
ON THE GLOBAL CONVERGENCE OF THE COMPLEX HZ1

METHOD∗2

VJERAN HARI†3

Abstract. The paper considers a Jacobi method for solving the generalized eigenvalue problem4
Ax = λBx, where A and B are complex Hermitian matrices and B is positive definite. The method5
is a proper generalization of the standard Jacobi method for the Hermitian matrix A to the matrix6
pair (A,B). The paper derives the method and proves its global convergence under the large class7
of generalized serial pivot strategies. If both matrices are positive definite, it can be implemented as8
a one-sided method. It then solves the initial problem as the generalized singular value problem. Its9
main application is to serve as a kernel algorithm in a block Jacobi method for the same problem10
with large matrices A and B. The block Jacobi methods are methods of choice on contemporary11
CPU and GPU computing architectures. The proposed algorithm is very efficient on pairs of almost12
diagonal matrices, and diagonalization of such matrices is the main task of the kernel algorithm. The13
numerical tests indicate the high relative accuracy of the method on certain pairs of positive definite14
matrices.15
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1. INTRODUCTION. We consider the positive definite generalized eigen-18

value problem (PGEP)19

Ax = λBx , x 6= 020

with full Hermitian matrices A, B of order n, such that B is positive definite.21

On contemporary parallel CPU and GPU computing machines block Jacobi meth-22

ods have proved to be the methods of choice for solving that problem [18, 20]. In the23

core of those block methods lies the kernel algorithm whose task is to diagonalize the24

block pivot submatrices Â, B̂ at each step. The matrices Â, B̂ are of smaller size,25

typically of order 32–256, they are Hermitian and if B (or A) is positive definite then26

B̂ (Â) is also such. The main task for a kernel algorithm is to solve PGEP with27

matrices Â, B̂ accurately and efficiently. During the computation the block pivot28

submatrices will be most of the time nearly diagonal. So, the kernel algorithm has to29

perform its task quickly and accurately on such matrices. These two requirements are30

well met by the element-wise Jacobi methods for the PGEP. This raises the question31

of what is really known about complex Jacobi methods for the PGEP?32

To this date, we know of three Jacobi methods for PGEP. These are the complex33

Falk-Langemeyer method [11], the complex Cholesky-Jacobi method [10, 14] and the34

complex HZ method [6]. All three methods simultaneously diagonalize the pivot35

submatrices at each step. Let us briefly highlight the main characteristics of these36

methods.37

The first one is the proper generalization of the real Falk-Langemeyer (FL) method38

[3, 21, 16] to complex matrices. The method is characterized by the requirement that39

the transformation matrix has unit diagonal. That ensures simpler transformation40

formulas and application of BLAS1 caxpy and zaxpy computational routines. Addi-41

tional accuracy can be obtained if the floating-point fused multiply and add operation42
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2 V. Hari

is used, computing αβ + γ with a single round. The shortcoming of the FL method43

lies in the fact that the norms of iteration matrices A(k) and B(k) can increase. So,44

periodically, one has to check those norms and apply some appropriate congruence45

transformation to “normalize” them. This slows down the computation, especially46

on distributed memory parallel machines. Namely, each check for renormalization47

costs. There is no simple rule when to apply that procedure because timing depends48

on the characteristics of the matrices. Also, the global and quadratic convergence of49

the complex method have not been proved. Numerical tests indicate the high relative50

accuracy of the method on “well-behaved” pairs of positive definite matrices. These51

are the pairs (A,B) for which the spectral condition numbers of κ2(DAADA) and52

κ2(DBBDB) are small for some diagonal matrices DA and DB .53

The complex Cholesky-Jacobi (CJ) method was introduced in [10] and its global54

convergence has been proved in [14]. It is a proper generalization of the real CJ55

method from [9]. Numerical tests imply the great potential of that method, in the56

first place for its presumably high relative accuracy on well-behaved pairs of positive57

definite matrices. It is a pretty new method, so it was less researched.58

The third method is one we deal with in this paper. It is a direct generalization59

of the real one from [9]. Actually, the complex and real methods were derived and60

analyzed already in [6]. The real method was later used by Novaković et all [18] and61

was named “Hari-Zimmermann variant of the Falk-Langemeyer method”. Later, in62

[9] we called it simply the HZ method. In [6] the complex HZ method was derived63

and its asymptotic quadratic convergence was proved under the general cyclic and the64

serial pivot strategies. In the sequel HZ (FL, CJ) method will mean the complex HZ65

(FL, CJ) method.66

Like the FL method, the HZ method diagonalizes the pivot submatrices at each67

step. However, instead of simplifying the transformation matrix it simplifies the68

iteration matrices B(k) by requiring that they have unit diagonal. So, a preliminary69

step for the HZ method is needed to reduce the diagonal elements of B to ones. This70

is accomplished by the diagonal congruence transformation71

(1.1) A 7→ A(0) = DAD, B 7→ B(0) = DBD, D = diag(B)−
1
2 .72

Then (A(0), B(0)) is taken as the initial pair for the HZ method. The method preserves73

the unit diagonal of B(k) for k ≥ 0 which stabilizes the iterative process. Namely,74

each B(k) is already almost optimally symmetrically scaled that can be made by a75

diagonal matrix [22], i.e. κ2(B(k)) ≈ minDB κ2(DBB
(k)DB). This also means that76

the HZ method has no problem with renormalizations. It is a proper generalization77

of the standard Jacobi method for Hermitian matrices. The principal shortcoming78

of HZ is that its transformations are slightly more expensive. Compared to the FL79

method this is no drawback and numerical tests of the real and complex methods on80

large matrices, using parallel machines [18, 20], have confirmed the advantage of the81

HZ approach. Here we derive the HZ method and prove its global convergence.82

The paper is divided into 5 sections. In Section 2, we briefly describe the method.83

In Section 3 we derive the HZ algorithm, which determines one step of the method.84

Here we also define the global and quadratic convergence and provide a numerical85

example that sheds some light on accuracy and quadratic convergence of the method.86

In Section 4, we prove the global convergence of the method under the large class of87

generalized serial strategies from [13]. In Section 5, we point out some open problems88

and anticipate future work.89
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On the global convergence of the complex HZ method 3

2. Description of the Method. Let A and B be complex Hermitian matrices90

of order n and let B be positive definite. The HZ method is the iterative process of91

the form92

(2.1) A(k+1) = Z∗kA
(k)Zk, B(k+1) = Z∗kB

(k)Zk, k ≥ 0,93

where A(0) and B(0) are defined by relation (1.1). In (2.1) each transformation matrix94

Zk is elementary plane matrix. It is a nonsingular matrix which differs from the95

identity matrix In in one principal submatrix Ẑk,96

(2.2) Ẑk = Zk([ij], [ij]) =

[
z
(k)
ii z

(k)
ij

z
(k)
ji z

(k)
jj

]
, k ≥ 0,97

where we used MATLAB notation. The subscripts i = i(k), j = j(k) are called pivot98

indices, (i, j) is pivot pair and Ẑk is pivot submatrix of Zk. If Ẑk is as in (2.2), we99

shall briefly denote it by Ẑk = (z
(k)
ij ). The transition (A(k), B(k)) 7→ (A(k+1), B(k+1))100

is called the kth step of the method. The way of selecting pivot pairs is a pivot101

strategy. The most common (pivot) strategies are the column- and row-cyclic ones.102

In the column-cyclic strategy the pivot pair repeatedly runs through the sequence of103

N = n(n− 1)/2 pairs:104

(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), . . . , (1, n), (2, n), . . . , (n− 1, n),105

while in the row-cyclic strategy it runs through the sequence: (1, 2), (1, 3), . . . ,106

(1, n), (2, 3), (2, 4), . . . , (2, n), (3, 4), . . . ,(n − 1, n). The common name for any of107

these two pivot strategies is serial strategy. For t ≥ 1, the transition108

(A((t−1)N), B((t−1)N)) 7→ (A(tN), B(tN))109

is called the tth cycle or sweep of the method. In [13] the set of serial pivot strategies110

has been enlarged to the set of generalized serial strategies. The global convergence111

of general Jacobi processes under the generalized serial strategies were considered in112

[13], and the obtained results were used in [9, 14].113

The algorithm for computing the elements of Ẑk has been derived in [6]. It is114

based on the following theorem, which is a generalization to complex matrices, of the115

Gose’s result [4].116

Theorem 2.1 ([7]). Let B̂ = (bij) and B̂′ = diag(b′ii, b
′
jj) be positive definite117

Hermitian matrices of order two. Then there exist a nonsingular matrix F̂ of order118

two, such that B̂′ = F̂ ∗B̂F̂ . Each F̂ satisfying that property has the form119

F̂ =
1

cos γ

[
1√
bii

1√
bjj

][
cosφ eıα sinφ

−e−ıβ sinψ cosψ

][
eıωi

√
b′ii

eıωj
√
b′jj

]
,120

where ωi, ωj are real, φ, ψ, γ ∈ [0 ,
π

2
], and121

sin γ =
|bij |√
biibjj

, cos γ = | cosφ cosψ + eı(α−β) sinφ sinψ|122

holds.123

To simplify F̂ , we can require that ωi = ωj = 0, i.e. that the diagonal elements of F̂124

are real and nonnegative. Furthermore, by replacing α, β by α+π, β+π, respectively,125

we can move the − sign from −e−ıβ sinψ to eıα sinφ.126

This manuscript is for review purposes only.



4 V. Hari

3. Derivation of the HZ algorithm. As has been described earlier, the initial127

step (1.1) makes the diagonal elements of B(0) equal to one. The method is designed128

to retain that property. We shall consider step k of the method. To simplify notation,129

we omit the superscript k, denote the current matrices by A = (ars), B = (brs)130

and those obtained after completing step k by A′ = (a′rs), B
′ = (b′rs). The pivot131

submatrices are denoted by Â = (aij), B̂ = (bij), where i, j are pivot indices. We132

assume bii = 1 and bjj = 1. The transformation matrix is denoted by Z and its pivot133

submatrix by Ẑ.134

We shall construct Ẑ such that the following conditions hold135

a′ij = 0, b′ij = 0, b′ii = 1, b′jj = 1, zii ≥ 0, zjj ≥ 0,136

Since bii = bjj = 1, Theorem 2.1 shows that Ẑ can be sought in the form137

(3.1) Ẑ =
1√

1− |bij |2

[
cosφ −eıα sinφ

e−ıβ sinψ cosψ

]
, φ, ψ ∈ [0 ,

π

2
].138

Let us recall the formulas linked to the complex Jacobi rotation which diagonalizes139

the Hermitian matrix Ĥ = (hij) of order 2. If we write cϑ, sϑ for cos(ϑ), sin(ϑ),140

respectively, then from the equation141 [
cϑ eıςsϑ

−e−ıςsϑ cϑ

] [
hii hij
h̄ij hjj

] [
cϑ −eıςsϑ

e−ıςsϑ cϑ

]
=

[
h′ii 0
0 h′jj

]
,142

one obtains143

ς = arg(hij), tan(2ϑ) =
2|hij |

hii − hjj
144

and145

h′ii = hii + |hij | tan(ϑ), h′jj = hjj − |hij | tan(ϑ).146

In these formulas the angle ϑ need not be restricted to [−π/4 , π/4].147

To derive Ẑ, we follow the lines from [6]. The matrix Ẑ sought for in the form148

(3.2) Ẑ = R̂1D̂R̂2Φ̂,149

where R̂1, R̂2 are complex rotations and D̂, Φ̂ are diagonal matrices, Φ̂ being also150

unitary. Let151

Â1 = R̂∗1ÂR̂1, B̂1 = R̂∗1B̂R̂1,152

Â2 = D̂∗Â1D̂, B̂2 = D̂∗B̂1D̂,153

Â3 = R̂∗2Â2R̂2, B̂3 = R̂∗2B̂2R̂2,154

Â′ = Φ̂∗Â3Φ̂, B̂′ = Φ̂∗B̂3Φ̂,155

and note that156

Â′ = Ẑ∗ÂẐ, B̂′ = Ẑ∗B̂Ẑ.157

The complex rotation R̂1 has the role of Jacobi rotation which diagonalizes B̂. Since158

the diagonal elements of B̂ are equal to 1, the rotation angle can be chosen as ±π/4.159

Choosing it to be −π/4, we obtain160

(3.3) R̂1 =

[
cos(–π4 ) –eıβij sin(–π4 )

e−ıβij sin(–π4 ) cos(–π4 )

]
=

√
2

2

[
1 eıβij

−e−ıβij 1

]
,161
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On the global convergence of the complex HZ method 5

where162

(3.4) βij = arg(bij).163

The diagonal elements of B̂1 are no longer equal to 1, so the transformation with D̂164

is used to make them 1 again. We have165

(3.5) B̂1 =

[
1− |bij | 0

0 1 + |bij |

]
, D̂ =

[
1/
√

1− |bij | 0

0 1/
√

1 + |bij |

]
.166

Now, we have obtained B̂2 = I2. Since R̂2 and Φ̂ are unitary, we have B̂′ = B̂3 = I2.167

To determine R̂2 and Φ̂, we have to compute Â2. One easily obtains168

(3.6) Â2 =

 1
1−|bij |

(
aii+ajj

2 − uij
)

eıβij√
1−|bij |2

(
aii−ajj

2 + ıvij

)
e−ıβij√
1−|bij |2

(
aii−ajj

2 − ıvij
)

1
1+|bij |

(
aii+ajj

2 + uij

)
 ,169

where170

(3.7) uij + ıvij = e−ıβijaij , uij , vij ∈ R.171

The matrix R2 is chosen as complex Jacobi rotation which diagonalizes Â2. We write172

it in the form173

(3.8) R̂2 =

[
cos(θ + π

4 ) −eıαij sin(θ + π
4 )

e−ıαij sin(θ + π
4 ) cos(θ + π

4 )

]
.174

From the relation (3.6) we obtain175

tan(2(θ +
π

4
)) =

2√
1−|bij |2

∣∣∣aii−ajj2 + ıvij

∣∣∣
1

1−|bij |

(
aii+ajj

2 − uij
)
− 1

1+|bij |

(
aii+ajj

2 + uij

)176

=

√
1− |bij |2 | aii − ajj + 2ıvij |

(aii + ajj)|bij | − 2uij
, θ +

π

4
∈ [−π/4, π/4],177

αij = βij + arg

(
aii − ajj

2
+ ıvij

)
.(3.9)178

Note that179

eıαij sin(θ +
π

4
) = eı(αij+(1−σij)π2 )(σij sin(θ +

π

4
)), σij ∈ {−1, 1}.180

Hence adding (1 − σij)π2 to αij implies changing θ + π
4 to σij(θ + π

4 ) in the relation181

(3.8). For σij = −1 it means that tan(θ+ π
4 ) and tan(2(θ+ π

4 )) change the sign. The182

value of σij is determined from the requirement183

(3.10) − π

2
≤ αij − βij ≤

π

2
,184

which is used in the global convergence proof. From the relation (3.9) one concludes185

that186

(3.11) σij =

{
1, aii − ajj ≥ 0,
−1, aii − ajj < 0.

187
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6 V. Hari

Since tan(2θ + π/2) = −1/ tan(2θ), we obtain188

(3.12) tan(2θ) = σij
2uij − (aii + ajj)|bij |√

1− |bij |2
√

(aii − ajj)2 + 4v2ij

, −π
4
≤ θ ≤ π

4
189

and190

(3.13) αij = βij + arg

(
aii − ajj

2
+ ıvij

)
+ (1− σij)

π

2
.191

This choice of σij also ensures that this complex algorithm is a proper generalization192

of the real HZ algorithm from [9]. Indeed, if all matrices are real, we have uij = aij ,193

vij = 0 and σij
√

(aii − ajj)2 + 4v2ij = aii− ajj and the complex algorithm reduces to194

the real one.195

From Theorem 2.1 (together with the comment regarding the − sign in (1, 2)-196

element of F̂ ), and from the fact that bii = bjj = 1 = b′ii = b′jj , we conclude that the197

general form of F̂ that reduces B̂ to I2 reads198

(3.14) F̂ =
1√

1− |bij |2

[
cosφ −eıα sinφ

e−ıβ sinψ cosψ

] [
eıωi

eıωj

]
,199

where200

(3.15) cosφ ≥ 0, cosψ ≥ 0, sinφ ≥ 0, sinψ ≥ 0.201

Let Ĝ = R̂1D̂R̂2. Then Ĝ∗ÂĜ is diagonal and Ĝ∗B̂Ĝ = I2. So, Ĝ can be represented202

as F̂ from the relations (3.14)–(3.15). If we find that representation of Ĝ, we can203

set Φ̂ = diag(e−ıωi , e−ıωj ) and work with the transformation ĜΦ̂. In other words,204

Ẑ = ĜΦ̂ will be the matrix from the relation (3.1).205

From the relations (3.3), (3.5), (3.8), we have206

(3.16) Ĝ =
1

2

 1√
1−|bij |

eıβij√
1+|bij |

− e−ıβij√
1−|bij |

1√
1+|bij |

[ c− s −eıαij (c+ s)
e−ıαij (c+ s) c− s

]
,207

where c and s stand for cos θ and sin θ, respectively. Let Ĝ = (gij). After a simple208

calculation, one obtains209

gii =
1√

1− |bij |2
1

2

[√
1 + |bij |(c− s) + eı(βij−αij)

√
1− |bij |(c+ s)

]
,210

gij =
1√

1− |bij |2
1

2

[
−eıαij

√
1 + |bij |(c+ s) + eıβij

√
1− |bij |(c− s)

]
,211

gji =
1√

1− |bij |2
1

2

[
−e−ıβij

√
1 + |bij |(c− s) + e−ıαij

√
1− |bij |(c+ s)

]
,212

gjj =
1√

1− |bij |2
1

2

[
eı(αij−βij)

√
1 + |bij |(c+ s) +

√
1− |bij |(c− s)

]
.213

Let us equate Ĝ = F̂ , where F̂ is from the relation (3.14). Comparing the elements214

of F̂ with the elements gii, gij , gji, gjj of Ĝ and taking into account the conditions215
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On the global convergence of the complex HZ method 7

(3.15), we obtain216

(3.17)


2 cos2 φ = 1− |bij | sin(2θ) +

√
1− |bij |2 cos(2θ) cos(αij − βij),

2 sin2 φ = 1 + |bij | sin(2θ)−
√

1− |bij |2 cos(2θ) cos(αij − βij),
2 cos2 ψ = 1 + |bij | sin(2θ) +

√
1− |bij |2 cos(2θ) cos(αij − βij),

2 sin2 ψ = 1− |bij | sin(2θ)−
√

1− |bij |2 cos(2θ) cos(αij − βij).

217

Since we want positive cosφ and cosψ in Ẑ, it suffices to apply the square root to the218

appropriate equations in (3.17).219

It remains to determine eıωi , eıωj , eıα and e−ıβ . Obviously, ωi and ωj will be the220

arguments of gii and gjj . This implies221

(3.18)

{
eıωi = [

√
1 + |bij |(c− s) + eı(βij−αij)

√
1− |bij |(c+ s)]/(2 cosφ),

eıωj = [eı(αij−βij)
√

1 + |bij |(c+ s) +
√

1− |bij |(c− s)]/(2 cosψ).
222

Finally, eıα and e−ıβ will be obtained from the relations223

eıαeıωj = [eıαij
√

1 + |bij |(c+ s)− eıβij
√

1− |bij |(c− s)]/(2 sinφ),

e−ıβeıωi = [−e−ıβij
√

1 + |bij |(c− s) + e−ıαij
√

1− |bij |(c+ s)]/(2 sinψ).
224

These two relations together with (3.18) imply225

(3.19)

 eıα = eıβij

2 sinφ cosψ [sin(2θ) + |bij |+ ı
√

1–|bij |2 cos(2θ) sin(αij–βij)],

e−ıβ = e−ıβij

2 sinψ cosφ [sin(2θ)− |bij | − ı
√

1–|bij |2 cos(2θ) sin(αij–βij)].
226

To obtain the off-diagonal elements eıα sinφ and e−ıβ sinψ, it remains to remove sinφ227

and sinψ from the denominators on the right-hand sides of (3.19).228

Since B̂′ = I2 and a′ij = 0, it remains to find the expressions for a′ii and a′jj . After229

that it is easy to apply Ẑ (Ẑ∗) to the appropriate columns (rows) of A and B and230

thus complete the current iteration step on the pair (A,B). For the diagonal elements231

we obtain232

(3.20)

{
a′ii = [cos2 φaii + sin2 ψajj + 2 cosφ sinψ <(e−ıβaij)]/(1− |bij |2),

a′jj = [sin2 φaii + cos2 ψajj − 2 cosψ sinφ <(e−ıαaij)]/(1− |bij |2).
233

It remains to consider the case when tan(2θ) has the form 0/0. This happens if and234

only if235

aii = ajj , vij = 0, e−ıβijaij = uij = aii|bij | .236

These 4 conditions are equivalent to237

(3.21) aii = ajj , aij = aiibij .238

If the conditions in (3.21) hold then we have Â = aiiB̂ and we choose θ = 0, αij = βij .239

In that case we have240

(3.22) Ẑ =
1

τ

[
ρ −ξ
−ξ̄ ρ

]
, ξ =

bij
2ρ
, ρ =

√
1 + |bij |+

√
1− |bij |

2
, τ =

√
1− |bij |2241
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and that matrix Ẑ is a direct extension of the real one from one from [9, Section 2.3].242

In this case we have a′ii = aii and a′jj = ajj .243

Let us make a comment on accuracy issues. In a similar way as in [17, Section 3.2]244

one can show that setting B̂′ = I2 is numerically safe, i. e. in floating point arith-245

metic the diagonal elements of B̂′ are computed with tiny relative errors while b′ij is246

computed as zero. This does not have to be the case with a′ii, a
′
jj and a′ij . Numerical247

tests show that it is better to compute all those elements. Therefore we provide yet248

a formula for computing a′ij :249

a′ij = [cosφ cosψaij + (ajje
ıβ cosψ sinψ − aiieıα cosφ sinφ)(3.23)250

− āijeı(α+β) sinφ sinψ ]/(1− |bij |2).251

In the later stage of the process, |aij | will be small and |a′ij | tiny. So, cancelation takes252

place. Then sinφ and sinψ will be small, but aii and ajj can be large. So, we have253

used the parenthesis to contain maybe those large terms, whose sum will be canceled254

out with cosφ cosψaij . The last term will be tiny since all of its factors will be small.255

3.1. The complex HZ algorithm. Here, we organize the obtained formulas256

in the natural order to obtain the complex HZ algorithm, i. e. the algorithm of one257

step of the method. Input to the algorithm is the pair of pivot submatrices, i. e. the258

matrices Â, B̂,259

Â =

[
aii aij
āij ajj

]
, B̂ =

[
1 bij
b̄ij 1

]
,260

and output consists of the pivot submatrix Ẑ of the transformation matrix Z,261

Ẑ =
1

τ

[
cosφ −eıα sinφ

e−ıβ sinψ cosψ

]
=

[
c1 −s1
s2 c2

]
, τ =

√
1− |bij |2262

and of Â′.263

In the pseudocode below, <(ω), =(ω), and conj(ω) denote the real, imaginary, and264

complex conjugate of ω ∈ C. The names of variables in the pseudocode are linked265

with names in our mathematical analysis as follows: t2, cs2, sn2, csg, sng stand for266

tan(2θ), cos(2θ), sin(2θ), cos(αij–βij), sin(αij–βij), respectively.267

If bij = 0 and aij 6= 0 then in the above formulas arg(bij) is replaced by arg(aij).268

Hence Ẑ is reduced to the complex Jacobi rotation which diagonalizes Â.269

If in addition aij = 0, then u = v = sng = t2 = sn2 = 0, hence Z is the identity270

matrix.271

Finally, if the eigenvectors are wanted, one can set F (0) = D, where D is from272

the relation (1.1), and in each step k, k ≥ 0, update it: F (k+1) = F (k)Zk. In273

case of convergence, after stopping the process, the columns of F (k) will be good274

approximations of the eigenvectors of the initial pair (A,B).275

Below is a simple pseudocode of the algorithm. It can be “updated” by the276

formulas (3.20) and (3.23), although the simple one below works quite well.277
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Algorithm 3.1 The complex HZ algorithm

select the pivot pair (i, j)
if aij 6= 0 or bij 6= 0 then
b = abs(bij);
if b = 0 then
eb = aij/abs(aij); u = abs(aij); v = 0;

else
eb = bij/b; d = conj(bij)/b · aij ; u = <(d); v = =(d);

end if
e = aii − ajj ; σ = 1;
if e < 0 then
σ = −1

end if
τ =

√
(1− b) · (1 + b); csg = |e|/

√
e2 + 4v2; sng = σ · 2v/

√
e2 + 4v2;

if abs(2 · u− (aii + ajj) · b) = 0 then
sn2 = 0; cs2 = 1;

else if abs(e) + abs(v) = 0 then
sn2 = 1; cs2 = 0;

else
t2 = σ · (2 · u− (aii + ajj) · b)/

√
(e2 + 4v2) · (1− b) · (1 + b);

cs2 = 1/
√

1 + t22; sn2 = t2/
√

1 + t22;
end if
c1 =

√
(1 + (τ · cs2 · csg − b · sn2))/(2 · (1− b) · (1 + b));

c2 =
√

(1 + (τ · cs2 · csg + b · sn2))/(2 · (1− b) · (1 + b));
s1 = eb · (sn2 + b+ ı τ · cs2 · sng)/(2 · c2 · (1− b) · (1 + b));
s2 = conj(eb) · (sn2− b− ı τ · cs2 · sng)/(2 · c1 · (1− b) · (1 + b));
a′ii = c12 · aii + |s2|2 · ajj + 2 · c1 · <(s2 · aij);
a′jj = |s1|2 · aii + c22 · ajj − 2 · c2 · <(conj(s1) · aij);
a′ij = c1 · c2 · aij − s1 · conj(s2 · aij) + (c2 · ajj · conj(s2)− c1 · aii · s1);
a′ji = conj(a′ij); b

′
ij = 0; b′ji = 0;

for k = 1, . . . , n, k 6= i, j do
a′ki = c1 · aki + s2 · akj ; b′ki = c1 · bki + s2 · bkj ;
a′ik = conj(a′ki); b′ik = conj(b′ki);
a′kj = c2 · akj − s1 · aki; b′kj = c2 · bkj − s1 · bki;
a′jk = conj(a′kj); b′jk = conj(b′kj);

end for
end if

278

3.2. On the convergence and stopping criterion. To measure advancement279

of the method we use the quantity S(A,B) defined by280

S(A,B) =
[
‖A− diag(A)‖2F + ‖B − diag(B)‖2F

]1/2
,281

where generally, ‖X‖F =
√

trace(X∗X) is the Frobenius norm of X. In the following282

standard convergence definitions A, B are Hermitian and B is positive definite.283

The complex HZ method is convergent on the pair (A,B) if the sequence of284

generated pairs satisfies (A(k), B(k))→ (Λ, In) as k →∞. Here Λ is a diagonal matrix285
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of eigenvalues and In is the identity matrix. The method is globally convergent if it286

is convergent on every initial pair.287

The cyclic method is asymptotically quadratically convergent on the pair (A,B)288

if it is convergent on (A,B) and there is a positive integer r0 such that289

S(A(rN), B(rN)) ≤ cnS2(A((r−1)N), B((r−1)N)), r ≥ r0.290

Here cn is a constant which may depend on n. The method is quadratically convergent291

on some set of matrix pairs if it is quadratically convergent on every pair from that292

set.293

From [6] we know that such a set consists of the matrix pairs whose eigenvalues294

are simple.295

If both matrices A and B are positive definite, one can stop the iteration process296

if the current matrices satisfy the condition297

|ars| ≤ tol
√
arrass, |brs| ≤ tol, 1 ≤ r < s ≤ n.298

This condition is usually checked after completion of each cycle. If the method is high299

relative accurate on the considered matrix pair then this stopping criterion warrants300

high relative accuracy of the computed eigenvalues. This claim can be proved using301

the complex version of [2, Theorem 3.2] (see [11, Theorem 3.2]).302

If A is not positive definite, we simply rely upon S(A,B) and Theorem 4.3 for303

our stopping criterion.304

3.3. A few numerical examples. We have used MATLAB to observe behavior305

of S(A(k), B(k)) for all steps k until convergence, and to inspect accuracy of the306

computed eigenvalues. The following code was used to compute the initial matrix307

pair (A,B):308

n=128; A=hilb(n);A=A-triu(A);A=gallery(’minij’,n)+eye(n)+1i*(A-A’); A=A+A’;

B=rand(n)-1i*0.5*rand(n); D=diag(logspace(-4,4,n)); B=D*(B’*B)*D; B=B+B’;
309

Both matrices are of order 128 and they are positive definite. We have computed the310

condition numbers of the symmetrically scaled matrices311

AS = diag(A)−1/2Adiag(A)−1/2, BS = diag(B)−1/2B diag(B)−1/2.312

We have obtained: κ2(AS) ≈ 8.7 ·103, κ2(BS) ≈ 4.9 ·106. Note that AS and BS have313

unit diagonal.314

To gain an insight into the properties of the matrices A and B, we have displayed315

the following data in Figure 1: the quotient of the diagonal elements of A and B, and316

the eigenvalues of A, B and of the matrix pair (A,B).317

318

Since the intrinsic MATLAB function eig did not compute the eigenvalues of B and of319

(A,B) with sufficient accuracy, we made the script ABhermeig(A,B,dg) which used320

variable precision arithmetic (vpa) with dg decimal digits. In ABhermeig(A,B,dg)321

we have used vpa with 32 decimal digits to compute the eigenvalues and eigenvectors322

of A, B and (A,B). The double precision matrices A and B are first converted to323

symbolic type, then the output data are computed using vpa, and before exit they are324

converted to double precision. During computation in vpa, a test is made to ensure325

that the output data are accurately computed. In particular, the spectral norm of326

the residual ‖AF − BFΛ‖2/‖AF‖2 is computed in vpa, where F is the matrix of327
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Fig. 1. The graphs of the eigenvalues of A, B and (A,B)

eigenvectors and Λ is the diagonal matrix of eigenvalues. In all cases the values of328

that quantity were smaller than 3 · 10−27.329

Now, that we have at disposal accurate eigenvalues of the pair (A,B), we can330

compute the relative errors of the eigenvalues computed by other scripts. To this end331

we have made the script dsychz_qc(A,B,eivec) which computes the eigenvalues and332

eigenvectors using the row-cyclic complex HZ method.333

The same script has been used to check the quadratic convergence of the HZ334

method. The code lines follow the lines of the HZ algorithm as is presented above. The335

output to dsychz_qc are: the eigenvector matrix, the column-vector of eigenvalues,336

the total number of cycles and steps (steps), and matrix qc. The matrix qc has 5337

columns each of length steps. The kth row of qc is obtained from step k. The columns338

of qc contain the values of S(A
(k)
S ), S(A(k)), S(B(k)), S(A(k), B(k)), S(A

(k)
S , B(k)) in339

their kth component. It has been noticed that the value of S(B(k)) is much larger340

than the values of S(A
(k)
S ) and S(A(k)) in the later stage of the process, so the values341

of S(A(k), B(k)), S(A
(k)
S , B(k)) are very close to S(B(k)). Therefore, they are not342

depicted in Figure 2. Note that the values of S(A
(k)
S ) and S(B(k)) determine when to343

stop the process.344

o N 2N 3N 4N 5N 6N 7N 8N 9N 10N 11N 12N 13N 14N
steps

10-25

10-20

10-15

10-10

10-5

100

y

S(A
S

),  S(A),  S(B)  during the process

   S(AS
(k))

   S(A(k))

    S(B(k))

Fig. 2. The reduction of S(A
(k)
S ), S(A(k)) and S(B(k))

345
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We have labeled ticks on x-axis as multiples ofN steps, whereN = 128(127)/2 = 8128.346

Vertical grids are displayed in accordance with the ticks. We can observe the quadratic347

convergence behavior of all three functions in the later cycles. Once the quadratic348

convergence commences, a significant drop of values occurs after each cycle. The delay349

of the quadratic convergence of S(A(k), B(k)) comes from the fact that S(A(k)) and350

S(B(k)) have their own rates of decrease, and when they become aligned S(A(k), B(k))351

strongly decreases. We speculate that slower convergence of S(B(k)) is a consequence352

of fact that κ2(AS)� κ2(BS).353

0 20 40 60 80 100 120
i

10-15

10-10

10-5

100

105

1010

y

  i(A,B)

i
(A,B)    eig(A,B,'chol')

i
(A,B)  complex HZ

Fig. 3. The relative errors of the eigenvalues computed by eig and by the HZ algorithm

354

Figure 3 draws the relative errors of the eigenvalues computed by the HZ algorithm355

and (for comparison reasons) by the MATLAB eig(A,B,’chol’) function. In the356

same figure we have added the graph of the eigenvalues of (A,B) to see if there357

is some correlation between magnitudes of the eigenvalues and the corresponding358

relative errors. We see that eig(A,B,’chol’) computed the eigenvalues of the pair359

(A,B) with large relative errors. The HZ method computed them with high relative360

accuracy. This is in accordance with the behavior of the real HZ method [9, 17].361

Then we have switched A and B in the matrix pair (A,B). The relative errors of362

the eigenvalues computed by the HZ method are even smaller, which reflects the fact363

that now BS has smaller condition number. But in the same time, the relative errors364

of the eigenvalues computed by eig(A,B,’chol’) become equally tiny. This seems365

to be a consequence of the fact that now the diagonal elements of A(0) (computed as366

diag(A)./diag(B)) are increasingly ordered along the diagonal of A. This interesting367

phenomenon of the QR algorithm was noticed and communicated to the author by368

Professor Marc Van Barel of Leuven University.369

We have made several other numerical experiments and they all indicate that the370

complex HZ method appears to have high relative accuracy on well-behaved pairs of371

positive definite matrices. It has been noticed that number of cycles needed to reach372

the stopping criterion decreases when the algorithm is so modified that it tries to373

order the diagonal elements in the nonincreasing order (cf. [5, 1]).374

We end this section with an example which shows behavior of the method when375
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the matrix A is indefinite and the initial pair (A,B) has both multiple eigenvalues and376

clusters of eigenvalues. We shall not delve into the construction of the initial pair since377

it is described in [5], where the quadratic asymptotic convergence of the HZ method378

has been considered. We display the graphs of the functions S(A
(k)
S ), S(A(k)), S(B(k))379

and S(A(k), B(k)) under the row-cyclic strategy and under the deRijk [1] strategy.380

We shall display the most important data linked with (A,B). We have n = 128,381

κ2(AS) ≈ 5.1 · 1011, κ2(BS) ≈ 9.97 · 103, the diagonal elements of A(0) are scattered382

in the interval [−538.35,−365.33]. The pair (A,B) has 10 eigenvalues of multiplicity383

10, one cluster of 20 simple eigenvalues around 0 and 8 additional simple eigenvalues.384

The approximate values of the multiple (simple) eigenvalues are: −732.28, −574.80,385

−417.32, −259, 84, −102.36, 370.08, 527.56, 685.04, 842.58, 1000 (−1000.0, −984.25,386

−968.50, −952.76, −937.01, −921.26, −905.51, −8.8976). The cluster is made of387

the eigenvalues whose approximations are: −4.7 · 10−1, −7.96 · 10−2, −4.2 · 10−3,388

−4.2 ·10−4, −9.7 ·10−5, −3.3 ·10−5, −1.1 ·10−6, −4.9 ·10−7, −1.97 ·10−8, −8.4 ·10−9,389

2.6 · 10−8, 1.2 · 10−7, 8.3 · 10−7, 2.6 · 10−5, 3.4 · 10−4, 2.5 · 10−3, 1.5 · 10−2, 8.4 · 10−2,390

3.3 · 10−1, 7.5. The relative accuracy of the computed eigenvalues has been computed391

and it is around 10−14, with the exception of the eigenvalues which form the cluster.392

Their relative accuracy varies from 10−13 to 6.5·10−6, the smaller the magnitude of an393

eigenvalue the lower the relative accuracy. The same can be said for the eigenvalues394

computed by eig(A,B,’chol’). In Figure 4 and Figure 5 are displayed the graphs395

of the functions. We can see failure of the asymptotic quadratic convergence.396

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
cycle
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10-15

10-10
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100

y

   S(A,B)
   S(A)
   S(B)
   S(A

S
)

Fig. 4. The reduction of S(A
(k)
S ), S(A(k)), S(B(k)), S(A(k), B(k)) under the row-cyclic strategy

397
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cycle
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Fig. 5. The reduction of S(A
(k)
S ), S(A(k)), S(B(k)), S(A(k), B(k)) under the deRijk strategy
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398

4. The Global Convergence. Here we prove the global convergence of the399

complex HZ method under the large class of generalized serial strategies. This class400

of cyclic strategies was introduced in [13] and it includes serial, wavefront, weak-401

wavefront, inverse of weak-wavefront strategies and those cyclic strategies that are402

permutational equivalent to all of them. Hence they also include the modulus strategy403

[15, 19] and some other cyclic strategies that are used for parallel processing.404

The convergence proof is similar to that of the complex CJ method [14, 10],405

although it is more complicated. It is based on the following general theorem from406

[14].407

Theorem 4.1. Let H 6= 0 be a Hermitian matrix and let (H(k), k ≥ 0) be the408

sequence generated by applying a Jacobi-type process to H,409

H(k+1) = F ∗kH
(k)Fk, H(0) = H, k ≥ 0.410

Here each Fk is an elementary plane matrix which acts in the (i(k), j(k)) plane,411

1 ≤ i(k) < j(k) ≤ n. Suppose the following assumptions are satisfied:412

(A1) the pivot strategy is generalized serial413

(A2) there is a sequence (Uk, k ≥ 0) of unitary elementary plane matrices such414

that lim
k→∞

(Fk − Uk) = 0415

(A3) the diagonal elements of Fk satisfy the condition lim inf
k→∞

|f (k)i(k)i(k)| > 0416

(A4) the sequence (H(k), k ≥ 0) is bounded.417

418

Then the following two conditions are equivalent419

(i) lim
k→∞

|h(k+1)
i(k)j(k)| = 0420

(ii) lim
k→∞

S(H(k)) = 0.421

We shall apply Theorem 4.1 to the sequences (A(k), k ≥ 0) and (B(k), k ≥ 0) obtained422

by the HZ method. To this end we shall prove some preparatory results. First, we423

want to prove that all matrices A(k), B(k), generated by the method are bounded.424

That accounts for the assumption A4 of Theorem 4.1. Then we want to prove that425

b
(k)
i(k)j(k) tends to zero as k increases. Once we prove it, the other assumptions of426

Theorem 4.1 will be easy to show.427

In the following lemma we use the spectral radius of the matrix pair (A,B),428

µ = max
λ∈σ(A,B)

|λ|,429

where σ(A,B) denotes the spectrum of (A,B).430

Lemma 4.2. Let A and B be Hermitian matrices of order n such that B is positive431

definite. Let the sequences of matrices (A(k), k ≥ 0), (B(k), k ≥ 0) be generated by432

applying the complex HZ method to the pair (A,B) under an arbitrary pivot strategy.433

Then the assertions (i)–(iv) hold.434

(i) The matrices generated by the method are bounded and we have435

(4.1) ‖B(k)‖2 < n, ‖A(k)‖2 ≤ µ‖B(k)‖2 < nµ436

(ii) For the pivot element b
(k)
i(k)j(k) of B(k) we have lim

k→∞
b
(k)
i(k)j(k) = 0437
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(iii) For the transformation matrices Zk, we have438

lim
k→∞

(Zk − Uk)→ 0,439

where Uk are unitary plane matrices440

(iv) For the diagonal elements of Ûk, we have441

|u(k)i(k)i(k)| = |u
(k)
j(k)j(k)| ≥

√
2

2
, k ≥ 0.442

Proof. (i) The proof of the relation (4.1) is identical to the proof of [9, Lemma 4.1].443

One only has to replace the adjective “symmetric” by “Hermitian”.444

(ii) The proof follows the lines in the proof of [9, Proposition 4.1]. Let B(k) = (b
(k)
rs )445

and446

H(B(k)) =
det(B(k))

b
(k)
11 b

(k)
22 · · · b

(k)
nn

= det(B(k)), k ≥ 0.447

By the Hadamard’s inequality we have448

(4.2) 0 < H(B(k)) ≤ 1, k ≥ 0.449

By the relations (2.1) and (3.2) we have450

H(B(k+1)) = |det(Zk)|2 det(B(k)) =
1

1− |b(k)i(k)j(k)|2
H(B(k)), k ≥ 0.451

Hence452

(4.3) H(B(k)) =
(

1− |b(k)i(k)j(k)|
2
)
H(B(k+1)), k ≥ 0.453

From the relations (4.3) and (4.2) we see that H(B(k)) is a nondecreasing sequence454

of positive real numbers, bounded above by 1. Hence it is convergent with limit455

ζ, 0 < ζ ≤ 1. By taking the limit on the both sides of the equation (4.3), after456

cancelation with ζ, we obtain457

1 = lim
k→∞

(
1− |b(k)i(k)j(k)|

2
)

= 1− lim
k→∞

|b(k)i(k)j(k)|
2 ,458

which proves (ii).459

(iii) Recall that each Zk is product Zk = R
(k)
1 DkR

(k)
2 Φ(k) where R

(k)
1 and R

(k)
2 are460

complex rotations from the relation (3.2) related to step k. Let Uk = R
(k)
1 R

(k)
2 Φ(k).461

Since Φ(k) is unitary, we have462

‖Zk − Uk‖2 = ‖R(k)
1 (Dk − In)R

(k)
2 Φ(k)‖2 = ‖Dk − In‖2463

= ‖diag

(
1/

√
1− |b(k)ij | − 1 , 1/

√
1 + |b(k)ij | − 1

)
‖2464

= |b(k)ij |/(1− |b
(k)
ij |+

√
1− |b(k)ij |).465

Hence ‖Zk − Uk‖2 → 0 as k →∞. Here we have used the assertion (ii).466
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(iv) Note that the diagonal elements of |Ûk| are equal since Ûk is unitary of order 2.467

Nevertheless, we shall find expressions for both |u(k)i(k)i(k)| and |u(k)j(k)j(k)|. Since Φ̂(k) is468

diagonal and unitary we have469

|Ûk| = |R̂(k)
1 R̂

(k)
2 Φ̂(k)| = |R̂(k)

1 R̂
(k)
2 |, k ≥ 0.470

From the relations (3.3), (3.4) and (3.8) one easily obtains expressions for the diagonal471

elements of |R̂(k)
1 R̂

(k)
2 |. They are also the diagonal elements of |Ûk|. We have472

4|u(k)i(k)i(k)|
2 = |ck − sk + eıγk (ck + sk)|2 = 2 + 2 cos(2θk) cos γk,473

4|u(k)j(k)j(k)|
2 = |ck − sk + e−ıγk(ck + sk)|2 = 2 + 2 cos(2θk) cos γk,474

where ck = cos θk, sk = sin θk, γk = β
(k)
i(k)j(k) − α

(k)
i(k)j(k). This proves the assertion475

(iv). Indeed, our choice of σij in (3.11) ensures −π/2 ≤ γk ≤ π/2 and we also have476

−π/4 ≤ θk ≤ π/4.477

In the convergence proof we shall need to estimate how close are the diagonal478

elements of A(k) to the corresponding eigenvalues of the pair (A(k), B(k)). To this end479

let the eigenvalues of the initial pair (A,B) be nonincreasingly ordered:480

(4.4) λ1 = · · · = λs1 > λs1+1 = · · · = λs2 > · · · > λsp−1+1 = · · · = λsp .481

The case p = 1 implies A = λ1B. Then every nonzero vector is an eigenvector482

belonging to the only eigenvalue λ1. So, let p > 1.483

If we set s0 = 0 we conclude from the relation (4.4) that nr = sr − sr−1 is the484

multiplicity of λsr . Let λs0 = λ0 =∞, λsp+1
= −∞ and485

3δt = min{λst−1
− λst , λst − λst+1

}, 1 ≤ t ≤ p.486

We see that 3δt is the absolute gap in the spectrum of (A,B) associated with λst . Let487

(4.5) δ = min
1≤t≤p

δt, δ0 =
δ

1 + µ2
,488

where µ is the spectral radius of (A,B). Obviously, 3δ is the minimum absolute gap489

and for δ0 we have490

(4.6) δ0 =
δ

1 + µ2
≤ δ

2µ
≤ 1

3
.491

Indeed, if p > 1 then the worst possible bound for δ/(2µ) is obtained when p = 2 and492

µ = λ1 = −λp. Then 3δ = 2µ. Note also that493

(4.7) |arr| =
|eTr Aer|
eTr Ber

≤ max
‖x‖2=1

|x∗Ax|
x∗Bx

= µ , 1 ≤ r ≤ n.494

In the convergence theorem we shall need the following result from [8, Corollary 3.3]495

or from [9, Lemma 4.3] .496

Lemma 4.3. Let A, B be Hermitian matrices of order n such that B is positive497

definite with unit diagonal. Let the eigenvalues of (A,B) be ordered as in the relation498

(4.4) and let δ, δ0 be as in the relation (4.5). If499 √
1 + µ2S(A,B) < δ,500
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then there is a permutation matrix P such that for the matrix Ã = PTAP = (ãrt) we501

have502

(4.8) 2

n∑
l=1

|ãll − λl|2 ≤
S4(A,B)

δ20
.503

In Lemma 4.3, the condition
√

1 + µ2S(A,B) < δ can be replaced by the simpler and504

stricter one, S(A,B) < δ0. Similar estimates that include relative distances between505

ãll and λl can be found in [12].506

Theorem 4.4. The complex HZ method is globally convergent under the class of507

generalized serial pivot strategies.508

Proof. Let us apply Theorem 4.1 to (B(k), k ≥ 0) and (A(k), k ≥ 0). In both509

cases the assumptions (A1), (A2), (A4) and the condition (i) hold. Indeed, (A1)510

is just selection of the pivot strategy while (A2) and (A4) are the assertions (iii)511

and (i) of Lemma 4.2, respectively. The condition (i) holds because the HZ method512

diagonalizes the pivot submatrices, that is a
(k+1)
i(k)j(k) = 0 and b

(k+1)
i(k)j(k) = 0 holds for all513

k ≥ 0.514

It remains to prove the assumption (A3), that is lim inf
k→∞

|z(k)i(k)i(k)| > 0. By the515

assertion (iv) of Lemma 4.2, we have516

|z(k)i(k)i(k)| ≥ |u
(k)
i(k)i(k)| − |z

(k)
i(k)i(k) − u

(k)
i(k)i(k)| ≥

√
2

2
− ‖Zk − Uk‖2517

and by the assertion (iii) of the same lemma, ‖Zk − Uk‖2 → 0 as k →∞. Hence518

lim inf
k→∞

|z(k)i(k)i(k)| ≥
√

2/2.519

From Theorem 4.1 we conclude that S(A(k))→ 0 and S(B(k))→ 0 as k →∞. Since520

each B(k) has unit diagonal, it is shown that B(k) → In as k →∞.521

If σ(A,B) is singleton, i.e. if p = 1 holds in the relation (4.4), the proof is522

completed. Namely, if A = λ1B, we shall have A(k) = λ1B
(k), k ≥ 0. In that case523

the HZ algorithm chooses θk = 0, k ≥ 0, and Ẑk is computed by the relation (3.22).524

Since B(k) → In, we shall have A(k) → λ1In as k →∞.525

It remains to prove that the diagonal elements of A(k) converge in the case p > 1.526

This comes down to showing that for large enough k the diagonal elements of A(k)527

cannot change their eigenvalue affiliations.528

Suppose k0 is so large that we have529

(4.9) S(A(k), B(k)) < δ20 , k ≥ k0.530

Let us consider step k of the process when k ≥ k0. Set A = (art) = A(k), A′ = (a′rt) =531

A(k+1), B = (brt) = B(k), B′ = (b′rt) = B(k+1). From the relation (4.6) we see that532

the assumption (4.9) implies533

(4.10) S(A,B) < δ20 ≤
1

3
δ0534

and therefore we have535

(4.11) |bij | <
√

2

6
δ0 ≤

√
2

18
, τij =

√
1− |bij |2 >

√
322

18
.536
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Using (4.10), the upper bound appearing in (4.8) can be further bounded as follows:537

S4(A,B)

δ20
<
δ20
81
.538

Hence, from Lemma 4.3 we can conclude that all diagonal elements of A are contained539

in the union of disks540

Dt =

{
x : |x− λt| ≤

√
2

18
δ0

}
, 1 ≤ t ≤ n.541

Since (
√

2/18)δ0 < 0.0786δ0 < 0.0786δ, these disks are disjoint. Hence, Lemma 4.3542

implies that each disk Dt contains exactly nt diagonal elements of A.543

The same conclusion holds for the diagonal elements of A′. The proof will be544

completed if we show that no diagonal element of A can jump from one disk to545

another.546

Suppose aii is affiliated with λr and ajj with λt. Then by Lemma 4.3 and the547

relation (4.10) we have548

|aii − λr|2 + |ajj − λt|2 ≤
S4(A,B)

2δ20
≤ 1

18
S2(A,B) <

1

162
δ20 ,(4.12)549

max{|aii − λr| , |ajj − λt|} ≤
√

2

6
S(A,B) <

√
2

18
δ0 <

√
2

18
δ.(4.13)550

We consider two cases: (a) λr 6= λt and (b) λr = λt.551

(a) Using the relations (4.5), (4.12) and the Cauchy-Schwarz inequality, we have552

(4.14) |aii − ajj | ≥ |λr − λt| − |aii − λr| − |ajj − λt| > 3δ −
√

2
1√
2 · 9

δ0 =
26

9
δ.553

Let us bound |a′ii − aii|. To this end we denote γij = αij − βij . From the relations554

(3.20) and (4.7) we obtain555

τ2ij |a′ii − aii| = |(|bij |2 − sin2 φ)aii + sin2 ψajj + 2 cosφ sinψuij |(4.15)556

≤ µ(sin2 φ+ sin2 ψ) + 2 cosφ sinψ |aij |+ µ |bij |2.557

From the relations (3.10) and (3.12) we have cos γij ≥ 0 and cos(2θ) ≥ 0, respectively.558

Hence, from the relation (3.17), we have559

sin2 φ+ sin2 ψ = 1− τij cos(2θ) cos γij ≤ 1− (1− |bij |2)(1− sin2(2θ))(1− sin2 γij)560

= sin2(2θ) + sin2 γij − sin2(2θ) sin2 γij + |bij |2 cos2(2θ) cos2 γij561

≤ tan2(2θ) + tan2 γij + |bij |2,562

4 cos2 φ sin2 ψ = (1− |bij | sin(2θ))2 − (1− |bij |2)(1− sin2(2θ))(1− sin2 γij)563

≤ |bij |2 + sin2(2θ) + sin2 γij + 2|bij || sin(2θ)|564

≤ 2 (tan2(2θ) + tan2 γij + |bij |2).565

We have thus obtained566

sin2 φ+ sin2 ψ + |bij |2 ≤ tan2(2θ) + tan2 γij + 2 |bij |2(4.16)567

2 cosφ sinψ ≤
√

2
√

tan2(2θ) + tan2 γij + |bij |2.(4.17)568

This manuscript is for review purposes only.



On the global convergence of the complex HZ method 19

Using relations (3.12), (4.11), (4.14) and (4.10), one obtains569

tan2(2θ) ≤ (2|aij |+ 2µ|bij |)2

τ2ij(aii − ajj)2
≤ 2(1 + µ2)S2(A,B)

(322/182) · (26/9)2 δ2
(4.18)570

≤ 2 · 182 · 92

322 · 262
S(A,B)

1 + µ2
≤ 0.2412

S(A,B)

1 + µ2
.571

Using (3.9), (4.14), (4.6) and (4.10), we have572

tan2 γij + 2|bij |2 ≤
4|aij |2

(aii − ajj)2
+ S2(B) ≤ 2S2(A)

(26/9)2 δ2
+ (

2µ

3δ
)2S2(B)(4.19)573

≤ 4

9

(1 + µ2)S2(A,B)

δ2
≤ 4

9

S(A,B)

1 + µ2
.574

Combining relations (4.16), (4.18), (4.19) and (4.10), we have575

µ(sin2 φ+ sin2 ψ + |bij |2) ≤ µ(0.2412 +
4

9
)
S(A,B)

1 + µ2
≤ 0.686

µ

1 + µ2
S(A,B)(4.20)576

≤ 0.343S(A,B) < 0.1144 δ0.577

In a similar way, from the relations (4.17) and (4.20), we obtain578

(4.21) 2 cosφ sinψ |aij | ≤
√

2
√

0.343S(A,B) < 0.8283 δ0.579

Combining relation (4.15) with (4.20), (4.21) (4.11), we have580

(4.22) |a′ii − aii| =
1

1− |bij |2
(0.1144 + 0.8283) δ0 < 0.9486 δ0 < 0.9486 δ.581

Finally, from the relations (4.22) and (4.13) we obtain582

|a′ii − λr| ≤ |a′ii − aii|+ |aii − λr| < (0.9486 +

√
2

18
) δ < 1.03 δ .583

We conclude that aii cannot move from Dr to any other disk. So, a′ii must remain in584

Dr.585

Quite similar estimates can be made for |a′jj − λt|. But that is not needed. We586

know that except for aii and ajj no other diagonal element of A is affected by the587

transformation. Since a′ii remained in Dr, jump of ajj to any other disk but Dt would588

violate the rule on the number of the diagonal elements in the disks.589

(b) In this case aii and ajj both lie in Dr. After the transformation they both have to590

remain in Dr, because otherwise Dr and some other disk(s) would violate the rule on591

the number of the diagonal elements in the disks. Thus, we must have a′ii, a
′
jj ∈ Dr,592

which completes the proof of the theorem.593

5. Conclusions and Future Work. The complex HZ method has proved to594

be a reliable diagonalization method for PGEP. In this paper we have derived its595

algorithm and have proved the global convergence under the class of generalized serial596

strategies. The numerical tests indicate that it might be high relative accurate on the597

set of well-behaved pairs of positive definite matrices.598

Future work can be concentrated on proving the asymptotic quadratic convergence599

of the method and on proving the high relative accuracy of the method for certain600
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20 V. Hari

classes of matrix pairs. The first problem has already been solved [6, 5] for the case601

of simple and double eigenvalues, but in the case of multiple eigenvalues the method602

will need some kind of modification.603

Concerning the numerical code, there are many details that can be improved (cf.604

[20]). In particular, how to reduce the total number of cycles (compare Fig. 4 and605

Fig. 5), what are the best formulas for updating the diagonal elements of A, what606

are the most efficient pivot strategies, what is the best stopping criterion, how to607

implement one-sided version of the method, etc.608

Acknowledgments. The author is thankful to the editor J. Barlow and to the609
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