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On the Global Convergence of the Block Jacobi Method for
the Positive Definite Generalized Eigenvalue Problem

Vjeran Hari

Abstract The paper proves the global convergence of a general bladbianethod for
the generalized eigenvalue probléim = A Bx with symmetric matrice#\, B such thatB

is positive definite. The proof is made for a large class okegalized serial strategies from
[26]. The sequence of matrix pairs generated by the blocketetonverges toA, 1) where

A is a diagonal matrix of the eigenvalues of the initial map&ir (A, B) andl is the identity
matrix. The proof is made for the case when the block methed aement-wise HZ or CJ
method as the kernel algorithm. In the case of other kergeri#hms, the paper proves that
the iteration matrices tend to diagonal form.
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1 Introduction

We consider the global convergence problem of a block Janebiod for solving the posi-
tive definite eigenvalue problem (PGEP) under the classmigdized serial strategies from
[26]. The matrix problem is written in the form

Ax = ABX, X# 0,

whereA andB are symmetric matrices such this positive definite.

With the development of high-performance parallel macsirieere is a growing need
for the software that solves specific mathematical problée BLAS (Basic Linear Alge-
bra Subprograms) are routines for performing basic vectdmaatrix operations. The Level
3 BLAS perform matrix-matrix operations. Because the BLAS efficient, portable, and
widely available, they are commonly used in the developméhtgh-quality linear algebra
software, LAPACK for example. In the last decades many knavethods have been mod-
ified to become BLAS 3 algorithms, i.e. almost entirely refytbe use of Level 3 BLAS
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routines. This seems to be a sensible way to achieve higlieeffic across a wide range of
serial and parallel computer architectures.

Jacobi methods for the eigenvalue and singular value prabkre known for their ac-
curacy (see [5], [35], [9], [6], [36], [8], [31]), [30], [2Flinherent parallelism ([7], [33], [18],
[16]) and efficiency (see [10], [11], [12], [19]). The bestywa further enhance these char-
acteristics is to modify them to become BLAS 3 algorithmsctSumethods are referred to as
block diagonalization or block Jacobi methods [21], [1R][J2]. The global convergence
of various block Jacobi methods has been considered in[[28]],[23], [24], [4], [25] while
the asymptotic quadratic convergence has been consideféy |3].

In this paper we consider the block Jacobi method for PGERWwhénerates two se-
quences of matrices by the same rd&+l) = zWaAKzK gkt — zKBKZzK k> 0.
Here the initialA is symmetric and is symmetric positive definite. The transformation
matricesZ¥ are nonsingular elementary block matrices. Their task idiagonalize the
(block) pivot submatrices &®) andB® in each step. As has been shown in [32] the block
Jacobi method for PGEP is very fast and accurate, espeffidlig implemented as a one-
sided method that solves the generalized singular valug#ero(GSVD). On contemporary
parallel machines it is the method of choice for solving tf&M® problem.

The paper proves the global convergence of the block Jacetbiad for the cyclic pivot
strategies that are generalizations of the known seriat-(amd column-cyclic) pivot strate-
gies. These pivot strategies belong to a wide class of giresteserial strategies whose
theory is thoroughly explained in [26]. That class encorspasnost common sequential
and parallel pivot strategies (see [17], [33], [18], [2&9], [34]).

The paper is divided into 4 sections. In Section 2, we intcedootation and define the
block Jacobi method, pivot strategies, and the global agevee. In Section 3, we prove
the global convergence of the block Jacobi method. Finallgection 4, we briefly discuss
open problems and future work.

2 Block Jacobi Methods for PGEP

Here we define basic notation and definitions linked to thekbllacobi method for PGEP.
Let A andB be real symmetric matrices of ordesuch thaB is positive definite. Let

Aig - Amm | Big - Bim | M

A= ot B=1: = | 21
Am - Anm] Nm Bmi - Bmm] Nm
n - Nm n - Nm

be theirblock-matrix partitionsvhere the diagonal block;, Bji, 1 <i < mare square. The
block-matrix partition (2.1) oA (B) is determined by the partitiorf, m = (N1, ...,Nm) of n,
wheren; > 1 forall 1<i <mandn; +---+ nm = n. Sincen andm will be constant, we
shall use notatiomr instead ofrg, m.

A block Jacobi method for PGEP is an iterative process ofahm f

Ak _ z0TAKZ0 Bk _[zKTRRZK k>0 (2.2)
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where eaclz ¥ is anelementary block matrif25], [Z(W]T is the transpose a®) andA(©),
B9 are the starting matrices. Each ma@i%) is a non-singulan x n matrix of the form

K K g

7(K) :Zi(J!() _ Z; ZI] I -
® S0 |y

Zj" 2 | Inj

whereZ® carries the same partition &s All elements ofZ¥), except those of the blocks
Zi(ik>, Zi(jk>, Z](i'o andZ}']-(), are as in the identity matrig. The “block indices'i =i(k), j = j(k)
arepivot indices (i, J) is pivot pairand

500 _ Y Ziﬁk)
20 (K

i <
is pivot submatrixor the (i, j) — restrictionof Z¥. The submatrixZi(jk) is referred to as the
pivot blockof Z(K. The way of selecting the pivot pairs is referred tqpast strategy
We shall writeZi(jk) = £(i7j;2(k>), where& = & is the mapping that constructs the
nx n matrix Z(¥

ij
k))].(k) instead ofZ ¥ or simply Z;; whenk is clear from the context.

from the input data, j andZ®. When emphasis is on pivot indices, we

a7 (
shall erteZi<k

The starting matricea(?, B9 for the process (2.2) are obtained from the initial matri-
cesA, B, via the congruence transformation with the block-diadjomaitrix 20,

A© = [zOTAZO) BO =z@)TBzO®, 7O —diag(zl?,...,Zf%). (2.3)

The purpose of this transformation is to make the diagorwiisl of A(©) diagonal and the
diagonal blocks 0B(? the identity matrices. Typically, one can choﬂég to be inverse of
the Cholesky factor 0B, postmultiplied by an orthogonal matrix which diagonalizes
updatedA; :

Z¥=R'Q, RIR=By, RTAR!I=QAQ, 1<r<m

For accuracy reasons, a better option is to apply some etemisa Jacobi method for the
PGEP (see [27]) to each p&ify,Byr), 1 <r < n, collect the transformation matrices in
29 and apply the transformation (2.3) to the off-block-diagioparts ofA andB.

The process (2.2) is defined, if in each skemne knows the pivot paifi, j) and the
algorithmwhich computes the pivot submati¥ from the elements oA(K andB®). We
call the proces®GEP block Jacobi methaat simplyblock Jacobi methadn each step the
block Jacobi method applies the congruence transformé&i@ywhich preserves symmetry
and positive definiteness of the current matrices.

In stepk theblock Jacobi methodiagonalizesA ¥ and transform&(¥ into the identity
matrix. Locally, at the level of pivot submatrices, we have

ZT 1z A A9 [z Z
in<jk>]T z P]T] |:[Ai(jk)]T A(jjljo 2 ZM =

7!
ZT 2T 1 BY] [z ZY In
“Z“%T {z.pH LB“)F n } {z(” M B [ I } (2:9)

(K
Aii
, 2.4
A oo

i =i
ij i =i
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Here each bIocIAfik) (Ag'jo) is diagonal and of ordem; (n;j). Note that/\igk) andAj(]!o are

exactly the diagonal bIockAi(ik“) and Ag'ﬁ”, respectively. We keep the superscrig}
because the diagonal elements\df’ andAj(}‘) are the eigenvalues of the pak® BK).

If g =ny=---=ny=1, we speak of aon-blockor element-wisdacobi method.

With each block Jacobi method is associated sdw@mel algorithmwhose task is
to transform(A® BK) into (diag (A”(k>,Aj(}<>),lni+nj). For that purpose, one can use an
element-wise HZ or CJ method from [27]. As a kernel algoritlume can also use prod-
uct of inverse of the Cholesky factor 8(K with the orthogonal matrix from the spectral
decomposition of the updatekf®.

The partitionrt usually remains constant during the whole process, bunitncav and
then be adapted to ensure faster asymptotic convergenbe tétative process, especially
in the case of multiple eigenvalues of the initial pgh; B).

Recall that each principal submatrix of a positive definitenin is positive definite. This
implies that all matrice®®), k > 0 are positive definite. Furthermore, each block Jacobi
method maintains the special form of the block-diagonaispafrA(© andB(©). Namely, we
have

AY =diag(AY), B =I,, 1<r<m k>0

This property of the block Jacobi method has a double effacthe iterated matrices: it
normalizes and balances eatf) and it also nicely preconditiorB¥. Namely,B(K has
now an almost optimal condition that can be obtained by ttmensgtric diagonal scaling
[37]. As it will proved in Lemma 3.3(ii), this property ensasrthat all matriceA ¥ andB®¥
are bounded by norm.

2.1 Pivot Strategies

Let us very briefly introduce the class of generalized sestiaftegies from [26].
A pivot strategy can be identified with a functibn 49 — %, where

A0={0,1,2,...}, Pm={(nt); 1<r<t<m}

We see that?, contains pairs of indices which address the blocks in theeupjock-

triangle of the matri>A. The set%, containdVl = m(m— 1)/2 pairs of indices. Once > 2,

m> 1 andm= (n,...,Ny) are given, the functioh can be defined in many ways. Ilis

a periodic function, ther is calledperiodic pivot strategylLet | be the periodic (pivot)
strategy with period®. If P> M (P = M) and{l(k) : k=0,1,...,P—1} = P, thenl is

calledquasi-cyclic(cyclic) strategy.

In this paper, we shall use the classgeineralized serial strategieshich is a subset
of the set of cyclic pivot strategies. That class of straggvas introduced in [26] and it
includes serial, wavefront and weak-wavefront stratefyms [34], then inverses of weak-
wavefront strategies and all those cyclic strategies treaparmutation equivalent to all of
them. Hence they include the modulus strategy [29] and sdhee oyclic strategies that are
used for parallel processing. The theory of generalizeilsgrategies and of their quasi-
cyclic derivatives can be found in [26].



3 The Global Convergence

Here we prove the global convergence of the PGEP block Jacethiod under the class of
generalized serial strategies. A similar, but somewhaermomplicated proof can be made
for the corresponding quasi-cyclic strategies from [26].

To measure advancement of the method, one can use qUARIT),

SAB) = [S(A)+S(B)])"%,  S(H) = |[H - diag (H)]|r.

whereA, B, H are square matrices afiX||r is the Frobenius norm oX. Here diag(X)
denotes the diagonal part Xf The measur&(X) is referred to asleparture from diagonal
form or asoff-normof X. So,S(A, B) can be calledff-norm of the pairA,B).

In the following definition it is assumed that a block Jacolgithod is defined by some
partition 7T od n.

Definition 3.1 LetA andB be symmetric matrices of ordaisuch thaB is positive definite.
Let the sequence of matrix pairé(A(k), B®), k> 0) be generated by applying the block
Jacobi method to the pa{A,B). The block Jacobi method isonvergenton (A,B) if
B® -1, and A®¥ — A as k— o, whereA is a diagonal matrix of the eigenvalues
of (A,B). If the block Jacobi method is convergent on every pairB) then it isglobally
convergentThe block Jacobi methodonverges to diagonal foriifi for every pair (A,B),
S(AK BM) - 0 ask— .

The global convergence of one-sided block Jacobi methadsofaing the GSVD problem
is defined using their two-sided counterparts which soleeRIBEP with positive definite
A andB. So, the result obtained here has a direct application tesates block Jacobi
methods.

We shall use notatiow:(X) for thet'th largest singular value oK, and gmin(X) for
the minimum singular value of. The convergence proof is based on the following general
result from [26].

Theorem 3.2 Let m= (ny,...,nm) be a partition of n. LeH = (H;;) # 0 be a symmet-
ric matrix of order n partitioned in accordance with Let (H), k > 0) be the sequence
generated by applying a block Jacobi-type procedd to

HEY —FTHWE, HO =H, k>0

Here eachFy is an elementary block matrix defined by the pivot gaik), j(k)), where
1<i(k) < j(k) <m. Suppose the following assumptions are satisfied:

(A1)  The pivot strategy is generalized serial
(A2)  There is a sequence of orthogonal elementary block matfld&), k > 0) such that

lim(Fk—Uy) =0
k—yo0

(A3)  For the diagonal block ilﬁg of Fx one has

i)
o=liminfo® >0 o= Tmin(Fi{ i)+ k= 0

(A4)  The sequenceH®, k> 0) is bounded.



Then the following two conditions are equivalent
() lim SFLAMFR) =0
k—o0
(i) limSH®)=o0.
k—o0
Proof The theorem is a special case of [25, Corollary 5.3] vith = 0, k > 0. a

In Theorem 3.2 the pivot submatrix®) does not have to be diagonalized in each step, but
the condition {) has to hold. Such are the norm-reducing methods of Ebedij [15].
That is the reason why we used the term Jacobi-type methotdseiorem 3.2.
We shall apply Theorem 3.2 to the sequen@&¥), k > 0) and(B, k > 0) obtained by
the block Jacobi method. To this end we shall prove some pa&p# results. First, we want
to prove that all matriceA¥), B, generated by the method are bounded. That accounts

for the assumptiod4 of Theorem 3.2. Then we want to prove t ))j(k) tends to zero as

k increases. Once we prove it, the other assertions of The®r2mill be easy to show.
In the following lemma we use the spectral radius of the mauair (A,B),

= max |A],
H )\eo(AﬁB)‘ |

whereg (A, B) denotes the spectrum OA,B). HereA, B are arbitrary symmetric matrices
such thaB is positive definite.

Lemma 3.3 Let A and B be symmetric matrices of order n such tBais positive definite.
Let the sequences of matriogs®), k > 0), (B, k > 0) be generated by applying the block
Jacobi method to the pa{tA, B) under an arbitrary pivot strategy. Then the assertions (i)—
(iii) hold:

(i)  The matrices generated by the method are bounded and wee ha

1BY2<n  JAY2<pBY|z<ny, k>0 (3.1)

(i) For the pivot blocks &), of BX, we have

ok
Jm B4 =0

(i)  For the transformation matriceg ¥, we have
i K _ ok
pm (29-04) o
whereQ(¥ are orthogonal elementary block matrices.

Proof (i) The proof of the relation (3.1) is identical to the prodf[a7, Lemma 4.1].
(i) The proof uses the technique from the proof of [27, Psigon 4.1]. So, letBK =
(bi¥), k>0 and

detBM)

H(B(k)) - J
ol

=detB®), k>o0.

By the Hadamard’s inequality we have

0<HBM)<1, k>o0.



Applying the determinant to the equations (2.2) and (2.%) have
detB*1)) = def(z®)det BM) (3.2)
1 = def(z®)deB®). (3.3)

iﬁk)zi(j'o [Vi?of, one obtains

In 25-”} { Ul
K
=0T 1,

Using the singular value decompositionBﬁP, Bi(}o =U

b _
B In,

where

k
o ®
Vi

., k=0, (34)

K
v

[ : Kk K
Zi(j = diag (Ul(Bi(j ))a : --aamin{niﬁnj}(Bi(j ))) ) k>0.

We conclude that the middle matrix on the right side of (3s4)asitive definite. Hence, for
the spectral norm dijk) we have
K K k
1B 2= 12"l = ou(B) <1, k=0,
From (3.4) we also see that the eigenvalueB¥f are 1+ at(Bi(Jk)), 1<t <min{n;,n;} and
n +n; —2min{n;, n;} eigenvalues are equal to 1. Therefore, we have
k)

5 k
det(B%) = (1- 02(B{)) +++ (1— GRingny (B

)<1, k>0 (3.5

Since detz) = detz¥), from the relation (3.3), we obtain

|detz®)| = ! -1 (3.6)

- OB - (1= G B)

From the relations (3.2) and (3.6) we have

k k
H(BY) = (1= 0f(B)) -+ (1 G (BIHEBXY), k=0 3.7)
Recall thai =i(k), j = j(k), k> 0. From the relations (3.7) and (3.5) we see thé&B")) is
an increasing sequence of positive real numbers, boundee &y 1. Hence it is convergent
with limit {, 0 < { < 1. By taking the limit on the both sides of the equation (3afjer
cancelation with, we obtain
k)

2/
(1= 01 (B

i 2 (k) —
ML )) (1* Umin{ni(k),nj(k)}(Bi(k)j(k))) =1
In particular, this implied| Bi((klz)j(k) l2= al(Bfgz)j(k)) — 0 ask — o, which proves the asser-
tion (ii) of the lemma.
(iii) Let
z0 = [lGHK AT =A/® [QMITQM =1 4, (3.8)
, ’ i 1j '

be the polar decomposition @f¥) with positive definited and orthogonaQ ™. From the
relation (3.8) andZ¥W]TBMZ® =1, ..., one obtaindH®) = [BM]~1/2 and

. 1 1
U(H(k)):{ s ey 717"'71}'
1+ O'j_(Bi(Jk)) \/1iamin{ni.nj}(Bi(J!())
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Here g(H®) is the spectrum oF (¥ and it contains exactly +n; — 2min{n;,n;} ones.
LetZ® = £(i(k), j(k); Z®) andQ™ = @@(i(k), j(k);Q™). Then we have
1Z% = QW2 = |20 = QW |la = [I(AY =15 1) QWll2 = [AM =151, 12
1

0
_ 1 91(Bigoj0)

W ) Wy
1-01(Bjyj1) 1= 01(Bigg10) + /1= 01 (Bigg )
9

By (ii) we haveB}) ,, — O ask — e. Henceas (B{y ;) — 0 and|[2%) — Q¥ |, — 0 as
k — . This proves the assertion (jii) of the lemma. O

In order to satisfy the conditiomA@) of Theorem 3.2 the block Jacobi method can be
modified in a similar way as it was suggested in [10] and [26ptber block Jacobi methods.

Suppos& ¥ is the pivot submatrix computed by some kernel algorithmeépk. Then
equations (2.4) and (2.5) hold.Zf¥ is replaced by ¥ P whereP®) is some permutation

matrix then the right-hand side of the equation (2. 5) doeschange, while the one of the
equation (2.4) has to be replaced [B¥] " diag (A(k , J(] P, which is again a diagonal
matrix. So, we would like to replace eaz by Z(®PK in such a way that the condition

(A3) is satisfied.
We shall use notation

(K) 5 (k) 5 (k) 5 (k)
5k _ |:Ziik) Zi'k)} 7 FK) _ ZRpk) — F“ %i' } , k> 0.

( 3 (k) 3k)
Zj~ Zjj Zj" Zj)

The goal is to find, under acceptable computational costypeation matrice®® such that
5 (K
Umiﬂ(zi((k))i(k)) 2 f(ni(k)vnj(k)) > f1(7T) > f2(n) >0, k> ko.

Herekg is a positive integer anfh, f, are functions that do not depend kn
By Lemma 3.3(iii) we have

200 — §k 4 EK), lim EW=o0. (3.9)

—»00

Since eactQ® is orthogonal we have lign,e [|[Z0]3 =
Fork >0, IetR be any matrix with orthonormal rows amgy, + nj( columns. Then

[RWQM|12 = |RM |12 equals number of rows & X, which is not larger than; ) +njk)-
Furthermore, for any orthogonal matricég) and\7(2k) of ordern;( + nj(y), we have

IROE@PZOVE) e = [ROVIZO e, [ROVIGHII) e = IRV, k=0,
Hence o
lim (|[RW (V{20052 - IRV 2) =0. (3.10)
—>00
Now, let us consider special matricRE9. For eachk > 0, let [e(1k>,...,e£1'f(>k)+nj(k)} be the

column partition ofInI +ny( and G(k [ (k),eﬁ'fgl,...,e(qli‘()k)}, 1<r <.
Letg, >0 be deflned by

2

g2=_max [[[GITZW|2 — (nigy —r+1)], k>0.

1<r<nj




From the relation (3.10), we have
Ilim &=0. (3.11)
—»00

The definition ofey implies
(Mg —r+1)—&2 < [[GITZW|2 < (mgg—r+1)+82, 1<r<mg, k>0.(3.12)

Letn > 0 be the smallest positive solution of the equation

@=n)@E=n%)- (=) = 11

Then for anyZ, 0< { < n, we have (1—?)(2—2?)---(?nn—Z?) >nl-(1— ) and that
implies

(1-7H2-23(n-7H)>n!-(1-7), 0<l<n, 1<m<n 1<t<m (3.13)

Heren is from the partitiont= (ny,...,nym). From the relations (3.11), (3.12) and (3.13)
we conclude that there exigts > 0 such that

1-2<ZM3<1-¢€2, (1-€2)(2— ) (nigy—&2) > Miy! - (1— &), kK>ko. (3.14)

In the following lemma, we derive estimates related to $teyh the block Jacobi method
whenk > ko. We shall omitk and denote the pivot indices byj, andz®, QI g by Z,
Q, &, respectively.

Lemma 3.4 Let

} 1-2<[2[3< 1462 (1-€2)(2—€?)---(n —€2) > nil-(1—¢).

Let P be the permutation matrix from the QR factorization withuroh pivoting ofZ; Z; il
and let

[Zi Zi,- } = [Zii Zjj ] P=w [R" Rij ] , WTW = Ini, Rii is upper-triangular
Then
. . 1— o,
0-r%in(zii) = 0'r%(zii) = Oﬁ,(Ru) > ﬁ/ (n ;nj ) . (3.15)

Proof The first two equalities in the relation (3.15) are triviah frove the inequality, we
apply the QR factorization algorithm with Householder refides to[Z; , Z;;]. The algorithm
consists oh; steps. The whole process is described by the matrix equation

Pni_l —1} {l Hni*l} Ho [Zi Zij [ lvloz 1y = [Ri Ry ] (3.16)

Herel,,/ is the transposition matrix wit € {r,r +1....,nj+n; } andR; is upper-triangular.
In the first step, the algorithm finds the column of largestliBean norm ofZ; Z;]. It

is subscripted "1 Then the algorithm switches the columns 1 ahdrid applies the House-

holder reflectoHy, from the left side. From the relation (3.12) we obtain by asieigr = 1,

G1zW = [z z), 1Zi Zij][|E > m — €%
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Since[Z; Z;j] hasn; +nj columns, we obtain
n — g2
nj+n’

[(Ri)wl = I1Zii Zijlev| >

In the second step the algorithm works with the ma@ixHy, [ Zi Zjj | I1y. It finds the
column of largest norm and switches it with the second colufmam the relations (3.10)
and (3.12) we obtain, by assumilfg = Hp, V2 =1,y andr =2

IGS Hey [Zii Zij [ 11y|IE > (ni—1) — €2

SinceGJ Hy, [Zii, Zij]l1 ¢ hasnj +n; — 1 nontrivial columns, we obtain

2
> _hi—1-—c¢
.. > )
[(Ri)22|” > -
Continuing this procedure, we obtain
s Mi—(t—1)—¢2

i > 1<t<n. 3.17
|(Ri )ue|“ > nn_tel TSUSN (3.17)

Applying the determinant t&; and to the singular value decompositionRaf we have

—g2)...(2—g2)(1— €2
GH(R)- - 0R (R) = der?(Ry) = (R (Roon > R EdE=EHE)
:(14)/(“;”1).

_ nl(l-¢)

n (ni+nj)!/n;!
Here we used (3.17) and the assumptions of the lemma (wheclhased on the relation
(3.14)). Since

02(Ri)---02_1(Ri) < o™ V(Ry) < (142N,

we obtain
1-¢ n; + N;
2 > i j
RR)> i/ (M)
which completes the proof of the lemma. ad

With n > 2, m> 2 and the partitionrt= (ny,...,nm), we associate numbers; and ¥,
for which we have

o= (")) 2 ()] =

Here[n/2] is the largest integer smaller than or equahf@. From Lemma 3.4 we obtain

. 2\Mi(k)—1 ' ) -1 -1
m|n(z(( ))I(k))% > [(nl(k)_'—nj(k))} > {max(nr+r1t):| =vg k>ko.

1—¢g Mi (k) r<t Ny
By letting k — o, we have

e 5(K)
IlkaQf Umm(zi(k)i(k)) > Vi > Up. (3.18)
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Remark 3.5In real computation, we shall have =n; =--- = np_1 = [n/M|, Ny < ng.
Hence the lower bound will be

2n -1
V= [( nll>:| >>\7n. O

Remark 3.6To decrease the computational cost, we can modify the #tgonivhich deter-
mines the permutation matriX It can work with the block row of which has fewer rows.
If in the proof of Lemma 3.4 we have; < nj, the algorithm can work with the block-row
[Zji , Zjj]. Then it reduceg;; to a lower-triangular matrix with positive diagonal elerten
Instead of the relation (3.16) we shall have

-1 Ho
|: |ni_1:| |: nj 1:| Hni [Zp Z“ } lni+njﬁ1""|ﬂi+1ﬁn’j = [Lll |_“ ]7

wherelLj; is lower-triangular with nondecreasing diagonal elemelmnighe first step the
algorithm produces zeros in the last columr{&f , Z;j] and then it proceeds in an obvious
way. We shall generally havé € [1,ni +n; —r + 1], r = 1,2,...,nj. Although the lower
bound foramin(Lj) ill be the same as earlier, the gain is in smaller computatioost.

As afinal note, instead of reduciizg; to the lower-triangular matrix, the algorithm can
reduce it to the upper-triangular matrix. The obtained lobisrthe same. ad

Now we can prove the main result of the paper.

Theorem 3.7 The block Jacobi method converges to diagonal form undecltss of gen-
eralized serial pivot strategies provided the condition

imi 7K
I'kaQf Um'n(zi(k)i(k)) >0 (3.19)
holds. The block method is globally convergent if the keafggrithm is any convergent HZ

or CJ method.

Proof Let A andB be symmetric matrices such tHatis positive definite. Let us apply the
block Jacobi method t¢A,B) under some generalized serial strategy, thus obtaining the

sequence of matrix pair(s(A(k), BK), k> 0). To prove
lim S(A® BM) =0 (3.20)
k—yo0

we apply Theorem 3.2 to the sequend@s®, k > 0), (B, k> 0) and show
lim S(AM) =0, lim s(B®) =o0. (3.21)
k—r00 k—00

The first condition A1) of Theorem 3.2 is just selection of the pivot strategy. Heitc
is satisfied for both sequences®, k > 0) and(BM, k > 0).

From Lemma 3.3(iii) we see that conditioAZ) of Theorem 3.2 is satisfied for both
sequences.

The condition A3) of Theorem 3.2 is satisfied for the sequen¢a$), k > 0) and
(B, k> 0) because it is just the assumption (3.19) of the theorem.

From Lemma 3.3(i) we see that both sequengg®) k > 0) and (B, k > 0) are
bounded, so the conditiodd) of Theorem 3.2 holds for these sequences of matrices.
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Finally, from relations (2.4) and (2.5) we see that

5 (KT A (k)5 (k Z (K1 TR(k) 7 (K
S([Z< NTAKZ( )) =0, zW)TekZH = Inigonigo k> 0.

Hence the conditioni) of Theorem 3.2 is satisfied for both sequences.

We conclude that the conditiori of Theorem 3.2 holds for both sequences, which
means that the relation (3.21) and consequently the ralé3i@0) holds.

To prove the second assertion of the theorem, we have tdyctemiv the block method
operates on matrices® = (A¥), B = (BY) in stepk. First, the kernel algorithm com-
putes matrices’\.(<k)) i) AJ(E‘)) i ) and 2(") Then the block method updates the off-block-

diagonal blocks oA®: ArJ A| (j'(‘l)()r, r ¢ {i(k),j(k)}, and similar forB®),

In [27] the global convergence of the HZ and CJ methods has pemved under the
class of generallzed serial strategies. As part of the pibbas been proved that for small
enoughS(A () the diagonal elements @) cannot change their affiliation with the
eigenvalues of the initial pair. In another words, in the Ifstage of the block process, the
kernel algorithm cannot change affiliation of the diagorairents.

This fact together with linp,., (A, BY) = 0 means that the block method is globally
convergent. O

We have shown that any block Jacobi method can be modifieditdysthe condition
(3.19) (see the derivation of the relation (3.18)). Hena=it be made convergent to diag-
onal form or globally convergent (depending on the kerngbathm), under an arbitrary
generalized serial strategy.

If we require that the kernel algorithm orders the diagoteinents of dlag(A(k , J(] ))
from the relation (2.4) in some fixed monotone ordering, tbea can use ideas from the
proof of [26, Theorem 2.10] to try to prove the global conesrge. However, this is of less
importance. In practice it is irrelevant in which order thigempairs of(A,B) are collected
after the process has been terminated.

4 Conclusions and Future Work

In this paper, we have proved the global convergence of thekblacobi method for the
PGEP under the class of generalized serial pivot stratégies[26]. This is the first global
convergence proof of some block Jacobi method for the gbéredacigenvalue problem.
Because of its efficiency [32] this block method is the metbbahoice for solving the
PGEP with large matrice& andB.

Future work, which is underway, will prove the global coryamce of the complex
PGEP block Jacobi method. For this research, one has toajeeemany results from [26]
to hold for the complex block Jacobi method. Since both real @omplex block Jacobi
methods compute accurately the eigenvalues of the comdspmpPGEP, it is an open prob-
lem to prove the high relative accuracy of those methods énctise of positive definite
matricesA andB. Finally, an open problem is to prove the asymptotic quac@inver-
gence of those block methods.
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