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On the Global Convergence of the Block Jacobi Method for
the Positive Definite Generalized Eigenvalue Problem

Vjeran Hari

Abstract The paper proves the global convergence of a general block Jacobi method for
the generalized eigenvalue problemAx = λBx with symmetric matricesA, B such thatB
is positive definite. The proof is made for a large class of generalized serial strategies from
[26]. The sequence of matrix pairs generated by the block method converges to(ΛΛΛ , I) where
ΛΛΛ is a diagonal matrix of the eigenvalues of the initial matrixpair(A,B) andI is the identity
matrix. The proof is made for the case when the block method uses element-wise HZ or CJ
method as the kernel algorithm. In the case of other kernel algorithms, the paper proves that
the iteration matrices tend to diagonal form.
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1 Introduction

We consider the global convergence problem of a block Jacobimethod for solving the posi-
tive definite eigenvalue problem (PGEP) under the class of generalized serial strategies from
[26]. The matrix problem is written in the form

Ax= λBx, x 6= 0,

whereA andB are symmetric matrices such thatB is positive definite.
With the development of high-performance parallel machines, there is a growing need

for the software that solves specific mathematical problems. The BLAS (Basic Linear Alge-
bra Subprograms) are routines for performing basic vector and matrix operations. The Level
3 BLAS perform matrix-matrix operations. Because the BLAS are efficient, portable, and
widely available, they are commonly used in the developmentof high-quality linear algebra
software, LAPACK for example. In the last decades many knownmethods have been mod-
ified to become BLAS 3 algorithms, i.e. almost entirely rely on the use of Level 3 BLAS
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routines. This seems to be a sensible way to achieve high efficiency across a wide range of
serial and parallel computer architectures.

Jacobi methods for the eigenvalue and singular value problems are known for their ac-
curacy (see [5], [35], [9], [6], [36], [8], [31]), [30], [27]) inherent parallelism ([7], [33], [18],
[16]) and efficiency (see [10], [11], [12], [19]). The best way to further enhance these char-
acteristics is to modify them to become BLAS 3 algorithms. Such methods are referred to as
block diagonalization or block Jacobi methods [21], [1], [32], [2]. The global convergence
of various block Jacobi methods has been considered in [20],[13], [23], [24], [4], [25] while
the asymptotic quadratic convergence has been considered in [4], [3].

In this paper we consider the block Jacobi method for PGEP which generates two se-
quences of matrices by the same rule:A(k+1) = Z(k)A(k)Z(k), B(k+1) = Z(k)B(k)Z(k), k ≥ 0.
Here the initialA is symmetric andB is symmetric positive definite. The transformation
matricesZ(k) are nonsingular elementary block matrices. Their task is todiagonalize the
(block) pivot submatrices ofA(k) andB(k) in each step. As has been shown in [32] the block
Jacobi method for PGEP is very fast and accurate, especiallyif it is implemented as a one-
sided method that solves the generalized singular value problem (GSVD). On contemporary
parallel machines it is the method of choice for solving the GSVD problem.

The paper proves the global convergence of the block Jacobi method for the cyclic pivot
strategies that are generalizations of the known serial (row- and column-cyclic) pivot strate-
gies. These pivot strategies belong to a wide class of generalized serial strategies whose
theory is thoroughly explained in [26]. That class encompasses most common sequential
and parallel pivot strategies (see [17], [33], [18], [28], [29], [34]).

The paper is divided into 4 sections. In Section 2, we introduce notation and define the
block Jacobi method, pivot strategies, and the global convergence. In Section 3, we prove
the global convergence of the block Jacobi method. Finally,in Section 4, we briefly discuss
open problems and future work.

2 Block Jacobi Methods for PGEP

Here we define basic notation and definitions linked to the block Jacobi method for PGEP.
Let A andB be real symmetric matrices of ordern such thatB is positive definite. Let

A =







A11 · · · A1m
...

.. .
...

Am1 · · · Amm







n1
...
nm

, B =







B11 · · · B1m
...

. ..
...

Bm1 · · · Bmm







n1
...
nm

(2.1)

n1 · · · nm n1 · · · nm

be theirblock-matrix partitionswhere the diagonal blocksAii , Bii , 1≤ i ≤ mare square. The
block-matrix partition (2.1) ofA (B) is determined by the partitionπn,m = (n1, . . . ,nm) of n,
whereni ≥ 1 for all 1≤ i ≤ m andn1 + · · ·+nm = n. Sincen andm will be constant, we
shall use notationπ instead ofπn,m.

A block Jacobi method for PGEP is an iterative process of the form

A(k+1) = [Z(k)]T A(k)Z(k), B(k+1) = [Z(k)]T B(k)Z(k), k≥ 0, (2.2)
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where eachZ(k) is anelementary block matrix[25], [Z(k)]T is the transpose ofZ(k) andA(0),
B(0) are the starting matrices. Each matrixZ(k) is a non-singularn×n matrix of the form

Z(k) = Z(k)
i j =











I
Z(k)

ii Z(k)
i j

I
Z(k)

ji Z(k)
j j

I











}ni

}n j

,

whereZ(k) carries the same partition asA. All elements ofZ(k), except those of the blocks

Z(k)
ii , Z(k)

i j , Z(k)
ji andZ(k)

j j , are as in the identity matrixIn. The “block indices”i = i(k), j = j(k)
arepivot indices, (i, j) is pivot pair and

Ẑ(k) =

[

Z(k)
ii Z(k)

i j

Z(k)
ji Z(k)

j j

]

is pivot submatrixor the(i, j) – restrictionof Z(k). The submatrixZ(k)
i j is referred to as the

pivot blockof Z(k). The way of selecting the pivot pairs is referred to aspivot strategy.

We shall writeZ(k)
i j = E (i, j; Ẑ(k)), whereE = Eπ is the mapping that constructs the

n×n matrix Z(k)
i j from the input datai, j andẐ(k). When emphasis is on pivot indices, we

shall writeZ(k)
i(k) j(k) instead ofZ(k) or simplyZ i j whenk is clear from the context.

The starting matricesA(0), B(0) for the process (2.2) are obtained from the initial matri-
cesA, B, via the congruence transformation with the block-diagonal matrix Z(0),

A(0) = [Z(0)]T AZ (0), B(0) = [Z(0)]T BZ(0), Z(0) = diag(Z(0)
11 , . . . ,Z

(0)
mm). (2.3)

The purpose of this transformation is to make the diagonal blocks ofA(0) diagonal and the

diagonal blocks ofB(0) the identity matrices. Typically, one can chooseZ(0)
rr to be inverse of

the Cholesky factor ofBrr postmultiplied by an orthogonal matrix which diagonalizesthe
updatedArr :

Z(0)
rr = R−1

r Qr , RT
r Rr = Brr , R−T

r Arr R−1
r = QrΛrQ

T
r , 1≤ r ≤ m.

For accuracy reasons, a better option is to apply some element-wise Jacobi method for the
PGEP (see [27]) to each pair(Arr ,Brr ), 1≤ r ≤ n, collect the transformation matrices in
Z(0) and apply the transformation (2.3) to the off-block-diagonal parts ofA andB.

The process (2.2) is defined, if in each stepk, one knows the pivot pair(i, j) and the
algorithmwhich computes the pivot submatrix̂Z(k) from the elements of̂A(k) andB̂(k). We
call the processPGEP block Jacobi methodor simplyblock Jacobi method. In each step the
block Jacobi method applies the congruence transformation(2.2) which preserves symmetry
and positive definiteness of the current matrices.

In stepk theblock Jacobi methoddiagonalizeŝA(k) and transformŝB(k) into the identity
matrix. Locally, at the level of pivot submatrices, we have

[

[Z(k)
ii ]T [Z(k)

ji ]T

[Z(k)
i j ]T [Z(k)

j j ]
T

][

A(k)
ii A(k)

i j

[A(k)
i j ]T A(k)

j j

][

Z(k)
ii Z(k)

i j

Z(k)
ji Z(k)

j j

]

=

[

Λ (k)
ii

Λ (k)
j j

]

, (2.4)

[

[Z(k)
ii ]T [Z(k)

ji ]T

[Z(k)
i j ]T [Z(k)

j j ]
T

][

Ini B(k)
i j

[B(k)
i j ]T In j

][

Z(k)
ii Z(k)

i j

Z(k)
ji Z(k)

j j

]

=

[

Ini

In j

]

. (2.5)
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Here each blockA(k)
ii (A(k)

j j ) is diagonal and of orderni (n j ). Note thatΛ (k)
ii andΛ (k)

j j are

exactly the diagonal blocksA(k+1)
ii and A(k+1)

j j , respectively. We keep the superscript(k)

because the diagonal elements ofΛ (k)
ii andΛ (k)

j j are the eigenvalues of the pair(Â(k), B̂(k)).
If n1 = n2 = · · ·= nm = 1, we speak of anon-blockor element-wiseJacobi method.
With each block Jacobi method is associated somekernel algorithmwhose task is

to transform(Â(k), B̂(k)) into (diag(Λ (k)
ii ,Λ (k)

j j ), Ini+n j ). For that purpose, one can use an
element-wise HZ or CJ method from [27]. As a kernel algorithm, one can also use prod-
uct of inverse of the Cholesky factor ofB̂(k) with the orthogonal matrix from the spectral
decomposition of the updated̂A(k).

The partitionπ usually remains constant during the whole process, but it can now and
then be adapted to ensure faster asymptotic convergence of the iterative process, especially
in the case of multiple eigenvalues of the initial pair(A,B).

Recall that each principal submatrix of a positive definite matrix is positive definite. This
implies that all matriceŝB(k), k ≥ 0 are positive definite. Furthermore, each block Jacobi
method maintains the special form of the block-diagonal parts ofA(0) andB(0). Namely, we
have

A(k)
rr = diag(A(k)

rr ), B(k)
rr = Inr , 1≤ r ≤ m, k≥ 0.

This property of the block Jacobi method has a double effect on the iterated matrices: it
normalizes and balances eachB(k) and it also nicely preconditionsB(k). Namely,B(k) has
now an almost optimal condition that can be obtained by the symmetric diagonal scaling
[37]. As it will proved in Lemma 3.3(ii), this property ensures that all matricesA(k) andB(k)

are bounded by norm.

2.1 Pivot Strategies

Let us very briefly introduce the class of generalized serialstrategies from [26].
A pivot strategy can be identified with a functionI : N0 → Pm, where

N0 = {0,1,2, . . .}, Pm = {(r, t); 1≤ r < t ≤ m}.

We see thatPm contains pairs of indices which address the blocks in the upper block-
triangle of the matrixA. The setPm containsM =m(m−1)/2 pairs of indices. Oncen≥ 2,
m≥ 1 andπ = (n1, . . . ,nm) are given, the functionI can be defined in many ways. IfI is
a periodic function, thenI is calledperiodic pivot strategy. Let I be the periodic (pivot)
strategy with periodP. If P ≥ M (P = M) and{I(k) : k = 0,1, . . . ,P−1} = Pm, thenI is
calledquasi-cyclic(cyclic) strategy.

In this paper, we shall use the class ofgeneralized serial strategieswhich is a subset
of the set of cyclic pivot strategies. That class of strategies was introduced in [26] and it
includes serial, wavefront and weak-wavefront strategiesfrom [34], then inverses of weak-
wavefront strategies and all those cyclic strategies that are permutation equivalent to all of
them. Hence they include the modulus strategy [29] and some other cyclic strategies that are
used for parallel processing. The theory of generalized serial strategies and of their quasi-
cyclic derivatives can be found in [26].
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3 The Global Convergence

Here we prove the global convergence of the PGEP block Jacobimethod under the class of
generalized serial strategies. A similar, but somewhat more complicated proof can be made
for the corresponding quasi-cyclic strategies from [26].

To measure advancement of the method, one can use quantityS(A,B),

S(A,B) =
[

S2(A)+S2(B)
]1/2

, S(H) = ‖H −diag(H)‖F ,

whereA, B, H are square matrices and‖X‖F is the Frobenius norm ofX. Here diag(X)
denotes the diagonal part ofX. The measureS(X) is referred to asdeparture from diagonal
form or asoff-normof X. So,S(A,B) can be calledoff-norm of the pair(A,B).

In the following definition it is assumed that a block Jacobi method is defined by some
partitionπ od n.

Definition 3.1 Let A andB be symmetric matrices of ordern such thatB is positive definite.

Let the sequence of matrix pairs
(

(A(k),B(k)), k≥ 0
)

be generated by applying the block

Jacobi method to the pair(A,B). The block Jacobi method isconvergenton (A,B) if
B(k) → In and A(k) → ΛΛΛ as k → ∞, whereΛΛΛ is a diagonal matrix of the eigenvalues
of (A,B). If the block Jacobi method is convergent on every pair(A,B) then it isglobally
convergent. The block Jacobi methodconverges to diagonal formif for every pair(A,B),
S(A(k),B(k))→ 0 as k→ ∞.

The global convergence of one-sided block Jacobi methods for solving the GSVD problem
is defined using their two-sided counterparts which solve the PGEP with positive definite
A and B. So, the result obtained here has a direct application to one-sided block Jacobi
methods.

We shall use notationσt(X) for the t’th largest singular value ofX, andσmin(X) for
the minimum singular value ofX. The convergence proof is based on the following general
result from [26].

Theorem 3.2 Let π = (n1, . . . ,nm) be a partition of n. LetH = (Hrt ) 6= 0 be a symmet-
ric matrix of order n partitioned in accordance withπ. Let (H(k), k ≥ 0) be the sequence
generated by applying a block Jacobi-type process toH,

H(k+1) = FT
k H(k)Fk, H(0) = H, k≥ 0.

Here eachFk is an elementary block matrix defined by the pivot pair(i(k), j(k)), where
1≤ i(k)< j(k)≤ m. Suppose the following assumptions are satisfied:

(A1) The pivot strategy is generalized serial
(A2) There is a sequence of orthogonal elementary block matrices (U(k), k≥ 0) such that

lim
k→∞

(Fk−Uk) = 0

(A3) For the diagonal block F(k)i(k)i(k) of Fk one has

σ = liminf
k→∞

σ (k) > 0, σ (k) = σmin(F
(k)
i(k)i(k)), k≥ 0

(A4) The sequence(H(k), k≥ 0) is bounded.
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Then the following two conditions are equivalent

(i) lim
k→∞

S(F̂T
k Ĥ(k)F̂k) = 0

(ii) lim
k→∞

S(H(k)) = 0.

Proof The theorem is a special case of [25, Corollary 5.3] withE(k) = 0, k≥ 0. ⊓⊔

In Theorem 3.2 the pivot submatrix̂H(k) does not have to be diagonalized in each step, but
the condition (i) has to hold. Such are the norm-reducing methods of Eberlein[14], [15].
That is the reason why we used the term Jacobi-type methods inTheorem 3.2.

We shall apply Theorem 3.2 to the sequences(A(k), k≥ 0) and(B(k), k≥ 0) obtained by
the block Jacobi method. To this end we shall prove some preparatory results. First, we want
to prove that all matricesA(k), B(k), generated by the method are bounded. That accounts

for the assumptionA4 of Theorem 3.2. Then we want to prove thatB(k)
i(k) j(k) tends to zero as

k increases. Once we prove it, the other assertions of Theorem3.2 will be easy to show.
In the following lemma we use the spectral radius of the matrix pair (A,B),

µ = max
λ∈σ(A,B)

|λ |,

whereσ (A,B) denotes the spectrum of(A,B). HereA, B are arbitrary symmetric matrices
such thatB is positive definite.

Lemma 3.3 Let A andB be symmetric matrices of order n such thatB is positive definite.
Let the sequences of matrices(A(k), k≥ 0), (B(k), k≥ 0) be generated by applying the block
Jacobi method to the pair(A,B) under an arbitrary pivot strategy. Then the assertions (i)–
(iii) hold:

(i) The matrices generated by the method are bounded and we have

‖B(k)‖2 < n, ‖A(k)‖2 ≤ µ‖B(k)‖2 < nµ , k≥ 0 (3.1)

(ii) For the pivot blocks B(k)i(k) j(k) of B(k), we have

lim
k→∞

B(k)
i(k) j(k) = 0

(iii) For the transformation matricesZ(k), we have

lim
k→∞

(

Z(k)−Q(k)
)

→ 0,

whereQ(k) are orthogonal elementary block matrices.

Proof (i) The proof of the relation (3.1) is identical to the proof of [27, Lemma 4.1].

(ii) The proof uses the technique from the proof of [27, Proposition 4.1]. So, let B(k) =

(b(k)rs ), k≥ 0 and

H(B(k)) =
det(B(k))

b(k)11 b(k)22 · · ·b
(k)
nn

= det(B(k)), k≥ 0.

By the Hadamard’s inequality we have

0< H(B(k)) ≤ 1, k≥ 0.
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Applying the determinant to the equations (2.2) and (2.5), we have

det(B(k+1)) = det2(Z(k))det(B(k)) (3.2)

1 = det2(Ẑ(k))det(B̂(k)). (3.3)

Using the singular value decomposition ofB(k)
i j , B(k)

i j =U (k)
i j Σ (k)

i j [V(k)
i j ]T , one obtains

[

Ini B(k)
i j

[B(k)
i j ]T In j

]

=

[

U (k)
i j

V(k)
i j

][

Ini Σ (k)
i j

[Σ (k)
i j ]T In j

][

[U (k)
i j ]T

[V(k)
i j ]T

]

, k≥ 0, (3.4)

where
Σ (k)

i j = diag
(

σ1(B
(k)
i j ), . . . ,σmin{ni ,n j}(B

(k)
i j )

)

, k≥ 0.

We conclude that the middle matrix on the right side of (3.4) is positive definite. Hence, for

the spectral norm ofB(k)
i j we have

‖B(k)
i j ‖2 = ‖Σ (k)

i j ‖2 = σ1(B
(k)
i j )< 1, k≥ 0.

From (3.4) we also see that the eigenvalues ofB̂(k) are 1±σt(B
(k)
i j ), 1≤ t ≤ min{ni ,n j} and

ni +n j −2min{ni ,n j} eigenvalues are equal to 1. Therefore, we have

det(B̂(k)) = (1−σ 2
1(B

(k)
i j )) · · · (1−σ 2

min{ni ,n j}
(B(k)

i j ))< 1, k≥ 0. (3.5)

Since det(Z(k)) = det(Ẑ(k)), from the relation (3.3), we obtain

|det(Z(k))|=
1

√

(1−σ 2
1 (B

(k)
i j )) · · · (1−σ 2

min{ni ,n j}
(B(k)

i j ))

> 1. (3.6)

From the relations (3.2) and (3.6) we have

H(B(k)) = (1−σ 2
1(B

(k)
i j )) · · · (1−σ 2

min{ni ,n j}
(B(k)

i j ))H(B(k+1)), k≥ 0. (3.7)

Recall thati = i(k), j = j(k), k≥ 0. From the relations (3.7) and (3.5) we see thatH(B(k)) is
an increasing sequence of positive real numbers, bounded above by 1. Hence it is convergent
with limit ζ , 0< ζ ≤ 1. By taking the limit on the both sides of the equation (3.7),after
cancelation withζ , we obtain

lim
k→∞

(1−σ 2
1(B

(k)
i(k) j(k))) · · · (1−σ 2

min{ni(k) ,n j(k)}
(B(k)

i(k) j(k))) = 1.

In particular, this implies‖B(k)
i(k) j(k)‖2 = σ1(B

(k)
i(k) j(k))→ 0 ask→ ∞, which proves the asser-

tion (ii) of the lemma.

(iii) Let
Ẑ(k) = Ĥ(k)Q̂(k), [Ĥ(k)]T = Ĥ(k), [Q̂(k)]TQ̂(k) = Ini+n j (3.8)

be the polar decomposition ofẐ(k) with positive definiteĤ(k) and orthogonal̂Q(k). From the
relation (3.8) and[Ẑ(k)]T B̂(k)Ẑ(k) = Ini+n j , one obtainŝH(k) = [B̂(k)]−1/2 and

σ (Ĥ(k)) =







1
√

1±σ1(B
(k)
i j )

, . . . ,
1

√

1±σmin{ni ,n j}(B
(k)
i j )

,1, . . . ,1







.
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Hereσ (Ĥ(k)) is the spectrum of̂H(k) and it contains exactlyni +n j −2min{ni ,n j} ones.
Let Z(k) = E (i(k), j(k); Ẑ(k)) andQ(k) = E (i(k), j(k);Q̂(k)). Then we have

‖Z(k)−Q(k)‖2 = ‖Ẑ(k)− Q̂(k)‖2 = ‖(Ĥ(k)− Ini+n j ) Q̂(k)‖2 = ‖Ĥ(k)− Ini+n j ‖2

=
1

√

1−σ1(B
(k)
i(k) j(k))

−1=
σ1(B

(k)
i(k) j(k))

1−σ1(B
(k)
i(k) j(k))+

√

1−σ1(B
(k)
i(k) j(k))

.

By (ii) we haveB(k)
i(k) j(k) → 0 ask→ ∞. Henceσ1(B

(k)
i(k) j(k))→ 0 and‖Z(k)−Q(k)‖2 → 0 as

k→ ∞. This proves the assertion (iii) of the lemma. ⊓⊔

In order to satisfy the condition (A3) of Theorem 3.2 the block Jacobi method can be
modified in a similar way as it was suggested in [10] and [25] for other block Jacobi methods.

SupposêZ(k) is the pivot submatrix computed by some kernel algorithm in stepk. Then
equations (2.4) and (2.5) hold. IfẐ(k) is replaced bŷZ(k)P̂(k) whereP̂(k) is some permutation
matrix then the right-hand side of the equation (2.5) does not change, while the one of the

equation (2.4) has to be replaced by[P̂(k)]Tdiag(Λ (k)
ii , Λ (k)

j j )P̂
(k), which is again a diagonal

matrix. So, we would like to replace eachẐ(k) by Ẑ(k)P̂(k) in such a way that the condition
(A3) is satisfied.

We shall use notation

Ẑ(k) =

[

Z(k)
ii Z(k)

i j

Z(k)
ji Z(k)

j j

]

, Z̃(k) = Ẑ(k)P̂(k) =

[

Z̃(k)
ii Z̃(k)

i j

Z̃(k)
ji Z̃(k)

j j

]

, k≥ 0.

The goal is to find, under acceptable computational cost, permutation matriceŝP(k) such that

σmin(Z̃
(k)
i(k)i(k))≥ f (ni(k),n j(k))≥ f1(π)≥ f2(n)> 0, k≥ k0.

Herek0 is a positive integer andf1, f2 are functions that do not depend onk.
By Lemma 3.3(iii) we have

Ẑ(k) = Q̂(k)+ Ê(k), lim
k→∞

Ê(k) = 0. (3.9)

Since eacĥQ(k) is orthogonal, we have limk→∞ ‖Ẑ(k)‖2
2 = 1.

Fork≥ 0, letR(k) be any matrix with orthonormal rows andni(k)+n j(k) columns. Then

‖R(k)Q̂(k)‖2
F = ‖R(k)‖2

F equals number of rows ofR(k), which is not larger thanni(k)+n j(k).

Furthermore, for any orthogonal matricesV̂(k)
1 andV̂(k)

2 of orderni(k)+n j(k), we have

‖R(k)(V̂(k)
1 Ẑ(k)V̂(k)

2 )‖F = ‖R(k)V̂(k)
1 Ẑ(k)‖F , ‖R(k)(V̂(k)

1 Q̂(k)V̂(k)
2 )‖F = ‖R(k)‖F , k≥ 0.

Hence
lim
k→∞

(‖R(k)(V̂(k)
1 Ẑ(k)V̂(k)

2 )‖2
F −‖R(k)‖2

F ) = 0. (3.10)

Now, let us consider special matricesR(k). For eachk≥ 0, let [e(k)1 , . . . ,e(k)ni(k)+n j(k)
] be the

column partition of Ini(k)+n j(k)
and G(k)

r =
[

e(k)r ,e(k)r+1, . . . ,e
(k)
ni(k)

]

, 1≤ r ≤ ni(k).

Let εk > 0 be defined by

ε2
k = max

1≤r ≤ni(k)

∣

∣

∣
‖[G(k)

r ]T Ẑ(k)‖2
F − (ni(k)− r +1)

∣

∣

∣
, k≥ 0.
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From the relation (3.10), we have
lim
k→∞

εk = 0. (3.11)

The definition ofεk implies

(ni(k)−r+1)−ε2
k ≤‖[G(k)

r ]T Ẑ(k)‖2
F ≤ (ni(k)−r+1)+ε2

k , 1≤ r ≤ ni(k), k≥ 0. (3.12)

Let η > 0 be the smallest positive solution of the equation

(2−η2)(3−η2) · · ·(n−η2) =
n!

1+η
.

Then for anyζ , 0< ζ < η , we have (1− ζ 2)(2− ζ 2) · · ·(nt − ζ 2) > n! · (1− ζ ) and that
implies

(1−ζ 2)(2−ζ 2) · · ·(nt −ζ 2)> nt ! ·(1−ζ ), 0< ζ < η , 1≤ nt ≤ n, 1≤ t ≤ m. (3.13)

Herent is from the partitionπ = (n1, . . . ,nm). From the relations (3.11), (3.12) and (3.13)
we conclude that there existsk0 ≥ 0 such that

1−ε2
k ≤‖Ẑ(k)‖2

2 ≤ 1−ε2
k , (1−ε2

k )(2−ε2
k ) · · ·(ni(k)−ε2

k )> ni(k)! ·(1−εk), k≥ k0. (3.14)

In the following lemma, we derive estimates related to stepk of the block Jacobi method
whenk ≥ k0. We shall omitk and denote the pivot indices byi, j, andẐ(k), Q̂(k), εk by Ẑ,
Q̂, ε , respectively.

Lemma 3.4 Let

Ẑ =

[

Zii Zi j

Z ji Z j j

]

, 1− ε2 ≤ ‖Ẑ‖2
2 ≤ 1+ ε2, (1− ε2)(2− ε2) · · ·(ni − ε2)> ni ! · (1− ε).

Let P̂ be the permutation matrix from the QR factorization with column pivoting of[Zii Zi j ]
and let

[

Z̃ii Z̃i j
]

=
[

Zii Zi j
]

P̂=W
[

Rii Ri j
]

, WTW = Ini , Rii is upper-triangular.

Then

σ 2
min(Z̃ii ) = σ 2

ni
(Z̃ii ) = σ 2

ni
(Rii )≥

1− ε
(1+ ε2)ni−1/

(

ni +n j

ni

)

. (3.15)

Proof The first two equalities in the relation (3.15) are trivial. To prove the inequality, we
apply the QR factorization algorithm with Householder reflectors to[Zii , Zi j ]. The algorithm
consists ofni steps. The whole process is described by the matrix equation

[

Ini−1

−1

]

· · ·

[

1
Hni−1

]

Hni

[

Zii Zi j
]

I11′ I22′ · · · Ini n′i
=
[

Rii Ri j
]

. (3.16)

HereIr r ′ is the transposition matrix withr ′ ∈{r, r+1. . . . ,ni +n j} andRii is upper-triangular.
In the first step, the algorithm finds the column of largest Euclidean norm of[Zii Zi j ]. It

is subscripted 1′. Then the algorithm switches the columns 1 and 1′ and applies the House-
holder reflectorHni from the left side. From the relation (3.12) we obtain by assuming r = 1,

GT
1 Ẑ(k) = [Zii Zi j ], ‖[Zii Zi j ]‖

2
F ≥ ni − ε2.



10

Since[Zii Zi j ] hasni +n j columns, we obtain

|(Rii )11|
2 = ‖[Zii Zi j ]e1′‖

2
2 ≥

ni − ε2

n j +ni
.

In the second step the algorithm works with the matrixGT
2 Hni

[

Zii Zi j
]

I11′ . It finds the
column of largest norm and switches it with the second column. From the relations (3.10)
and (3.12) we obtain, by assumingV̂1 = Hni , V̂2 = I11′ andr = 2,

‖GT
2 Hni

[

Zii Zi j
]

I11′‖
2
F ≥ (ni −1)− ε2.

SinceGT
2 Hni [Zii , Zi j ]I11′ hasn j +ni −1 nontrivial columns, we obtain

|(Rii )22|
2 ≥

ni −1− ε2

n j +ni −1
.

Continuing this procedure, we obtain

|(Rii )tt |
2 ≥

ni − (t −1)− ε2

n j +ni − t +1
, 1≤ t ≤ ni . (3.17)

Applying the determinant toRii and to the singular value decomposition ofRii , we have

σ 2
1(Rii ) · · ·σ 2

ni
(Rii ) = det2(Rii ) = |(Rii )11|

2 · · · |(Rii )nini |
2 ≥

(ni − ε2) · · ·(2− ε2)(1− ε2)

(n j +ni) · · ·(n j +2)(n j +1)

=
ni !(1− ε)

(ni +n j )!/n j !
= (1− ε)/

(

ni +nj

ni

)

.

Here we used (3.17) and the assumptions of the lemma (which are based on the relation
(3.14)). Since

σ 2
1 (Rii ) · · ·σ 2

ni−1(Rii )≤ σ 2(ni−1)
1 (Rii )≤ (1+ ε2)ni−1,

we obtain

σ 2
ni
(Rii )≥

1− ε
(1+ ε2)ni−1/

(

ni +n j

ni

)

,

which completes the proof of the lemma. ⊓⊔

With n≥ 2, m≥ 2 and the partitionπ = (n1, . . . ,nm), we associate numbersνπ andν̃n

for which we have

νπ ≡

[

max
r<t

(

nr +nt

nr

)]−1

≥

[(

n
[n/2]

)]−1

≡ ν̃n.

Here[n/2] is the largest integer smaller than or equal ton/2. From Lemma 3.4 we obtain

σ 2
min(Z̃

(k)
i(k)i(k))

(1+ ε2
k )

ni(k)−1

1− εk
≥

[(

ni(k)+n j(k)

ni(k)

)]−1

≥

[

max
r<t

(

nr +nt

nr

)]−1

= νπ, k≥ k0.

By lettingk→ ∞, we have

liminf
k→∞

σmin(Z̃
(k)
i(k)i(k))≥ νπ ≥ ν̃n. (3.18)
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Remark 3.5In real computation, we shall haven1 = n2 = · · · = nm−1 = ⌊n/m⌋, nm ≤ n1.
Hence the lower bound will be

νπ =

[(

2n1

n1

)]−1

≫ ν̃n.
⊓⊔

Remark 3.6To decrease the computational cost, we can modify the algorithm which deter-
mines the permutation matrix̂P. It can work with the block row of̂Z which has fewer rows.
If in the proof of Lemma 3.4 we haven j < ni , the algorithm can work with the block-row
[Z ji , Z j j ]. Then it reducesZ j j to a lower-triangular matrix with positive diagonal elements.
Instead of the relation (3.16) we shall have

[

−1
Ini−1

]

· · ·

[

Hni−1

1

]

Hni

[

Z ji Z j j
]

Ini+n j ,1′ · · · Ini+1,n′j
=

[

L ji L j j
]

,

whereL j j is lower-triangular with nondecreasing diagonal elements. In the first step the
algorithm produces zeros in the last column of[Z ji , Z j j ] and then it proceeds in an obvious
way. We shall generally haver ′ ∈ [1,ni + n j − r +1], r = 1,2, . . . ,n j . Although the lower
bound forσmin(L j j ) will be the same as earlier, the gain is in smaller computational cost.

As a final note, instead of reducingZ j j to the lower-triangular matrix, the algorithm can
reduce it to the upper-triangular matrix. The obtained bound is the same. ⊓⊔

Now we can prove the main result of the paper.

Theorem 3.7 The block Jacobi method converges to diagonal form under theclass of gen-
eralized serial pivot strategies provided the condition

liminf
k→∞

σmin(Z
(k)
i(k)i(k))> 0 (3.19)

holds. The block method is globally convergent if the kernelalgorithm is any convergent HZ
or CJ method.

Proof Let A andB be symmetric matrices such thatB is positive definite. Let us apply the
block Jacobi method to(A,B) under some generalized serial strategy, thus obtaining the

sequence of matrix pairs
(

(A(k),B(k)), k≥ 0
)

. To prove

lim
k→∞

S(A(k),B(k)) = 0 (3.20)

we apply Theorem 3.2 to the sequences(A(k), k≥ 0), (B(k), k≥ 0) and show

lim
k→∞

S(A(k)) = 0, lim
k→∞

S(B(k)) = 0. (3.21)

The first condition (A1) of Theorem 3.2 is just selection of the pivot strategy. Hence it
is satisfied for both sequences(A(k), k≥ 0) and(B(k), k≥ 0).

From Lemma 3.3(iii) we see that condition (A2) of Theorem 3.2 is satisfied for both
sequences.

The condition (A3) of Theorem 3.2 is satisfied for the sequences(A(k), k ≥ 0) and
(B(k), k≥ 0) because it is just the assumption (3.19) of the theorem.

From Lemma 3.3(i) we see that both sequences(A(k), k ≥ 0) and (B(k), k ≥ 0) are
bounded, so the condition (A4) of Theorem 3.2 holds for these sequences of matrices.
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Finally, from relations (2.4) and (2.5) we see that

S
(

[Ẑ(k)]T Â(k)Ẑ(k)
)

= 0, [Ẑ(k)]T B̂(k)Ẑ(k) = Ini(k)n j(k)
, k≥ 0.

Hence the condition (i) of Theorem 3.2 is satisfied for both sequences.
We conclude that the condition (ii ) of Theorem 3.2 holds for both sequences, which

means that the relation (3.21) and consequently the relation (3.20) holds.
To prove the second assertion of the theorem, we have to clarify how the block method

operates on matricesA(k) = (A(k)
rt ), B(k) = (B(k)

rt ) in stepk. First, the kernel algorithm com-

putes matricesΛ (k)
i(k)i(k), Λ (k)

j(k) j(k) and Ẑ(k). Then the block method updates the off-block-

diagonal blocks ofA(k): A(k)
ri(k), A(k)

r j (k), A(k)
i(k)r , A(k)

j(k)r , r /∈ {i(k), j(k)}, and similar forB(k).
In [27] the global convergence of the HZ and CJ methods has been proved under the

class of generalized serial strategies. As part of the proof, it has been proved that for small
enoughS(Â(k), B̂(k)) the diagonal elements of̂A(k) cannot change their affiliation with the
eigenvalues of the initial pair. In another words, in the final stage of the block process, the
kernel algorithm cannot change affiliation of the diagonal elements.

This fact together with limk→∞ S(A(k),B(k)) = 0 means that the block method is globally
convergent. ⊓⊔

We have shown that any block Jacobi method can be modified to satisfy the condition
(3.19) (see the derivation of the relation (3.18)). Hence itcan be made convergent to diag-
onal form or globally convergent (depending on the kernel algorithm), under an arbitrary
generalized serial strategy.

If we require that the kernel algorithm orders the diagonal elements of diag(Λ (k)
ii , Λ (k)

j j )
from the relation (2.4) in some fixed monotone ordering, thenone can use ideas from the
proof of [26, Theorem 2.10] to try to prove the global convergence. However, this is of less
importance. In practice it is irrelevant in which order the eigenpairs of(A,B) are collected
after the process has been terminated.

4 Conclusions and Future Work

In this paper, we have proved the global convergence of the block Jacobi method for the
PGEP under the class of generalized serial pivot strategiesfrom [26]. This is the first global
convergence proof of some block Jacobi method for the generalized eigenvalue problem.
Because of its efficiency [32] this block method is the methodof choice for solving the
PGEP with large matricesA andB.

Future work, which is underway, will prove the global convergence of the complex
PGEP block Jacobi method. For this research, one has to generalize many results from [26]
to hold for the complex block Jacobi method. Since both real and complex block Jacobi
methods compute accurately the eigenvalues of the corresponding PGEP, it is an open prob-
lem to prove the high relative accuracy of those methods in the case of positive definite
matricesA andB. Finally, an open problem is to prove the asymptotic quadratic conver-
gence of those block methods.
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