main focus in this paper is to derive the complex method and to show
that it is well defined for any definite pair of Hermitian matrices. We also provide
numerical tests in MATLAB which indicate the high relative accuracy of the method
when both matrices A and B are well-behaved positive definite Hermitian matrices.

The paper is organized as follows. In Section 2 we derive the CFL algorithm and
show its properties. Is Subsection 2.1 we derive the formulas for the parameters α and
β of the transformation matrix. In Subsection 2.2 we define the algorithm and prove
its properties. In Section 3 we describe how the numerical tests have been prepared
and done. We display the data which strongly indicate the high relative accuracy of
the method. The conclusions and proposals for future work are briefly outlined in
Section 4.
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2 The Derivation of the Complex Falk–Langemeyer Algorithm

Let A and B be two n by n complex Hermitian matrices. The complex Falk–Langemeyer
method solves the generalized eigenproblem Ax = λBx by generating a sequence of
“congruent” matrix pairs (A(1),B(1)),(A(2),B(2)), . . . where A(1) = A , B(1) = B and

A(k+1) = F∗k A(k)Fk , B(k+1) = F∗k B(k)Fk , k ≥ 1. (2.1)

Here F∗k denotes the Hermitian transpose of Fk. The transformation matrices are
nonsingular elementary plane matrices with unit diagonal. Each Fk differs from the
identity in only two elements at positions (i(k), j(k)) and ( j(k), i(k)), where 1 ≤
i(k) < j(k) ≤ n. The pair (i(k), j(k)) is called pivot pair and the 2× 2 matrix F̂k =
[ei(k),e j(k)]

∗Fk[ei(k),e j(k)] is called pivot submatrix of Fk. Here e1, . . . ,en are the columns
of the identity matrix In. For the CFL method we assume

F̂k =

[
1 αk
βk 1

]
, k ≥ 1, (2.2)

where the complex scalars αk and βk are chosen to satisfy the condition

a(k+1)
i(k) j(k) = 0 , b(k+1)

i(k) j(k) = 0, k ≥ 1.

Here, A(k) = (a(k)i j ), B(k) = (b(k)i j ), k ≥ 1. The transition from the pair (A(k),B(k)) to
the pair (A(k+1),B(k+1)) is the k–th step of the method. A way how the pivot pairs are
selected is called pivot strategy. A pivot strategy is cyclic if every sequence of N =
n(n−1)/2 successive pivot pairs contains all pairs from the set Pn = {(p,q);1≤ p< q≤
n}. For each cyclic strategy, the sequence of N successive steps starting with the ma-
trix pair (A((r−1)N+1),B((r−1)N+1)) is referred to as the r’th cycle. Two most common
cyclic pivot strategies are the column-cyclic and the row-cyclic strategy. The former is
defined by the sequence of pairs (1,2),(1,3),(2,3),(1,4),(2,4),(3,4), . . . ,(1,n), . . .
,(n−1,n) and the latter by (1,2),(1,3), . . . ,(1,n),(2,3), . . . ,(2,n), . . . ,(n−1,n). The-
se two strategies are also called serial strategies. Recently, a large set of generalized
serial strategies has been introduced. It includes the set of weakly-wavefront [16] and
many other cyclic strategies (see [8]).

If the eigenvectors are wanted, we have to calculate the sequence of matrices F(1),
F(2), . . . , where

F(1) = I , F(k+1) = F(k)Fk , k ≥ 1 . (2.3)

From the relations (2.1) and (2.3) we obtain for k ≥ 2

F(k) = F1 · · ·Fk−1 and A(k) = (F(k))∗A(1)F(k) , B(k) = (F(k))∗B(1)F(k) .

2.1 Computation of the transformation parameters

To derive an algorithm for computing αk, βk from (2.2), we consider the case of
matrices of order two. Since there is just one step to perform, we omit k and use
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special notation. In particular, we look for α and β which satisfy the following two
matrix equations[

1 β̄

ᾱ 1

][
a1 a2
ā2 a3

][
1 α

β 1

]
=

[
a′1 0
0 a′3

]
,

[
1 β̄

ᾱ 1

][
b1 b2
b̄2 b3

][
1 α

β 1

]
=

[
b′1 0
0 b′3

]
.

Here a2,b2,α and β are complex while the other elements of the matrices are real.
The unknowns α and β will be determined from the system of two equations, which
are obtained by equating (1,2)-elements on the left- and right-hand sides of the above
matrix equations. We obtain

e1 = a1α +a3β̄ + ā2αβ̄ +a2 = 0 (2.4)
e2 = b1α + b3β̄ + b̄2αβ̄ +b2 = 0. (2.5)

To solve the above system of equations, we shall use the following quantities

ℑ1 = a1b2−a2b1 =

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ (2.6)

ℑ3 = a3b2−a2b3 =

∣∣∣∣a3 b3
a2 b2

∣∣∣∣ (2.7)

ℑ2 = ℑ
′
2 + iℑ′′2 , ℑ

′
2, ℑ

′
2 real (2.8)

ℑ
′
2 = a1b3−a3b1 =

∣∣∣∣a1 b1
a3 b3

∣∣∣∣ (2.9)

iℑ′′2 = a2b̄2− ā2b2 =

∣∣∣∣a2 b2
ā2 b̄2

∣∣∣∣= i
(
−2
∣∣∣∣Re(a2) Re(b2)
Im(a2) Im(b2)

∣∣∣∣) . (2.10)

Let [
ẽ1
ẽ2

]
=

[
b2 −a2
b̄2 −ā2

][
e1
e2

]
. (2.11)

Then the relations (2.4), (2.5) and (2.11) imply

ẽ1 = ℑ1α +ℑ3β̄ − (iℑ′′2)αβ̄ = 0 (2.12)
¯̃e2 = ℑ1ᾱ +ℑ3β − iℑ′′2 = 0. (2.13)

The relation (2.11) shows that the system of equations (2.4) - (2.5) implies the system
(2.12) - (2.13) in the sense that every solution of the system (2.4) - (2.5) is a solution
of the system (2.12) - (2.13). The opposite implication is true only if ℑ′′2 6= 0. Geo-
metrically, ℑ′′2 6= 0 means that nonzero complex numbers a2 and b2 do not lie on a
line passing through the origin.

Lemma 2.1 The following identities hold

(i)
∣∣∣∣ℑ1 ℑ3

a1 a3

∣∣∣∣= a2ℑ
′
2,

∣∣∣∣ℑ1 ℑ3
b1 b3

∣∣∣∣= b2ℑ
′
2

(ii)
∣∣∣∣ a2 ā2
ℑ1 ℑ̄1

∣∣∣∣= a1(iℑ′′2),
∣∣∣∣ b2 b̄2
ℑ1 ℑ̄1

∣∣∣∣= b1(iℑ′′2)
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(iii)
∣∣∣∣ℑ1 ℑ̄1
ℑ3 ℑ̄3

∣∣∣∣= ℑ
′
2(iℑ

′′
2).

Proof All identities are implied by the definitions (2.6)– (2.10).

Let

Â =

[
a1 a2
ā2 a3

]
, B̂ =

[
b1 b2
b̄2 b3

]
, F̂ =

[
1 α

β 1

]
, Â′ =

[
a′1

a′3

]
, B̂′ =

[
b′1

b′3

]
. (2.14)

Consider the transformation (Â, B̂)→ (Âϕ , B̂ϕ) where[
Âϕ

B̂ϕ

]
=

[
cosϕI2 −sinϕI2
sinϕI2 cosϕI2

][
Â
B̂

]
, 0≤ ϕ ≤ 2π. (2.15)

Lemma 2.2 The solution (α,β ) of the system (2.4) - (2.5) and the quantities ℑ1,ℑ2
and ℑ3 are invariant under the transformation (2.15).

Proof Let Â′ = F̂∗ÂF̂ , B̂′ = F̂∗B̂F̂ where Â, B̂, F̂ , Â′, B̂′ are as in the relation (2.14).
If F̂ simultaneously diagonalizes Â and B̂, then for any ϕ , 0≤ ϕ ≤ 2π , the matrices

F̂∗Âϕ F̂ = cosϕÂ′− sinϕB̂′ and F̂∗B̂ϕ F̂ = sinϕÂ′+ cosϕB̂′

are diagonal. From (2.15) it follows that the converse is also true. Namely, if F̂ϕ

simultaneously diagonalizes Âϕ and B̂ϕ via the congruence transformation, then the
relation [

F̂∗ϕ ÂF̂ϕ

F̂∗ϕ B̂F̂ϕ

]
=

[
cosϕI2 sinϕI2
−sinϕI2 cosϕI2

][
F̂∗ϕ Âϕ F̂ϕ

F̂∗ϕ B̂ϕ F̂ϕ

]
shows that it does the same for the matrices Â and B̂. This holds for any 0≤ ϕ ≤ 2π .

If the elements of Âϕ and B̂ϕ are denoted by ar(ϕ) and br(ϕ), 1≤ r ≤ 3, then we
have

[ar(ϕ) br(ϕ)] = [ar br] Rϕ , Rϕ =

[
cosϕ sinϕ

−sinϕ cosϕ

]
.

Hence, for the quantities ℑt(ϕ), 1≤ t ≤ 3 associated with the pair (Âϕ , B̂ϕ), we have
ℑt(ϕ) = ℑt ·det(Rϕ) = ℑt , 1≤ t ≤ 3.

Let
ℑ = ℑ

2
2 +4ℑ̄1ℑ3.

By Lemma 2.1 (iii) we have

ℑ = (ℑ′2)
2− (ℑ′′2)

2 +2iℑ′2ℑ
′′
2 +4ℑ̄1ℑ3 (2.16)

= (ℑ′2)
2− (ℑ′′2)

2 +2ℑ1ℑ̄3−2ℑ̄1ℑ3 +4ℑ̄1ℑ3

= (ℑ′2)
2− (ℑ′′2)

2 +2(ℑ1ℑ̄3 + ℑ̄1ℑ3). (2.17)

The relation (2.17) shows that ℑ is real. Recall that the pair (Â, B̂) is definite if the
matrix σ Â+ωB̂ is positive definite for some real σ and ω .
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Lemma 2.3 Suppose the pair (Â, B̂) is definite. Then

(i) ℑ≥ 0
(ii) The following statements are equivalent

(a) ℑ = 0
(b) ℑ1 = ℑ2 = ℑ3 = 0
(c) σA+ωB = 0 for some real σ and ω such that |σ |+ |ω|> 0.

Proof Since the pair (Â, B̂) is definite, there exists some ϕ such that B̂ϕ from the
relation (2.15) is positive definite. We can prove the lemma for the pair (Aϕ ,Bϕ) and
then invoke the preceding lemma. This shows that in the proof we can assume that B̂
is positive definite.

(i) Consider first the case a2 = 0. Since ℑ′′2 = 0, the relation (2.16) implies

ℑ = (ℑ′2)
2 +4a1b̄2a3b2 = (a1b3−a3b1)

2 +4a1a3|b2|2

= (a1b3)
2 +(a3b1)

2−2a1a3(b1b3−2|b2|2)
≥ (a1b3)

2 +(a3b1)
2−2|a1a3|max{b1b3−|b2|2, |b2|2}

≥ (a1b3)
2 +(a3b1)

2−2|a1a3|b1b3

= (|a1|b3−|a3|b1)
2 ≥ 0. (2.18)

If b2 = 0 then we obtain ℑ = (a1b3−a3b1)
2 +4b1b3|a2|2 ≥ 0.

Consider now the case a2 6= 0, b2 6= 0. Let

x = a1

√
b3

b1
, y = a3

√
b1

b3
, z =

b2√
b1b3

,

a2 = a′2 + ia′′2 , z = z′+ iz′′, a′2,a
′′
2 ,z
′,z′′ real.

We have

ℑ = b1b3{(x− y)2−4(a′2z′′−a′′2z′)2 +4Re[(ā2− xz̄)(a2− yz)]}.

Hence

1
4b1b3

ℑ =
(x− y)2

4
− (a′2z′′−a′′2z′)2 +(a′2− z′x)(a′2− z′y)+(a′′2− z′′x)(a′′2− z′′y)

=
(x− y)2

4
+(1−|z|2)|a2|2 + xy|z|2 +(a′2z+a′′2z′′)2− (a′2z+a′′2z′′)(x+ y).

Let
q = (a′2z′+a′′2z′′)/|a2|= |z|cos(∠(a2,b2)),

where ∠(a2,b2) is the (smaller) angle between the radii-vectors determined by the
complex numbers a2 and b2. Since |z| < 1, by the Cauchy-Schwarz inequality, we
have |q| ≤ |z|< 1. We have

1
4b1b3

ℑ =
[
(|a2|q)2− (x+ y)(|a2|q)

]
+ xy|z|2 + 1

4
(x− y)2 +(1−|z|2)|a2|2

=

(
|a2|q−

x+ y
2

)2

+(1−|z|2)(|a2|2−a1a3). (2.19)
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If |a2|2 ≥ a1a3 we have ℑ ≥ 0. Hence it remains to consider the opposite case.
So, let 0 < |a2|2 < a1a3 = xy.

If q(x+ y) ≤ 0, we see from the first line of the relation (2.19) that all terms on
the right-hand side are nonnegative. So, it remains to consider the case q(x+ y)> 0,
which means that x, y and q are nonzero and have the same sign.

Let w = a2/
√

xy. Then |w|< 1 and we have∣∣∣∣x+ y
2
−|a2|q

∣∣∣∣= |x+ y|
2
−|q| |a2| ≥

√
xy−|q| |w|√xy≥ (1−|w| |z|)√xy.

Using the obtained inequality in the relation (2.19) we obtain

1
4b1b3

ℑ≥ (1−|w| |z|)2xy− (1−|z|2)(1−|w|2)xy = (|w|− |z|)2xy≥ 0. (2.20)

(ii) We shall prove the chain of implications (a)⇒ (b)⇒ (c)⇒ (d).

(a) ⇒ (b). We consider first the case a2 = 0. From the condition (a) and the first
line of the relation (2.18) we conclude that a1a3 ≤ 0. If a1a3 = 0 then from the same
line we conclude ℑ′2 = 0. Thus, a1/b1 = a3/b3 implying a1 = a3 = 0. So, Â = 0 and
the condition (b) holds. If a1a3 < 0 then the first line of the relation (2.18) yields

0=ℑ=(|a1|b3+|a3|b1)
2−4|a1a3| |b2|2 =(|a1|b3−|a3|b1)

2+4|a1a3|(b1b3−|b2|2).

Since b1b3− |b2|2 > 0 we must have a1a3 = 0 which contradicts to a1a3 < 0. We
conclude that the case a1a3 < 0 cannot occur.

If b2 = 0, we have 0 = ℑ = (a1b3− a3b1)
2 + 4b1b3|a2|2, implying a2 = 0 and

ℑ′2 = 0. Hence Â and B̂ are diagonal and proportional. Consequently the condition
(b) holds.

Let a2 6= 0, b2 6= 0. From the relation (2.19) we see that the case |a2|2 > a1a3
cannot occur.

Let us consider the case 0 < |a2|2 = a1a3 = xy. The condition ℑ = 0, the relation
(2.19) and |a2|=

√
xy imply

0 =
x+ y

2
−|a2|q =

x+ y
2
−q
√

xy ⇔ q
√

xy =
x+ y

2

which is impossible since |q| ≤ |z|< 1. Thus that case cannot occur.
It remains to consider the case 0 < |a2|2 < a1a3 = xy.
If q(x+ y) ≤ 0, we see from the first line of the relation (2.19) that all terms on

the right-hand side are nonnegative and the term (1−|z|2)|a2|2 is positive. Hence that
case cannot occur.

So, we have q(x+ y) > 0. It means that the relation (2.20) holds. Now, the con-
dition ℑ = 0 implies that all inequalities in the relation (2.20) are equalities. That
implies

|x|+ |y|
2

=
√

xy, |q|= |z|, |w|= |z|.

We first conclude |x| = |y| and then since xy > 0 we conclude x = y. This means
ℑ′2 = 0 The condition |q|= |z|means cos(∠(a2,b2)) =±1. Hence, if a2 6= b2 the line
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connecting a2 and b2 passes through the origin. Therefore, the condition |w| = |z|
implies w =±z.

For a1, a3 we have two possibilities: either a1 > 0, a3 > 0 or a1 < 0, a3 < 0.
In the first case we have x = y > 0, q > 0, cos(∠(a2,b2)) = 1 hence q = |z| and

w = z. Thus a2 =
a1a3
b1b3

b2 which implies ℑ′′2 = 0. We have obtained ℑ2 = 0. Now the
relation (2.16) implies 4ℑ̄1ℑ3 = 0. Note that by Lemma 2.1(i) ℑ1b3 = ℑ3b1. Hence,
we have ℑ1 = 0, ℑ3 = 0, ℑ2 = 0 and the condition (b) is fulfilled.

In the second case we have x= y< 0, q< 0, cos(∠(a2,b2)) =−1. Hence q=−|z|
and w = −z. So we have a2 = − |a1| |a3|

b1b3
b2 which implies ℑ′′2 = 0. As in the first case

we conclude that the condition (b) is fulfilled.

(b) ⇒ (c). If B̂ is positive definite, then the condition ℑ1 = ℑ2 = ℑ3 = 0 implies

a2 = µb2, a1 = µb1, a3 = µb3,

with µ = a1/b1 = a3/b3. Thus, Â = µB̂.
If Â is positive definite, we have B̂ = νÂ with ν = b1/a1 = b3/a3.
If neither Â nor B̂ is positive definite, then B̂ϕ is positive definite for some 0 ≤

ϕ < 2π . Then we have Âϕ = µϕ B̂ϕ or equivalently (µϕ sinϕ−cosϕ)Â+(µϕ cosϕ +
sinϕ)B̂ = 0, where (µϕ sinϕ− cosϕ)2 +(µϕ cosϕ + sinϕ)2 = 1+µ2

ϕ > 1.

(c) ⇒ (a). If sÂ+ tB̂ = 0 for some real s and t with |s|+ |t| > 0, then Â = µ̂B̂
or B̂ = ν̂Â for some real µ̂ or ν̂ . This implies ℑ1 = ℑ2 = ℑ3 = 0 and consequently
ℑ = 0.

Lemma 2.4 Let (Â, B̂) be definite and ℑ > 0. Then

(i) α = 0 iff ℑ3 = 0
(ii) β = 0 iff ℑ1 = 0
(iii) α = β = 0 iff ℑ1 = ℑ3 = 0.

Proof By Lemma 2.2 we can assume that B̂ is positive definite. We can prove (i) and
(ii) simultaneously.

Let α = 0 (β = 0). Then the equations (2.4) and (2.5) yield

β̄a3 +a2 = 0 (αa1 +a2 = 0),
β̄b3 +b2 = 0 (αb1 +b2 = 0).

If we multiply the first equation by b3 (b1), the second one by −a3 (−a1) and add
them together, we obtain ℑ3 = 0 (ℑ1 = 0).

To prove the opposite direction, we multiply the equation (2.4) by b3 (b1), the
equation (2.5) by −a3 (−a1) and add them together. We obtain

ℑ
′
2α− ℑ̄3αβ̄ −ℑ3 = 0, (ℑ′2β̄ + ℑ̄1αβ̄ +ℑ1 = 0).

Hence the assumption ℑ3 = 0 (ℑ1 = 0) implies

αℑ
′
2 = 0 (β̄ℑ

′
2 = 0).
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It remains to prove ℑ′2 6= 0. Indeed, By Lemma 2.1 ℑ′2 = 0 and ℑ3 = 0 (ℑ1 = 0)
would imply ℑ1 = ℑ2 = ℑ3 = 0. By Lemma 2.3(ii) that would imply ℑ = 0, which is
not true. Hence ℑ′2 6= 0 and α = 0 (β = 0).

(iii) If α = β = 0, then the equations (2.4) and (2.5) are reduced to a2 = 0 and b2 = 0,
respectively. Then ℑ1 = ℑ3 = ℑ′′2 = 0.

Now, suppose that ℑ1 = ℑ3 = 0. Note that ℑ1 = ℑ3 = 0 can be written as[
a1 b1
a3 b3

][
b2
−a2

]
= 0. (2.21)

Since (ℑ2)
2 = ℑ > 0, the relation (2.16) implies ℑ′2ℑ′′2 = 0. The case ℑ′2 = 0 would

together with ℑ1 = ℑ3 = 0 imply 0 < ℑ = −(ℑ′′2)2, which is impossible. So, we
conclude that ℑ′′2 = 0 and ℑ′2 6= 0. Now, (2.21) implies a2 = b2 = 0 and the equations
(2.4) and (2.5) are reduced to the system[

a1 a3
b1 b3

][
α

β̄

]
=

[
0
0

]
with

∣∣∣∣a1 a3
b1 b3

∣∣∣∣= ℑ
′
2 6= 0.

We conclude that α = β = 0.

Lemma 2.5 Suppose (Â , B̂) is definite and ℑ > 0. Then the solution (α , β ) of the
system (2.4) - (2.5) is given by

α =
ℑ3

ν
, β =− ℑ̄1

ν
, (2.22)

where ν is any nonzero solution of the equation

ν
2−ℑ2ν− ℑ̄1ℑ3 = 0. (2.23)

Proof By Lemma 2.2 we can assume that B̂ is positive definite. To solve the system
of equations (2.4) - (2.5) we distinguish two cases: ℑ1ℑ3 = 0 and ℑ1ℑ3 6= 0.

ℑ1ℑ3 = 0 . In this case Lemma 2.1(iii) implies ℑ′2ℑ′′2 = 0. If ℑ′2 = 0 then by
Lemma 2.1(i) one obtains ℑ1 = ℑ3 = 0 and consequently by Lemma 2.1(ii) ℑ′′2 = 0.
Thus ℑ = 0 which contradicts to the assumption ℑ > 0. So, we must have ℑ′2 6= 0 and
therefore ℑ′′2 = 0.

From Lemma 2.4, we know that ℑ1 = 0 (ℑ3 = 0) implies β = 0 (α = 0). From
(2.4) - (2.5) we see that β = 0 (α = 0) implies α = −b2/b1 (β = −b̄2/b3). By
Lemma 2.1(i) we conclude that −b2/b1 = ℑ3/ℑ′2 (b̄2/b3 = −ℑ̄1/ℑ′2). Hence we
obtain the solution α = ℑ3/ℑ′2 = ℑ3/ℑ2, β = 0 (α = 0, β = −ℑ̄1/ℑ′2 = −ℑ̄1/ℑ2),
where ℑ2 (=ℑ′2) is the nonzero solution of the equation (2.23). This proves the lemma
in the case ℑ1ℑ3 = 0.

ℑ1ℑ3 6= 0 . In this case Lemma 2.4 implies αβ 6= 0. Furthermore, we cannot have
a2 = b2 = 0 because then the relations (2.6) and (2.7) would imply ℑ1 = ℑ3 = 0.

We first consider the case ℑ′′2 = 0. Using ℑ′′2 = 0 in the relation (2.12) or (2.13),
one obtains ℑ1α +ℑ3β̄ = 0. Therefore, the solution (α,β ) can be looked for in the
form

α =
ℑ3

ν
, β =− ℑ̄1

ν̄
, 0 6= ν ∈ C.
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We have obtained the general form of the solution and now we have to insert it into
the original system of equations (2.4) - (2.5) and solve for ν . Actually, if a2 6= 0
(b2 6= 0) we use the equation e1 (e2). Suppose the equation e1 has been used. After
inserting the expressions for α and β in the relation (2.4), after dividing by a2 and
using Lemma 2.1(ii) we obtain ν2−ℑ2ν − ℑ̄1ℑ3 = 0. Note that in the considered
case the solutions ν1 and ν2 are real. Thus, ν satisfies the quadratic equation (2.23),
which proves the lemma.

It remains to consider the case ℑ′′2 6= 0. From Lemma 2.4, we see that we can
replace the unknowns α , β by ν , µ , where

α =
ℑ3

ν
, β =− ℑ̄1

µ
, 0 6= νµ ∈ C. (2.24)

Note that the freedom in choosing ν and µ compensates our choice of ℑ3 and ℑ̄1 in
the numerators of the ratios defining α and β , respectively. By inserting α , β from
(2.24) into the system (2.12) - (2.13), we obtain

ℑ1ℑ3(ν− µ̄− iℑ′′2) = 0 (2.25)
ℑ1ℑ̄3µ− ℑ̄1ℑ3ν̄ = ıµν̄ℑ

′′
2 . (2.26)

Since ℑ′′2 6= 0 the solution of the system (2.25) - (2.26) solves the system (2.4) - (2.5).
To solve the system (2.25) - (2.26) we divide the first equation by ℑ1ℑ3. We obtain

µ = ν̄ + ıℑ′′2 . (2.27)

Using Lemma 2.1(iii) and the relation (2.27), one can rewrite the second equation
(2.26) as

ıµν̄ℑ
′′
2 = (ℑ1ℑ̄3− ℑ̄1ℑ3)µ +(µ− ν̄)ℑ̄1ℑ3 = ıℑ′2ℑ

′′
2 µ + ıℑ′′2ℑ̄1ℑ3.

After dividing by ıℑ′′2 and using once more (2.27), one obtains

0 = µν̄−ℑ
′
2µ− ℑ̄1ℑ3 = µ(µ− ıℑ′′2)−ℑ

′
2µ− ℑ̄1ℑ3 = µ

2−ℑ2µ− ℑ̄1ℑ3 (2.28)

To obtain the equation for ν , we use the relation (2.27). In the equation (2.28) we re-
place µ by ν̄ + ıℑ′′2 and then apply the complex conjugation to the obtained equation.
We obtain

0 = (ν− ıℑ′′2)
2− (ℑ′2− ıℑ′′2)(ν− ıℑ′′2)−ℑ1ℑ̄3

= ν
2−ℑ2ν + ıℑ′2ℑ

′′
2−ℑ1ℑ̄3 = ν

2−ℑ2ν− ℑ̄1ℑ3.

Here in the last line we have used Lemma 2.1(iii). If we enumerate the solutions of
the obtained equation so that the condition (2.27) is satisfied, we obtain

µ± = ν̄±+ ıℑ′′2 =

(
1
2

ℑ̄2±
1
2

√
ℑ

)
+ ıℑ′′2 =

1
2

ℑ2±
1
2

√
ℑ = ν±.

This completes the proof of Lemma 2.5.

Now we can describe the general solution of the system (2.4) - (2.5).
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Theorem 2.1 Let the pair (Â, B̂) be definite. Then the solution (α,β ) of the system
(2.4) - (2.5) has the following form.

(i) If ℑ > 0 then α =
ℑ3

ν
, β = − ℑ̄1

ν
, where ν is any nonzero solution of the

equation ν2−ℑ2ν− ℑ̄1ℑ3 = 0
(ii) If ℑ = 0 then the equations in the system (2.4)–(2.5) are proportional and there

is infinite number of solutions.

(a) Let Â 6= 0. If |a1|+ |a2| > 0 then α = − γ̄a3 +a2

a1 + γ̄ ā2
, β = γ , where

γ ∈ {z ∈ C;a1 + z̄a2 6= 0}.

If |a2|+ |a3| > 0 then α = γ, β = − γ̄a1 + ā2

γ̄a2 +a3
, where

γ ∈ {z ∈ C;a3 + z̄a2 6= 0}.
(b) Let B̂ 6= 0. The solutions are as in the case (a) provided that a1, a2, a3 are

replaced by b1, b2, b3, respectively.

Proof (i) This statement is proved in Lemma 2.5. Note that ν = 0 is a solution of the
quadratic equation iff ℑ̄1ℑ3 = 0. In this case the system (2.4) - (2.5) has the solutions
given in Lemma 2.4 and they are obtained by the formula (2.22) with ν = ℑ2 = ℑ′2.

(ii) In this case we have by Lemma 2.3 (ii) ℑ1 = ℑ2 = ℑ3 = 0 i. e. σ Â = ωB̂
for some real σ and ω with |σ |+ |ω|> 0. Hence the formulas from (i) (that is from
(2.22)) do not exist. Setting β = γ (or α = γ) we can use (2.4) or (2.5) to obtain α

(β ). Note that the case Â = B̂ = 0 is not possible since (Â, B̂) is definite.

By Vieta’s formulas, for the solutions of the equation (2.23), we have

ν+ν− =−ℑ̄1ℑ3, ν++ν− = ℑ2. (2.29)

Hence, the conditions ℑ > 0 and ℑ̄1ℑ3 = 0 imply ℑ′′2 = 0, ℑ′2 = ℑ > 0 and ν+ = ℑ′2,
ν− = 0 or ν− = ℑ′2, ν+ = 0. Then the solution is unique: α = ℑ3/ℑ′2, β =−ℑ̄1/ℑ′2
with αβ = 0.

If ℑ > 0 and ℑ̄1ℑ3 6= 0 then we have

α± =
ℑ3

ν±
=

ℑ3

− ℑ̄1ℑ3
ν∓

=
1

− ℑ̄1
ν∓

=
1

β∓
, (α+β+) · (α−β−) = 1. (2.30)

Next we examine the cases ℑ′2 = 0 and ℑ2 = 0. Recall that ℑ′2 = 0 means that the
diagonal parts of Â and B̂ are proportional while ℑ′′2 = 0 means that a2 and b2 lie on
a line which passes through the origin. In particular, ℑ′2 = 0 implies that the solutions
of the quadratic equation (2.23) have the same modulus.

Corollary 2.1 Let the pair (Â, B̂) be definite and ℑ > 0.

(i) If ℑ2 = 0, then the solutions of the system (2.4)–(2.5) have the form

α± =±η eıτ√
ρ, β± =− 1

α±
=∓η e−ıτ/

√
ρ, η ∈ {−1,1}, (2.31)
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where

ρ =

{
a3/a1 if a1a3 > 0
b3/b1 otherwise , τ =

{
arg(a2) if a2 6= 0
arg(b2) otherwise , η eıτ = eıarg(ℑ3). (2.32)

(ii) If ℑ′2 = 0, ℑ′′2 6= 0, then

α± = eıΘ±√ρ, β± = e−ıΘ∓/
√

ρ, (2.33)

where ρ is given by (2.32) and for the arguments Θ± it holds

ℑ
′′
2 sin(arg(α+)+ arg(β+)) = ℑ

′′
2 sin(Θ+−Θ−)> 0,

ℑ
′′
2 sin(arg(α−)+ arg(β−)) = ℑ

′′
2 sin(Θ−−Θ+)< 0.

Proof Let us first investigate some consequences implied by the condition ℑ′2 = 0.
This condition is equivalent to

σ

[
a1
a3

]
+ω

[
b1
b3

]
= 0 for some σ ,ω ∈ R, |σ |+ |ω|> 0.

Since (Â, B̂) is definite, the matrix σ1Â+ω1B̂ is positive definite for some real σ1 and
ω1 such that |σ1|+ |ω1| > 0. Obviously, the row vector [σ ω] is not proportional to
[σ1 ω1]. Hence, if σ 6= 0, then [a1,a3]

T =−ω/σ [b1,b3]
T and we have(

ω1−
ω

σ
σ1

)[b1
b3

]
= σ1

[
a1
a3

]
+ω1

[
b1
b3

]
> 0.

We have thus proved that σ 6= 0 implies b1b3 > 0. In a similar way one can prove that
ω 6= 0 implies a1a3 > 0.

Since ℑ > 0, the condition ℑ′2 = 0 implies ℑ̄1ℑ3 > (ℑ′′2/2)2 ≥ 0. It means that
arg(ℑ1) = arg(ℑ3).

Therefore the condition ℑ′2 = 0 implies three possible cases:

a1a3 > 0, b1 = b3 = 0, ℑ1 = a1b2, ℑ3 = a3b2, b2 6= 0
b1b3 > 0, a1 = a3 = 0, ℑ1 = b1a2, ℑ3 = b3a2, a2 6= 0
a1a3 > 0, b1b3 > 0, a1b3 = a3b1 implying a3/a1 = b3/b1.

 (2.34)

Hence by Lemma 2.1 (i) we have

ℑ3

ℑ1
=
|ℑ3|
|ℑ1|

=

{
a3/a1 if a1a3 > 0
b3/b1 otherwise

}
= ρ.

The same conclusion can be drawn from the relation (2.34) and the definitions (2.6),
(2.7) of ℑ1, ℑ3, respectively.

Now consider the condition ℑ′′2 = 0. It is equivalent to

σ2a2 +ω2b2 = 0 for some σ2,ω2 ∈ R, |σ2|+ |ω2|> 0.
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Hence

ℑ3 = a3b2−b3a2 =

−a2

(
a3

σ2
ω2

+b3

)
, ω2 6= 0

b2

(
a3 +

ω2
σ2

b3

)
, σ2 6= 0

,

ℑ1 = a1b2−b1a2 =

−a2

(
a1

σ2
ω2

+b1

)
, ω2 6= 0

b2

(
a1 +

ω2
σ2

b1

)
, σ2 6= 0

.

This shows that a2, b2, ℑ1 and ℑ3 lie on the same line which passes through the
origin. Let τ be as in the relation (2.32). If ℑ̄1ℑ3 > 0 then ℑ1 and ℑ3 have the same
argument. Hence from the latest relation we have

ℑ3 = ηeıτ |ℑ3|, ℑ̄1 = ηe−ıτ |ℑ1|, ηeıτ = eıarg(ℑ3), η ∈ {−1,1}. (2.35)

(i) If ℑ2 = 0, then we have ℑ̄1ℑ3 = ℑ/4 > 0. By Theorem 2.1 (i) one obtains

α± =
ℑ3

±
√

ℑ̄1ℑ3
β± =− ℑ̄1

±
√

ℑ̄1ℑ3
. (2.36)

It follows that α±β± =−1. From (2.36), (2.35) and ℑ̄1ℑ3 = |ℑ1||ℑ3| we obtain

α± =
eıarg(ℑ3)|ℑ3|
±
√
|ℑ1||ℑ3|

=
ηeıτ |ℑ3|
±
√
|ℑ1||ℑ3|

=±ηeıτ√
ρ, β± =− 1

α±
,

which proves the assertion (2.31).
(ii) If ℑ′2 = 0, ℑ′′2 6= 0, then from the quadratic equation (2.23) for ν , we obtain

2ν± = iℑ′′2±
√

ℑ, (2.37)

hence |ν+|= |ν−|=
√

ℑ̄1ℑ3 >
√

ℑ/2 > 0 and ν̄± =−ν∓. Since α± = ℑ3/ν±,
β± =−ℑ̄1/ν±, we have

|α±|=

√
|ℑ3|
|ℑ1|

=
√

ρ =
1
|β±|

, α± =
1

β∓
,

where the second equation is part of the relation (2.30). So, we can set

α± = eiΘ±√ρ, β± = e−iΘ∓/
√

ρ.

From the relation (2.37) we obtain

ei(Θ±−Θ∓) = α±β± =− ℑ̄1ℑ3

(ν±)2 =− |ν±|
2

(ν±)2 =− (ν∓)
2

|ν∓|2
=−1+

(ℑ′′2)
2

4ℑ̄1ℑ3
± ı

ℑ′′2
√

ℑ

4ℑ̄1ℑ3
.

Hence

ℑ
′′
2 sin(arg(α±)+ arg(β±)) =±ℑ

′′
2 sin(Θ+−Θ−) =±

(ℑ′′2)
2
√

ℑ

4|ν±|2
,

which proves the remaining assertion.
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Next, we provide conditions which ensure uniqueness of the solution (α,β ). We
choose the conditions which ensure that |α| and |β | are as small as possible. This
result can be used to link the complex FL method with the complex HZ method [4,
9], in order to prove the global convergence of the complex FL method.

Corollary 2.2 Let the pair (Â, B̂) be definite and ℑ > 0. Then the system (2.4) - (2.5)
has a unique solution provided that any of the following three conditions is fulfilled.

(i) ℑ′2 6= 0 and |αβ |< 1
(ii) ℑ′2 = 0, ℑ′′2 6= 0 and ℑ′′2 sin(arg(α)+ arg(β ))> 0.

(iii) ℑ2 = 0 and arg(α) =

{
arg(b2) if b2 6= 0
arg(a2) otherwise

Proof (i) Since ℑ > 0, Theorem 2.1 implies α± = ℑ3/ν±, β± = −ℑ̄1/ν±,
ν± = (ℑ′2 + iℑ′′2 ±

√
ℑ)/2. Here ν+ and ν− satisfy the quadratic equation (2.23).

The relation (2.29) shows that we have ν+ν− =−ℑ̄1ℑ3 and ν++ν− = ℑ2. We con-
sider two cases ℑ̄1ℑ3 6= 0 and ℑ̄1ℑ3 = 0.

ℑ̄1ℑ3 6= 0. In this case the relation (2.30) holds. Since ℑ′2 6= 0 and ℑ > 0, one of
the solutions ν+ or ν− has larger absolute value than the other. If |ν+| (|ν−|) is
larger, we conclude from (2.30) that

|α+β+|< 1, |α−β−|> 1 (|α−β−|< 1, |α+β+|> 1) .

ℑ̄1ℑ3 = 0. This case has been already considered (see the paragraph below the re-
lation (2.29)) and we obtained the unique solution α = ℑ3/ℑ′2, β = −ℑ̄1/ℑ′2,
which satisfies αβ = 0 < 1.

(ii) The solutions are described in Corollary 2.1(ii). We choose the + solution from
the relation (2.33).

(iii) In this case Corollary 2.1(i) implies α±β± = −1 and the selected solution
from (2.31) is (α+,β+).

2.1.1 The solutions in the case ℑ = 0

In practice this case will rarely happen, but if not handled with care, it can cause
problems, especially in the presence of rounding errors. What are reasonable choices
for α and β in that case?

By Lemma 2.3(ii) the condition ℑ= 0 is equivalent to the condition ℑ1 =ℑ2 =ℑ3
= 0 and also to: sÂ+ tB̂ = 0 for some real s and t such that |s|+ |t| > 0. Hence
Â =−(t/s)B̂ whenever s 6= 0 and B̂ =−(s/t)Â whenever t 6= 0. Since the pair (Â, B̂)
is definite, σ Â+ωB̂ is positive definite for some real σ , ω such that |σ |+ |ω| > 0.
Combining these claims we conclude that Â or B̂ has to be definite. If they both are
nonzero then they both have to be definite. This implies a1a3 > 0 or b1b3 > 0 and at
least one of the equations (2.4), (2.5) is nontrivial. We know that in the case ℑ = 0
these equations are linearly dependant. So, how to solve those equations?

If a2 = 0 and b2 = 0 then we set α = 0, β = 0 and proceed with the next step.
If |a2|+ |b2|> 0, we know from Theorem 2.1(ii) that there is infinite set of solu-

tions (α,β ). Here are some natural choices for the solution:
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(a) α =

{
± a2
|a2|

a3
a1
, |a2| ≥ |b2|

± b2
|b2|

b3
b1
, |a2|< |b2|

, β =− 1
α

=

{
∓ ā2
|a2|

a1
a3
, |a2| ≥ |b2|

∓ b̄2
|b2|

b1
b3
, |a2|< |b2|

,

(b) α =

{
− a2

a1
, |a1| ≥ |b1|

− b2
b1
, |a1|< |b1|

, β = 0 or α = 0, β =

{
− ā2

a3
, |a3| ≥ |b3|

− b̄2
b3
, |a3|< |b3|

.

The first choice, described in (a), is obtained by splitting the equation (2.4) in two
equations, a1α + a3β̄ = 0, ā2αβ̄ + a2 = 0, and then solving the system. The same
can be done with the equation (2.5), which gives us the possibility to choose the
equation with larger coefficients.

The second choice (b) uses additional condition α ·β = 0. This choice is more
attractive to be a part of the complex Falk-Langemeyer method, because in the later
stage of the iterative process when the both matrices become almost diagonal, we
would like to have small α and β to ensure the quadratic convergence of the algo-
rithm.

Hence, we may set some additional criteria for choosing the solution from the
infinite set of solutions. Here they are:

(i) |α|+ |β | →min,
(ii) α ·β = 0,
(iii) (α,β ) is determined from the pivot submatrix of the larger norm.

The first criterion ensures the smallest norm of the transformation matrix F̂ . The
second one ensures the smallest flop count per step of the method. The third one
ensures that (α,β ) is determined by a more reliable set of input data. Typically the
input data are numbers (matrix elements) that are obtained using finite arithmetic. We
want them as large as possible to minimize the possibility that they are obtained by
sharp cancelations in previous steps.

We see that the choice (b) of the solution complies with all listed requirements.
In particular, if Â = 0 then B̂ has to be definite. This means that the first equation

(2.4) is trivial (expression e1 is zero) and we have to solve the second equation (2.5).
So, we choose α =−b2/b1, β = 0 if b1 ≥ b3 and α = 0, β =−b̄2/b3 otherwise. In
the case B̂ = 0, we choose α = −a2/a1, β = 0 if a1 ≥ a3 and α = 0, β = −ā2/a3
otherwise.

Influence of rounding errors

Typically, only the computed values of ℑ1, ℑ2, ℑ3 and ℑ will be at disposal. If ℑ≈ 0
then by Lemma 2.3(ii) we shall have ℑ1 ≈ 0, ℑ2 ≈ 0, ℑ3 ≈ 0 and ‖Â− cB̂‖2 ≈ 0
for some real c. In such a situation the formulas for computing α and β are prone to
large relative errors. The smaller the value of ℑ the larger are the relative errors in α

and β computed by the standard formulas using ν . How to determine that ℑ is small
enough to abandon the standard formulas, and how to compute the solution (α,β ) ?

In the real computational process on large matrices A, B the case ℑ≈ 0 will rarely
occur. If it does happen then most likely it will appear at the end of the process in the
case when the matrix pair has multiple eigenvalues. Therefore, we need a simple and
cheap to compute criterion to detect whether ℑ ≈ 0. In the later stage of the process
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all |a2| and |b2| will be small and that will cause |ℑ1|, |ℑ3| and |ℑ′′2 | to be small. The
remaining ingredient of ℑ is ℑ′2 and most of the time (except possibly in the beginning
of the process) it determines whether ℑ is small. In addition, by Lemma 2.3(ii) we do
not expect that small ℑ is implied by severe cancelation caused by the numbers ℑ1,
ℑ3 and ℑ2, but simply because these numbers are small by absolute value. However,
small values of |ℑ1|, |ℑ3|, |ℑ′2| and |ℑ′′2 | are caused by severe cancelations or by small
|a2| and |b2|.

Here is one suggestion what to do in general.

(i) We can compute ‖Â‖F and ‖B̂‖F . If one these norms is zero, we use the above
simple formulas for α and β . In this case we have αβ = 0.

(ii) If ‖Â‖F > 0 and ‖B̂‖F > 0, we normalize Â and B̂ as follows: compute integers µÂ
and µB̂ such that 1≤ 2−µÂ‖Â‖F ≤ 2 and 1≤ 2−µB̂‖B̂‖F ≤ 2. Then renormalize Â,
B̂, i.e. make updates: Â← 2−µÂ Â and B̂← 2−µB̂ B̂. Note that F̂ is invariant under
that transformation because it simultaneously diagonalizes Â and B̂ if and only if
it simultaneously diagonalizes 2−µÂ Â and 2−µB̂ B̂.

(iii) Next we compute ℑ. If ℑ is positive and not too tiny, then we compute α and β

by the standard formulas using ν . If ℑ is negative and |ℑ| is not too tiny, then we
consider the pair (Â, B̂) is not definite and abort the computation. Finally, if |ℑ| is
tiny, we apply a special procedure to determine how α and β should be computed.
Here a tiny |ℑ| means a modest multiple of the unit round-off (machine epsilon)
u multiplied by some reasonable upper bound of |ℑ|.

The rest of this subsection is devoted to designing that special procedure. The pro-
cedure has to determine whether the pair (Â, B̂) is definite and how to compute the
solution. Such a procedure can be an important part of the CFL algorithm. If the ini-
tial pair (A,B) is known to be definite, but it has tiny Crawford constant c(A,B), then
the rounding errors can ruin the definiteness of the iterated pair (see [18,19]). By fl(x)
we denote the computed value of x.

Let ℑ1 = ℑ′1 + ıℑ′′1 , ℑ3 = ℑ′3 + ıℑ′′3 and a2 = a′2 + ıa′′2 , b2 = b′2 + ıb′′2 . We have

|ℑ| = |(ℑ′2−ℑ
′′
2)(ℑ

′
2 +ℑ

′′
2)+4Re(ℑ̄1ℑ3)| ≤max{(ℑ′2)2 , (ℑ′′2)

2}+4|ℑ′1ℑ
′
3 +ℑ

′′
1ℑ
′′
3 |

≤ max{(|a1b3|+ |b1a3|)2,4(|a′2b′′2 |+ |a′′2b′2|)2}
+4[|a1a3||b2|2 + |b1b3||a2|2 +(|a1b3|+ |b1a3|)(|a′2b′2|+ |a′′2b′′2 |)|]≡ ρ.

We consider ρ a reasonable upper bound for |fl(ℑ)|. Let ε be a modest multiple of u
(say of u≤ ε ≤ 10u). Its optimal value can be determined by numerical tests.

If fl(ℑ)<−ρε we consider the initial pair not definite and abort the computation.
If |ℑ| is tiny, say of order u or less, then fl(ℑ) as an approximation of ℑ will have

large relative error, and in our analysis we shall also use fl(ℑ). Later in the statements
of the algorithm fl(ℑ) and ℑ will mean the same. Recall that ℑ = 0 implies ℑr = 0
for all 1≤ r≤ 3. Now, if all ℑr are of order ε , then |ℑ| will be of order ε2. Therefore,
if ρε2 ≤ fl(ℑ), we can employ the standard formulas for α , β which use ν .

If fl(ℑ) lies in the interval (0,ρε2), then severe cancelation(s) take place and the
computed ν , α and β will have large relative errors. If fl(ℑ) ∈ (−ρε2,0) we can still
speculate that the rounding errors have caused fl(ℑ) to be negative. Therefore, the
question arises how else can we compute the solution (α,β ) when |ℑ| is that tiny?



On Complex Falk-Langemeyer Method 17

By adopting the criterions (i)–(ii), we can assume αβ = 0. If β = 0 the equations
(2.4) and (2.5) make a system of linear equations a1α =−a2, b1α =−b2 and we can
look for the least square (LS) solution.

Let ã1 =
√

a2
1 +b2

1, c1 = a1/ã1, s1 = b1/ã1. We obtain

‖
[

a1
b1

]
α +

[
a2
b2

]
‖2

2 = ‖
[

ã1
0

]
α+

[
c1 s1
−s1 c1

][
a2
b2

]
‖2

2 =

∣∣∣∣ã1α+
a1a2+b1b2

ã1

∣∣∣∣2+ |ℑ1|2

a2
1 +b2

1
,

where ‖ · ‖2 stands for the Euclidean vector norm. The solution is

α =−a1a2 +b1b2

a2
1 +b2

1
with the residual error

|ℑ1|√
a2

1 +b2
1

.

Since α is a convex sum of−a2/a1 and−b2/b1 it lies on the line segment connecting
these two points in the complex plane.

The case α = 0 is treated in the similar way. We obtain

β =−a3ā2 +b3b̄2

a2
3 +b2

3
with the residual error

|ℑ3|√
a2

3 +b2
3

,

and β lies on the line segment connecting −ā2/a3 and −b̄2/b3. The above consider-
ations lead us to the following algorithm for computing the solution (α,β ):

if
|ℑ1|√
a2

1 +b2
1

≤ ℑ3|√
a2

3 +b2
3

then α =−a1a2 +b1b2

a2
1 +b2

1
, β = 0

else α = 0, β =−a3ā2 +b3b̄2

a2
3 +b2

3endif

 (2.38)

Note that due to the definiteness of the pair (Â, B̂), we should have a2
1 +b2

1 > 0 and
a2

3+b2
3 > 0. If due to rounding errors, |a1|+ |b1|= 0 and |a3|+ |b3|> 0 or vice versa,

we can still use the formulas (2.38).
If Â = cB̂ (B̂ = cÂ) for some real c then the algorithm (2.38) reduces to

if |a1|+ |b1| ≥ |a3|+ |b3| then α =−a2/a1 (=−b2/b1), β = 0

else α = 0, β =−ā2/a3
(
=−b̄2/b3

)
endif

 (2.39)

which conforms with the choice (b) of the solution. Here, we have replaced the void
condition (0 ≤ 0) in the algorithm (2.38) by |a1|+ |b1| ≥ |a3|+ |b3| which reduces
to |a1| ≥ |a3| (|b1| ≥ |b3|) and ensures that the first requirement |α|+ |β | →min is
fulfilled.

The solution of the LS problem is attractive if fl(ℑ) lies in the interval (−ρε2,ρε2)
because then the residuals are small. Our strategy is to employ it in that case. The
narrative is as follows. The rounding errors can cause fl(ℑ) to lie somewhere in the
interval (−ρu,0) even if the pair (Â, B̂) is definite. If the pair (A,B) of large matrices
is not definite, then we have probably detected a pair of pivot submatrices which is
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not definite. However, we do not want to neglect the possibility that (A,B) is definite
with small Crawford constant. So, if fl(ℑ) ∈ (−ρε2,0), instead of terminating the
iteration process, we would rather use the LS solution. If fl(ℑ) ∈ (−ρε,−ρε2) it is
more likely that (Â, B̂) and hence (A,B) is not definite. In such a situation the use of
the LS solution will only postpone revealing of that fact.

We cannot say whether the LS solution will accelerate or decelerate the revealing
of the fact that the pair (A,B) is not definite. Maybe a finer error analysis could
offer an answer. Finally, let us say that in the case fl(ℑ) ∈ (ρu2,ρu), we have given
preference to the standard solution because numerical tests have shown that it yields
smaller residual.

Remark 2.1 If ℑ is tiny then the matrices Â, B̂ are nearly proportional. A simple
calculation shows that the problem

min
t∈R
‖Â− tB̂‖F → min has the solution t∗ =

trace(ÂB̂)
trace(B̂B̂)

.

Since for the both matrices we have 1 ≤ ‖Â‖F < 2 and 1 ≤ ‖B̂‖F < 2, there is no
need to additionally consider the associated problem mint∈R ‖B̂− tÂ‖F → min.

Hence, instead of checking |fl(ℑ)| ≤ ρε or |fl(ℑ)| ≤ ρε2, one can alternatively
check whether the condition ‖Â− t∗B̂‖F ≤ ε ‖Â‖ holds. Hence, if
‖Â− t∗B̂‖F > ε ‖Â‖ and ℑ < 0, we can consider that the pair (Â, B̂) is not definite
‖Â− t∗B̂‖F > ε ‖Â‖ and ℑ > 0, we apply the standard procedure which uses ν

‖Â− t∗B̂‖F ≤ ε ‖Â‖ holds, then we can consider using the alternative formulas
(2.38) or (2.39).

This alternative approach for the special procedure seems more attractive because
it uses matrix elements in a less complicated manner than using ρ . However, our first
numerical tests do not confirm it. What approach is better and how to define ε can
probably be resolved in practice through extensive testing.

2.2 The complex Falk-Langemeyer algorithm

We can now write down a pseudo code for the CFL method for a definite pair of
Hermitian matrices (A,B) where A and B have dimension n. However, we first make
few remarks.

If F is a nonsingular matrix, then the pair (F∗AF,F∗BF) is also definite. So, we
have to ensure that each elementary transformation matrix Fk, k≥ 1, from the relation
(2.1) is nonsingular.

If Ã, B̃ are the principal submatrices of A,B, obtained on the intersection of the
same rows and columns, then the pair (Ã, B̃) is definite. This is a consequence of the
fact that any principal submatrix of a positive definite matrix is positive definite. So,
if the initial pair (A,B) is definite and all the transformation matrices are nonsingular,
then each pair of the pivot submatrices (Â, B̂) will be definite.

Finally, if ℑ = 0 is computed from a definite pair (Â, B̂), then either the pivot
submatrices Â and B̂ are proportional or one of them is zero. In the both cases the
nontrivial submatrix is definite. This follows from Lemma 2.3(ii).
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Pivot strategy can be chosen in a number of ways. The choice depends on the
machine architecture. On conventional computers a good choice is the column– or
row–cyclic strategy with possible modifications (cf. [15]).

To ensure faster asymptotic convergence and to have a better insight into the
structure which lies within almost diagonal iterated matrices [7,6], we would need
the diagonal elements to be specially arranged. Those arr and brr for which arr/brr
approximates the same eigenvalue of (A,B) should occupy successive positions along
the diagonal. This can be accomplished by requiring that the quotients a(k+1)

i(k)i(k)/b(k+1)
i(k)i(k)

and a(k+1)
j(k) j(k)/b(k+1)

j(k) j(k) are always in the prescribed order, say

a(k+1)
i(k)i(k)

b(k+1)
i(k)i(k)

≥
a(k+1)

j(k) j(k)

b(k+1)
j(k) j(k)

, k ≥ 1.

In numerical code it actually means that a check should be made whether the columns
of the pivot submatrix F̂k have to be swapped.

Performing the kth step can include a call to a subroutine similar to the BLAS1

routine ROT.
Convergence criterion requires a thorough investigation. If one of the matrices, A

or B is positive definite, and the other is nonsingular then the choice from [4,1] might
be a good try. It says to stop the iteration when

|a(M)
pq | ≤ tol ·

√
|a(M)

pp a(M)
qq |, |b(M)

pq | ≤ tol ·
√
|b(M)

pp b(M)
qq |, 1≤ p < q≤ n. (2.40)

This check is typically made at the end of each sweep, i.e. after every batch of
N = n(n− 1)/2 steps. Here tol is a prescribed tolerance (say tol = cu where c is
a modest constant or a slowly growing function of n) and u is the machine epsilon.
The stopping criterion (2.40) will warrant high relative accuracy (HRA) of the com-
puted eigenvalues if the both matrices are positive definite and the matrix pair is well-
behaved (see Theorem 3.1). The simplest version of the CFL algorithm is presented
below. We assumed ε = u. We also assume that sgn(0) = 1.

Algorithm 1 (CFL algorithm) Input data are Hermitian matrices A, B of order n and
the logical variable eivec whose value determines whether the eigenvectors are to be
computed. Output data are almost diagonal matrices A and B obtained by the method
(after the convergence criterion has been reached) and, if eivec has value true, the
matrix F whose columns are approximations of the eigenvectors of (A,B).

10 Set k = 1, A(k) = A, B(k) = B. If eivec then set F(k) = In
20 Repeat

(a) Choose the pivot pair (i, j) (= (i(k), j(k))
(b) Compute the parameters (αk,βk) of the transformation matrix Fk
(c) Compute A(k+1) = F∗k A(k)Fk, B(k+1) = F∗k B(k)Fk;

if eivec then compute F(k+1) = F(k)Fk

until convergence.
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Algorithm 2 (20 (b) part of CFL algorithm, the superscript (k) is omitted and
a′i j = Re(ai j), a′′i j = Im(ai j), b′i j = Re(bi j), b′′i j = Im(bi j) is used. The value −1 of the
variable job indicates that the computation should be terminated.)

if |ai j|+ |bi j|= 0 then α = β = 0 else

(i) renormalize Â, B̂ and compute:

ℑ′i j = aiib j j−a j j bii; ℑ′′i j =−2(a′i j b′′i j−b′i j a′′i j); ℑi j = ℑ′i j + ıℑ′′i j;

ℑi = aii bi j−ai j bii; ℑ j = a j j bi j−ai j b j j; ℑ=(ℑ′i j−ℑ′′i j)(ℑ
′
i j+ℑ′′i j)+4Re(ℑ̄1 ℑ3);

ρ = max{(|aiib j j|+ |biia j j|)2,4(|a′i jb
′′
i j|+ |a′′i jb

′
i j|)2}+

4
[
|aiia j j||bi j|2 + |biib j j||ai j|2 +(|aiib j j|+ |biia j j|)(|a′i jb

′
i j|+ |a′′i jb

′′
i j|)
]
;

(ii) set job = 0;

If ℑ > ρu2 then ν = (ℑi j + sgn(ℑ′i j)
√

ℑ)/2, α = ℑ j/ν , β =−ℑ̄i/ν

elseif ℑ <−ρu then job =−1

else if |ℑi|
√

a2
j j +b2

j j ≤ |ℑ j|
√

a2
ii +b2

ii

then α =−(aii ai j +bii bi j)/(a2
ii +b2

ii), β = 0
else α = 0, β =−(a j j āi j +b j j b̄i j)/(a2

j j +b2
j j)

endif
endif

endif

The transformation formulas for the diagonal elements are obtained straightfor-
wardly. We have

a(k+1)
ii = a(k)ii +(|βk|2a(k)j j +2Re(βka(k)i j )), b(k+1)

ii = b(k)ii +(|βk|2b(k)j j +2Re(βkb(k)i j )),

a(k+1)
j j = a(k)j j +(|αk|2a(k)ii +2Re(αkā(k)i j )), b(k+1)

j j = b(k)j j +(|αk|2b(k)ii +2Re(αkb̄(k)i j )).

The question arises whether it is better to set the pivot elements a(k+1)
i j and b(k+1)

i j to
zero or to compute them. Numerical tests have confirmed that it is better to compute
them. The formulas are below

a(k+1)
i j = a(k)i j +(αkβ̄kā(k)i j +(β̄ka(k)j j +αka(k)ii )),

b(k+1)
i j = b(k)i j +(αkβ̄kb̄(k)i j +(β̄kb(k)j j +αkb(k)ii )).

We have used parentheses to ensure that the updates have the form: new value equals
to the old value plus the update. This contributes to the accuracy of the algorithm.

The whole process can be performed in the upper-triangular parts of the complex
matrices/arrays A(k) and B(k). We provide the appropriate formulas below.

a(k+1)
ri = a(k)ri +βka(k)r j , b(k+1)

ri = b(k)ri +βkb(k)r j

a(k+1)
r j = a(k)r j +αka(k)ri , b(k+1)

r j = b(k)r j +αkb(k)ri

}
1≤ r ≤ i−1,

a(k+1)
ir = a(k)ir + β̄kā(k)r j , b(k+1)

ir = b(k)ir + β̄kb̄(k)r j

a(k+1)
r j = a(k)r j +αkā(k)ir , b(k+1)

r j = b(k)r j +αkb̄(k)ir

}
i+1≤ r ≤ j−1,
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a(k+1)
ir = a(k)ir + β̄ka(k)jr , b(k+1)

ir = b(k)ir + β̄kb(k)jr

a(k+1)
jr = a(k)jr + ᾱka(k)ir , b(k+1)

jr = b(k)jr + ᾱkb(k)ir

}
j+1≤ r ≤ n,

If some of the sets {r : 1≤ r ≤ i−1}, {r : i+1≤ r ≤ j−1}, {r : j+1≤ r ≤ n} are
empty, the corresponding updates of the off-diagonal elements are skipped.

Finally, if the eigenvectors are wanted (the variable eivec has value true), then the
update of the matrix F(k) = ( f (k)rs ) has the form

f (k+1)
ri = f (k)ri +βk f (k)r j , f (k+1)

r j = f (k)r j +αk f (k)ri , 1≤ r ≤ n.

Note that each Hermitian matrix H can be represented as H = Re(H)+ ı Im(H),
where the real matrices Re(H) and Im(H) are symmetric and skew-symmetric, re-
spectively. Hence H can be represented by the real matrix H of order n which has,
say, Re(H) in its upper triangle and Im(H) in its strictly lower triangle. Using the
above formulas, one can devise a real algorithm for the complex Falk-Langemeyer
method which uses the appropriate real matrices A and B instead of A and B, respec-
tively.

In the following proposition we assume the exact (infinite) arithmetic, which
means that the LS solution (actually, its derivative, algorithm (2.39)) is used only
when ℑ = 0.

Proposition 2.1 Let (A,B) be a definite pair of Hermitian matrices and let (A(k),B(k)),
k ≥ 1 be the sequence of pairs generated by applying the CFL algorithm to (A,B).
Then for each k ≥ 1 the following assertions hold:

(i) Fk is nonsingular
(ii) |αkβk| ≤ 1
(iii) |αkβk|= 1 if and only if Re(ℑ(k)

i j ) = 0 and |a(k)i j |+ |b
(k)
i j |> 0.

We also have αkβk =−1 if and only if ℑ
(k)
i j = 0.

Proof Choose any k ≥ 1 and set i = i(k), j = j(k). In this proof we shall omit the
superscript (k) and use ℑi j = ℑ′i j + ıℑ′i j.

(i) Note that Fk is singular if and only if αkβk = 1. If ai j = 0 = bi j, then αk = βk = 0
and Fk = In. The algorithm does not break for a definite pair of matrices. Hence
ℑ ≥ 0. If ℑ = 0, then by the algorithm αkβk = 0 and det(Fk) = 1. If ℑ > 0, then
we have the following chain of equivalent statements

αkβk = 1⇔ −ℑ̄iℑ j = ν
2⇔−4ℑ̄iℑ j = ℑ

2
i j +ℑ+2ℑi jsgn(ℑ′i j)

√
ℑ

⇔ 2ℑ+2|ℑ′i j|
√

ℑ+ ı2sgn(ℑ′i j)ℑ
′′
i j

√
ℑ = 0

⇔ ℑ = 0.

Hence αkβk = 1 and ℑ > 0 yield a contradiction. This shows that in all cases Fk
is nonsingular.

(ii) If |ai j|+ |bi j|= 0 we have αk = βk = 0. If ℑ = 0, then by the algorithm αkβk = 0.
If ℑ > 0, then by the relation (2.30) |α+

k β
+
k | · |α

−
k β
−
k | = 1 and the algorithm

chooses |νk|= max{|ν+
k |, |ν

−
k |}. Hence |αkβk| ≤ 1 .
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(iii) Obviously, we must have ℑ > 0. By Lemma 2.4 we know that |ℑi| · |ℑ j| = 0
implies αkβk = 0. So, it remains to consider the case |ℑi| · |ℑ j| 6= 0. Then Vieta’s
formulas (2.29) imply that ν

+
k 6= 0, ν

−
k 6= 0 so we have |α+

k β
+
k | · |α

−
k β
−
k | = 1.

The algorithm chooses νk such that |νk|= max{|ν+
k |, |ν

−
k |} implying |αkβk| ≤ 1.

Hence we have |αkβk|= 1 if and only if |ν+
k |= |ν

−
k |. From 2ν

±
k =ℑ′i j±

√
ℑ+ ıℑ′′i j

and ℑ > 0, we conclude that |ν+
k |= |ν

−
k | if and only if ℑ′i j = 0. Thus |αkβk|= 1

implies ℑ′i j = 0. Conversely, from the algorithm we see that ℑ′i j = 0 and ℑ > 0
imply |αkβk|= 1.

To prove the last assertion, note that Corollary 2.1(i) states that ℑi j = 0 implies
αkβk = −1. Let αkβk = −1. We have already proved that then we must have
ℑ′i j = 0. Now, the relation ℑ̄iℑ j = ν2

± implies, after simple calculation, (ℑ′′i j)
2 =

±ıℑ′′i j

√
ℑ which implies ℑ′′i j = 0. Hence, we have ℑi j = 0.

Finally, note that the CFL has a nice property with respect to the congruence trans-
formation with a diagonal matrix. Let D = diag(d1, . . .dn) be nonsingular. Suppose
(A,B) is the current matrix pair, (i, j) is the current pivot pair and F is the transfor-
mation matrix. Let the pivot submatrices of A, B, F and D be denoted Â, B̂, F̂ and
D̂ = diag(di,d j), respectively. Consider the current step of the CFL method on (A,B)
and on (Ã, B̃) = (D∗AD,D∗BD). We shall apply tilde to the quantities associated with
(Ã, B̃). An easy calculation reveals

ℑ̃i = |di|2d̄id jℑi, ℑ̃ j = d̄id j|d j|2ℑ j, ℑ̃
′
i j = |di|2|d j|2ℑ

′
i j,

ℑ̃
′′
i j = |di|2|d j|2ℑ

′′
i j, ℑ̃ = |di|4|d j|4ℑ.

If ℑ > 0, we have

ν̃ = |di|2|d j|2ν , α̃ =
d j

di
α, β̃ =

di

d j
β , hence α̃β̃ = αβ .

This property is in accordance with the relation

D̂ ˆ̃F =

[
di

d j

][
1 α̃

β̃ 1

]
=

[
1 di

d j
α̃

d j
di

β̃ 1

][
di

d j

]
=

[
1 α

β 1

][
di

d j

]
= F̂D̂,

which says that any diagonal congruence transformation of A and B after (prior to)
the current CFL step can be moved prior to (after) the step, provided the transforma-
tion is updated in a fair way.

3 Numerical Tests

Here we present several experiments in MATLAB which deal with HRA of the CFL
algorithm. The tests have been made on a PC with Intel(R) Core(TM) i7-2620M
CPU and with 8GB installed memory, under the 64-bit operating system Windows
8.1 Enterprise, using MATLAB R2016b.

Our goal is to check numerically whether the derived method can compute the
eigenvalues of a pair of positive definite matrices with HRA. First, we have to find
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some class of “well-behaved” matrix pairs. Roughly speaking, a well behaved pair
of matrices is the pair that allows only small relative perturbations of the eigenvalues
and eigenvectors if the perturbation matrices are sufficiently small in some norm.
Such a pair of matrices obviously has additional properties and its perturbations are
also somewhat special. Once we find a well-behaved pair, we can apply to it the
method and see how accurately the eigenvalues are computed. A method is HRA on
that pair if it generates (in finite arithmetic, at each step and cumulatively) errors that
belong to that special kind of perturbations.

Our choice of well-behaved pairs is based on the result of Drmač [2][Theo-
rem 3.2]. It was originally formulated for the case of real positive definite matrices,
but it extends straightforwardly to the case of complex Hermitian positive definite
matrices. We present it here in the compact form, as in [9, Theorem 5.1].

Theorem 3.1 ([2, Theorem 3.2]) Let A and B be Hermitian positive definite matrices
of order n and let λ1 ≥ λ2 ≥ ·· · ≥ λn be the eigenvalues of the pair (A,B). Let
AS = D−1/2

A AD−1/2
A , BS = D−1/2

B BD−1/2
B , where DA = diag(A), DB = diag(B). Let

δA and δB be Hermitian perturbations and λ̃1 ≥ λ̃2 ≥ ·· · ≥ λ̃n be the eigenvalues
of the pair (A+δA,B+δB). Let (δA)S = D−1/2

A δAD−1/2
A , εAS = ‖(δA)S‖2/‖AS‖2

and (δB)S = D−1/2
B δBD−1/2

B , εBS = ‖(δB)S‖2/‖BS‖2. If

εAS κ2(AS) = ‖(δA)S‖2‖A−1
S ‖2 < 1 and εBS κ2(BS) = ‖(δB)S‖2‖B−1

S ‖2 < 1,

then

max
1≤i≤n

|λ̃i−λi|
λi

≤
εAS κ2(AS)+ εBS κ2(BS)

1− εBS κ2(BS)
. (3.1)

From the theorem it follows that one class of well-behaved pairs is comprised of the
pairs of Hermitian positive definite matrices that can be well scaled symmetrically,
i.e. for which κ2(AS) and κ2(BS) are small numbers. In addition, if the perturbations
matrices can be well scaled symmetrically, i.e. if εAS and εBS are small, then the
relative perturbations in all eigenvalues will be small.

Next, we have to find whether the CFL method generates small ε
A(k)

S
κ2(A

(k)
S ) and

ε
B(k)

S
κ2(B

(k)
S ) in each step. Such a proof requires a detailed rounding error analysis

which is a demanding task. In each step the method generates errors in αk, βk and in
the affected matrix elements. From those errors one can form the perturbation matri-
ces. We can denote them δA(k) and δB(k). The rounding error analysis is also used to
show that the perturbation matrices appearing in the process can be moved back, in
some way, to A(0) and B(0). That procedure is called backward error analysis. Once,
all perturbation matrices appearing in the process are moved back to the initial matri-
ces A(0) and B(0) they can be added together to obtain the accumulated perturbations
or backward errors of A(0) and B(0). We can call them δA and δB as those in the
theorem. These are the perturbations that perturb the eigenvalues and eigenvectors of
(A,B). Then Theorem 3.1 can be applied to the pair (A,B) and to the accumulated
perturbations. If we could estimate the corresponding εAS and εBS we could conclude
whether the method has HRA property.
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Applying the Cauchy-Schwarz inequality to the numerator on the right-hand side
of the relation (3.1), we obtain

ρ(A,B) = max
1≤i≤n

|λ̃i−λi|
λi

/
√

κ2
2 (AS)+κ2

2 (BS)≤

√
ε2

AS
+ ε2

BS

1− εBS κ2(BS)
. (3.2)

If we could prove that the accumulated perturbations δA and δB can be well-scaled
symmetrically so that the corresponding εAS and εBS are tiny, then we would conclude
that the method is HRA. Namely, in that case the quantity ρ(A,B) from the relation
(3.2) would be tiny. We expect that

ρ(A,B) ≤ f (n)u (3.3)

would hold, where f (n) is a slowly growing function of n. Hence a strong indication
that the method is HRA will be the fact that the relation (3.3) holds for a larger sample
of matrix pairs from our class of well-behaved pairs. We shall call such a sample of
matrix pairs ϒ .

As the relation (3.2) indicates, the relation (3.3) should hold regardless of the
condition numbers κ2(A(0)) and κ2(B(0)). Therefore, it makes sense to investigate
how ρ(A,B) behaves with respect to χ(A,B), where

χ(A,B) =
√

κ2
2 (A

(0))+κ2
2 (B

(0)) .

For the given sample of pairs ϒ , we shall make the “graph of relative errors” E for
the CFL method. It is defined by

E = {(χ(A,B) , ρ(A,B)) : (A,B) ∈ϒ}.

3.1 Implementation details

For a smaller matrix size n, we can compute “nearly exact” eigenvalues λi using
MATLAB and its variable precision arithmetic (vpa). The eigenvalues λ̃i are com-
puted by the CFL method using the standard double precision. Hence it will be easy
to compute the quantities ρ(A,B) and χ(A,B). The graph E will be displayed using MAT-
LAB scatter(x,y,3) function. The method will be indicated to have HRA property
if the y-values of the points on the graph are scattered around the machine epsilon
u≈ 2.2 ·10−16 or below it. For comparisons we shall apply the same accuracy test to
the intrinsic MATLAB function eig(A,B).

3.1.1 Matrix pair generation

Let us describe how the pairs of Hermitian positive definite matrices for numerical
tests have been generated. The procedure is quite similar to that from [9]. That pro-
cedure uses 4 diagonal matrices with positive diagonal elements: Σ , ∆A, ∆B, ∆ and
two unitary matrices U , V of order n. The starting pair (A(0),B(0)) is computed in two
steps:
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(1) F =UΣV ∗, A = F∗∆AF , B = F∗∆BF ,

(2) B(0) = D−1/2
B BD−1/2

B (= BS), A(0) = ∆D−1/2
A AD−1/2

A ∆ (= ∆AS∆ ),

where DA and DB are the diagonal parts of A and B, exactly as they are defined in
Theorem 3.1. The magnitudes of κ2(A

(0)
S ) and κ2(B

(0)
S ) can be controlled by the mag-

nitudes of the diagonal entries of ∆A, ∆B, Σ . Indeed, by [20] we have κ2(A
(0)
S ) ≤

nκ2
2 (Σ)κ2(∆A), κ2(B

(0)
S )≤ nκ2

2 (Σ)κ2(∆B) and almost always κ2(A
(0)
S ) and κ2(B

(0)
S )

are much smaller than these bounds. To simplify construction, we have set ∆B = In.
Note that κ2(A(0))≤ κ2(A

(0)
S )κ2

2 (∆). If the CFL method has HRA property, ρ(A,B)

from the relation (3.2) should not depend on κ2(A(0)) which is controlled by κ2(∆).
If we set ∆ = In and (A(0),B(0)) = (D−1/2

B AD−1/2
B ,BS), then we know the eigen-

values of (A(0),B(0)) in advance. They are the quotients (∆A)ll/(∆B)ll , 1≤ l ≤ n. This
can be used when considering the matrix pairs with multiple eigenvalues.

The diagonal matrices are constructed via the MATLAB function diag(d), where
d is a vector. Vectors are constructed by the MATLAB function logspace(x1,x2,n).
We use it to make the diagonal matrices Σ and ∆A. For the construction of ∆ we
use our m-function scalvec(k1,k2,k3,n,k) which generates vector d of length n,
d = [10k1, . . . ,10k2, . . . ,10k3]. Here k determines position of 10k2 among the compo-
nents of d. We have set k = [n/2] where for real t, [t] is the largest integer smaller
than or equal to t. To compute ∆ , scalvec is used within a 3-level loop, controlled
by k1, k2 and k3. Altogether our main m-file uses a 7-level loop, three for computing
∆ , two for Σ and 2 for ∆A. The unitary matrices U and V are computed using the QR
factorization of the random matrices of order n. Say, for computing U the command
[Q,∼]=qr(rand(n)+1i*rand(n)) has been used.

Once, we have obtained A(0), B(0), we convert their copies to symbolic type, so
that we can use the vpa with those copies. We use vpa with 80 decimal digits to
compute the reference eigenvalues and eigenvectors.

We have made tests for the MATLAB eig(A,B) function and for our zcfl(A,B)
m-function which contains MATLAB code for the CFL method. As a control method,
we have used our m-function zABeig(A,B,dg) which calls MATLAB functions
eig(A), chol(A) and inv(A), which all can use vpa. Here dg stands for the number
of decimal digits used by the vpa. We have considered only accuracy of the computed
eigenvalues.

On input the m-functions accept the pair (A,B) of Hermitian matrices. The m-
function zcfl(A,B) uses only the upper-triangles of the matrices A and B. On output
this m-function yields the eigenvector matrix F , the diagonal matrix of eigenvalues
and the number of sweeps needed to terminate the process. We consider output to
the control method accurate, and use it to compute the maximum relative error of the
computed eigenvalues obtained by eig(A,B) and zcfl(A,B).

Altogether, we have generated 15300 pairs of positive definite matrices of order
10. These pairs make the sample ϒ for testing the high relative accuracy of the CFL
method.
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3.1.2 How to code the algorithm?

Although the algorithm for computing the transformation parameters α and β is in-
variant under the transformation (A,B) 7→ (σAA,σBB) we have first applied just that
scaling. It can preclude overflow and avoid working with subnormal numbers. After
that we apply the congruence transformation (A,B) 7→ (DAD,DBD) with a suitably
chosen diagonal matrix D. The diagonal entries of D as well as the scalars σA and σB
are computed as powers of 2, so that no rounding error is introduced. The procedure
can be described as follows.

If A = 0 (B = 0) then all the eigenvalues of the pair (A,B) are 0 (∞) and any
linearly independent set of vectors is a basis of Cn consisting of the eigenvectors of
(A,B). Otherwise, use the following procedure.

(i) Find integers sA and sB such that n2sA ≤ ‖A‖F < n2sA+1, n2sB ≤ ‖B‖F < n2sB+1.
Then compute σA = 2sA , σB = 2sB and set Ã = (ãrt) = 2−sAA, B̃ = (b̃rt) = 2−sBB

(ii) Find s1, . . . ,sn such that 2sr ≤ 4
√

ã2
rr + b̃2

rr < 2sr+1, 1≤ r≤ n. Then compute A(0) =

DÃD, B(0) = DB̃D, where D = diag(2−s1 , . . . ,2−sn).
(iii) Initialize the matrix of accumulated transformations F(0) = D.

The eigenvalues of the pair (A,B) are σB/σA = 2sb−sA times the eigenvalues of
(A(0),B(0)). The eigenvectors of the pair (A,B) are D times the eigenvectors of
(A(0),B(0)). By this procedure we have achieved that A(0) and B(0) have norms of

the same order of magnitude, and 1 ≤
√

(a(0)rr )2 +(b(0)rr )2 < 2, where A(0) = (a(0)rt ),

B(0) = (b(0)rt ).
The most important parts of the algorithm are those related to the stopping of

the process and to determining whether ℑ is sufficiently small to employ the special
formulas for α and β .

We have computed the transformation parameters exactly as is described in 20 (b)
part of CFL algorithm in Section 2.2.

As for the stopping criterion, in the case of positive definite matrices A, B, we
have used the following procedure: stop the process when

|art | ≤
√

arratt u, |brt | ≤
√

brrbtt u, 1≤ r < t ≤ n.

If the serial (or any cyclic) pivot strategy is used, then it makes sense to set ai j = 0
and bi j = 0 whenever |ai j| ≤

√aiia j ju and |bi j| ≤
√

biib j ju, and then proceed with
the next step. The process is terminated when all off-diagonal elements of the current
iteration matrices A and B are zero.

To justify that stopping procedure one can use the relation (3.1). In the final stage
of the process we shall have κ2(AS) ≈ 1, κ2(BS) ≈ 1. Replacing ai j and a ji (bi j and
b ji) by zeros amounts to perturbing the current matrix A (B) by δA = −ai jeieT

j −
āi je jeT

i (δB = −bi jeieT
j − b̄i je jeT

i ). Here (i, j) is the pivot pair and In = [e1, . . . ,en].
Hence the right hand side of the inequality (3.1) will be bounded by a modest multiple
of |ai j|/

√aiia j j (|bi j|/
√

biib j j). When used in our termination process, the both pivot
elements are zeroed and therefore the numerator of the right-hand side of the relation
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(3.1) is bounded by |ai j|/
√aiia j j + |bi j|/

√
biib j j. Hence the maximum relative error

of the eigenvalues is bounded by a modest multiple (or just a fraction) of u.
A quite natural upgrading of that stopping criterion can read: do the same (replace

the pivot elements by zeros) but in addition update also the diagonal elements. How-
ever, the theoretical justification of that upgrading would require a more extensive
analysis which shall be omitted here.

In our testings we have encountered positive definite matrix pairs for which the
above stopping criterion allows too many sweeps. This occurs when in the final stage
of the process there exist pivot submatrices which yield very tiny |ℑi j|, |ℑi| and |ℑ j|.
These quantities are bounded by a modest multiple of u, and consequently |ℑ| is
of order u2. In such a case αk and βk are prone to huge relative errors while the
LS solution gives the residual which is as large as the pivot elements prior to the
step. In another words the both procedures fail to decrease the residual, i.e. we have
|a(k+1)

i j |+ |b(k+1)
i j |. |a(k)i j |+ |b

(k)
i j |. A quick solution to this problem can be to locally

apply iterative process to each such pair of pivot submatrices (Â(k), B̂(k)) until the
pivot elements can be replaced by zero. The proper solution could be to devise a
better criterion when the pivot elements can be replaced by zero in the final stage of
the process.

We end the paper by displaying two graphs of the relative errors. The first is made
for the intrinsic MATLAB function eig(A,B), the second is made for the m-function
zcfl(A,B). Recall that each graph is defined by E = {(χ(A,B) , ρ(A,B)) : (A,B)∈ϒ},
where the sample of matrix pairs ϒ is the same for the both methods. The graphs
indicate high relative accuracy of the CFL algorithm.
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Fig. 1 The graphs of the relative errors for the MATLAB eig(A,B) and for zcfl(A,B) function.

4 Conclusions and Future Work

The complex version of the Falk-Langemeyer method has been derived. The method
treats both matrices in an equal way which is not the case with other methods for
solving GEP. It has been shown that the method is well defined for any definite pair
of Hermitian matrices. Numerical tests indicate that it computes the eigenvalues of
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well-behaved matrix pairs to high relative accuracy. It is an excellent choice to be the
kernel algorithm for the appropriate block Jacobi methods.

Future work can be concentrated on proving the global and asymptotic quadratic
convergence of the method as well as on proving the high relative accuracy of the
method. We believe that the quadratic convergence proof will be the same as the one
in the case of real matrices. Also, several open problems that have been addressed in
this paper should be solved. Finally, since each transformation matrix has the spectral
radius that is not smaller than one, the elements of the iterated matrices can become
very large. So, a procedure should be included in the algorithm to solve that problem.

Finally, it would be interesting to investigate whether the method is well defined
for some larger class of pairs of Hermitian matrices.
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