ON THE GLOBAL CONVERGENCE OF THE COMPLEX HZ
METHOD*

VJERAN HARIf

Abstract. The paper considers a Jacobi method for solving the generalized eigenvalue problem
Axz = ABz, where A and B are complex Hermitian matrices and B is positive definite. The method
is a proper generalization of the standard Jacobi method for the Hermitian matrix A to the matrix
pair (A, B). The paper derives the method and proves its global convergence under the large class
of generalized serial pivot strategies. If both matrices are positive definite, it can be implemented as
a one-sided method. It then solves the initial problem as the generalized singular value problem. Its
main application is to serve as a kernel algorithm in a block Jacobi method for the same problem
with large matrices A and B. The block Jacobi methods are methods of choice on contemporary
CPU and GPU computing architectures. The proposed algorithm is very efficient on pairs of almost
diagonal matrices, and diagonalization of such matrices is the main task of the kernel algorithm. The
numerical tests indicate the high relative accuracy of the method on certain pairs of positive definite
matrices.
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1. INTRODUCTION. We consider the positive definite generalized eigen-
value problem (PGEP)
Axr=ABx, z#0

with full Hermitian matrices A, B of order n, such that B is positive definite.

On contemporary parallel CPU and GPU computing machines block Jacobi meth-
ods have proved to be the methods of choice for solving that problem [18, 20]. In the
core of those block methods lies the kernel algorithm whose task is to diagonalize the
block pivot submatrices fl, B at each step. The matrices fl, B are of smaller size,
typically of order 32-256, they are Hermitian and if B (or A) is positive definite then
B (A) is also such. The main task for a kernel algorithm is to solve PGEP with
matrices 1217 B accurately and efficiently. During the computation the block pivot
submatrices will be most of the time nearly diagonal. So, the kernel algorithm has to
perform its task quickly and accurately on such matrices. These two requirements are
well met by the element-wise Jacobi methods for the PGEP. This raises the question
of what is really known about complex Jacobi methods for the PGEP?

To this date, we know of three Jacobi methods for PGEP. These are the complex
Falk-Langemeyer method [11], the complex Cholesky-Jacobi method [10, 14] and the
complex HZ method [6]. All three methods simultaneously diagonalize the pivot
submatrices at each step. Let us briefly highlight the main characteristics of these
methods.

The first one is the proper generalization of the real Falk-Langemeyer (FL) method
[3, 21, 16] to complex matrices. The method is characterized by the requirement that
the transformation matrix has unit diagonal. That ensures simpler transformation
formulas and application of BLAS1 caxpy and zaxpy computational routines. Addi-
tional accuracy can be obtained if the floating-point fused multiply and add operation
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2 V. Hari

is used, computing a3 + v with a single round. The shortcoming of the FL. method
lies in the fact that the norms of iteration matrices A®) and B®*) can increase. So,
periodically, one has to check those norms and apply some appropriate congruence
transformation to “normalize” them. This slows down the computation, especially
on distributed memory parallel machines. Namely, each check for renormalization
costs. There is no simple rule when to apply that procedure because timing depends
on the characteristics of the matrices. Also, the global and quadratic convergence of
the complex method have not been proved. Numerical tests indicate the high relative
accuracy of the method on “well-behaved” pairs of positive definite matrices. These
are the pairs (A, B) for which the spectral condition numbers of ky(DgAD4) and
ko(DpBDpg) are small for some diagonal matrices D4 and Dp.

The complex Cholesky-Jacobi (CJ) method was introduced in [10] and its global
convergence has been proved in [14]. It is a proper generalization of the real CJ
method from [9]. Numerical tests imply the great potential of that method, in the
first place for its presumably high relative accuracy on well-behaved pairs of positive
definite matrices. It is a pretty new method, so it was less researched.

The third method is one we deal with in this paper. It is a direct generalization
of the real one from [9]. Actually, the complex and real methods were derived and
analyzed already in [6]. The real method was later used by Novakovié et all [18] and
was named “Hari-Zimmermann variant of the Falk-Langemeyer method”. Later, in
[9] we called it simply the HZ method. In [6] the complex HZ method was derived
and its asymptotic quadratic convergence was proved under the general cyclic and the
serial pivot strategies. In the sequel HZ (FL, CJ) method will mean the complex HZ
(FL, CJ) method.

Like the FL method, the HZ method diagonalizes the pivot submatrices at each
step. However, instead of simplifying the transformation matrix it simplifies the
iteration matrices B*) by requiring that they have unit diagonal. So, a preliminary
step for the HZ method is needed to reduce the diagonal elements of B to ones. This
is accomplished by the diagonal congruence transformation

(1.1) A A® = DAD, B B =DBD, D = diag(B)%.

Then (A(O), B(O)) is taken as the initial pair for the HZ method. The method preserves
the unit diagonal of B%*) for k > 0 which stabilizes the iterative process. Namely,
each B is already almost optimally symmetrically scaled that can be made by a
diagonal matrix [22], i.e. k2(B®)) ~ minp, xe(DpB™ Dp). This also means that
the HZ method has no problem with renormalizations. It is a proper generalization
of the standard Jacobi method for Hermitian matrices. The principal shortcoming
of HZ is that its transformations are slightly more expensive. Compared to the FL
method this is no drawback and numerical tests of the real and complex methods on
large matrices, using parallel machines [18, 20], have confirmed the advantage of the
HZ approach. Here we derive the HZ method and prove its global convergence.

The paper is divided into 5 sections. In Section 2, we briefly describe the method.
In Section 3 we derive the HZ algorithm, which determines one step of the method.
Here we also define the global and quadratic convergence and provide a numerical
example that sheds some light on accuracy and quadratic convergence of the method.
In Section 4, we prove the global convergence of the method under the large class of
generalized serial strategies from [13]. In Section 5, we point out some open problems
and anticipate future work.

This manuscript is for review purposes only.
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On the global convergence of the complex HZ method 3

2. Description of the Method. Let A and B be complex Hermitian matrices
of order n and let B be positive definite. The HZ method is the iterative process of
the form

(2.1) ARHD — e AR 7, B — gz, k>0,

where A(®) and B(®) are defined by relation (1.1). In (2.1) each transformation matrix
Zy. is elementary plane matriz. It is a nonsingular matrix which differs from the
identity matrix I,, in one principal submatrix Zy,

: B0
22) zk:zk<[z'jwj1>=[z@ t ] k>0,

where we used MATLAB notation. The subscripts i = i(k), j = j(k) are called pivot
indices, (i,7) is pivot pair and Zy, is pivot submatriz of Z. If Z), is as in (2.2), we
shall briefly denote it by Z; = (zz(f)) The transition (A%, B®)) s (Ak+1) Ble+1))
is called the kth step of the method. The way of selecting pivot pairs is a pivot
strategy. The most common (pivot) strategies are the column- and row-cyclic ones.

In the column-cyclic strategy the pivot pair repeatedly runs through the sequence of
N =n(n —1)/2 pairs:

(1,2), (1,3), (2,3), (1,4), (2,4), (3,4), ..., (1,n), (2,n), ..., (n — 1,n),

while in the row-cyclic strategy it runs through the sequence: (1,2),(1,3), ...,
(1,n),(2,3),(2,4), ..., (2,n), (3,4), ...,(n — 1,n). The common name for any of
these two pivot strategies is serial strategy. For ¢t > 1, the transition

(AE=DN) BE=DN)) Ly (AEN) BEN)Y

is called the tth cycle or sweep of the method. In [13] the set of serial pivot strategies
has been enlarged to the set of generalized serial strategies. The global convergence
of general Jacobi processes under the generalized serial strategies were considered in
[13], and the obtained results were used in [9, 14].

The algorithm for computing the elements of 7, has been derived in [6]. Tt is
based on the following theorem, which is a generalization to complex matrices, of the
Gose’s result [4].

THEOREM 2.1 ([7]). Let B = (bij) and B’ = diag(b};, ;) be positive definite

i) Vg
Hermitian matrices of order two. Then there exist a nonsingular matriz a of order

two, such that B’ = [*BF. Each F satisfying that property has the form

1 .
P 1 bis cos ¢ e sin ¢ e \/E
n cos 7y \/% —e P sin cos Y Wi b;,j )
where w;, w; are real, ¢,¥,y € [0, g], and
b
siny = i, cosy = \cosgbcosw—l—el(a*m sin ¢ sin |

holds.

To simplify F , we can require that w; = w; = 0, i.e. that the diagonal elements of a
are real and nonnegative. Furthermore, by replacing «, 8 by a+m, B+, respectively,
we can move the — sign from —e =" sin1) to €' sin @.
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4 V. Hari

3. Derivation of the HZ algorithm. As has been described earlier, the initial
step (1.1) makes the diagonal elements of B (©) equal to one. The method is designed
to retain that property. We shall consider step k of the method. To simplify notation,
we omit the superscript k, denote the current matrices by A = (ars), B = (bys)
and those obtained after completing step k by A’ = (a.,), B’ = (b).,). The pivot
submatrices are denoted by A = (a;;), B = (b;;), where i, j are pivot indices. We
assume b; = 1 and b;; = 1. The transformation matrix is denoted by Z and its pivot
submatrix by Z.

We shall construct Z such that the following conditions hold

a;j = O, b;] = 07 b;z = 1, b;j = 1, Zig > O7 Zjj > O,

Since by; = bj; = 1, Theorem 2.1 shows that Z can be sought in the form

- 1 cos ¢ —e'sin ¢ m
(3.1) Z = W { e~ sin cos i ] KON URS [0, 5]

Let us recall the formulas linked to the complex Jacobi rotation which diagonalizes
the Hermitian matrix H = (h;;) of order 2. If we write ¢y, sy for cos(?d), sin(¥),
respectively, then from the equation

cy €' sy hii  hij cy —e*sg | | R O
—e sy Cy hij hjj e sy cy - 0 n. |’

one obtains

_ _2|hy
¢ = arg(hij), tan(29) = P
and
h;z =h + |h”‘ tan(ﬁ), h;j = hjj — |h”‘ tan(ﬁ).

In these formulas the angle ¥ need not be restricted to [—m /4, 7/4].
To derive Z, we follow the lines from [6]. The matrix Z sought for in the form

(3.2) Z = RiDR,®,

where Ry, Ry are complex rotations and D, & are diagonal matrices, ) being also
unitary. Let

Ay = RYAR;, By = RiBRy,

Ay = D*A, D, By, = D*ByD,

Az = Ry ARy, Bs = RiBy Ry,

A =3 A39, B' = $* B3,
and note that . o R o
A =7"AZ, B =7*BZ.

The complex rotation Ry has the role of Jacobi rotation which diagonalizes B. Since
the diagonal elements of B are equal to 1, the rotation angle can be chosen as +/4.
Choosing it to be —7/4, we obtain

cos(~7) —e'Pii sin(-T) } B \/5[ 1 etBis ] |

(3.3) Fa= e~ i sin(-7) cos(—75) T2 | e 1
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On the global convergence of the complex HZ method 5

where
(34) /Bij = arg(bij).
The diagonal elements of By are no longer equal to 1, so the transformation with D

is used to make them 1 again. We have

(3.5) Bl_{l_wm 0 ]7 ﬁ__[ﬂ 1T [by] 0 }

0 1+|bij| 0 1/\/1+|bij|

Now, we have obtamed Bg = I5. Since R2 and ® are unitary, we have B = Bg = I5.
To determine Rg and <I> we have to compute AQ One easily obtains

1 aiitaj; o, e'Pis Qii —0jj .
. T— 03] ( 2 Uij —5. 2 3 T Wiy
(3 6) Ay — J 1—1bij
’ 2 e "Pij (au—an‘ - zv»-) 1 (7%4-%]- + u) ’
N=TE 2 ij T+[bi;]| 2 ij
where
(3.7) Uij + 1055 = e B i, U5, ;5 € R.

The matrix R is chosen as complex Jacobi rotation which diagonalizes As. We write
it in the form

A cos(0 + %) —e' sin(0 + 7))
(3.8) R = [ e " sin(6 + 7)) cos(0 + %) ’

From the relation (3.6) we obtain

Qii—Qjj

7 T Wi

2

V/1=1by?
1 aiitag; o\ 1 Qiitaj; ..
17|bij|( 2 Ui T+(b,;] 7 T Uij

V1= 1bi* | aii — ajj + 2wij | m
= , 0+ — € [—m/4,7/4],
(@ii + aj;)[bij| — 2ui; 4

tan(2(0 + 7)) =

Qii — Ajj
(39) Oéij = 5”' + arg <2“ —+ ZU¢j> .
Note that

€' sin(0 + g) = e t(1=0i)3) (g, sin (0 + g)), oi; € {—1,1}.

Hence adding (1 — 04;)5 to a;; implies changing 6 4+ 7 to 0y;(6 4+ %) in the relation
(3.8). For 0;; = —1 it means that tan(f + %) and tan(2(6 4 §)) change the sign. The
value of 0;; is determined from the requirement

™
—*Saz] 51

(3.10) 5

3—2

which is used in the global convergence proof. From the relation (3.9) one concludes
that

_ 1, ai —aj; 20,
(311) Tij = { —]., Qi — Ajj < 0.

This manuscript is for review purposes only.
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6 V. Hari

Since tan(260 4+ 7/2) = —1/ tan(26), we obtain

2ug; — (@i + ag;)|bij
(3.12) tan(20) = oy g — (i + a)lbgl —% <0< g
1- |bij|2\/(a“- — aj;)? + 4},
and
Qi — Qjj4
(313) Oéij = 61‘]‘ =+ arg (2” + Z’Uij) —+ (1 — Uij)g.

This choice of 7;; also ensures that this complex algorithm is a proper generalization
of the real HZ algorithm from [9]. Indeed, if all matrices are real, we have u;; = a;;,

v; = 0 and oy \/(aii — ajj)2 + 4”12]' = a4 — a;; and the complex algorithm reduces to
the real one.

From Theorem 2.1 (together with the comment regarding the — sign in (1,2)-
element of F), and from the fact that b;; = bj; = 1 = b;; = b;;, we conclude that the
general form of F' that reduces B to I, reads

o pe 1 [ e emmslfen

/T — |bi;|2 —sinp cos

where
(3.15) cos¢p >0, costyp >0, sing >0, siny >0.

Let G = Ry DRs. Then G*AG is diagonal and G*BG = I,. So, G can be represented
as F' from the relations (3.14)~(3.15). If we find that representation of G, we can
set & = diag(e™™, e~s) and work with the transformation G®. In other words,
Z = G will be the matrix from the relation (3.1).

From the relations (3.3), (3.5), (3.8), we have

e*Pij

1
A 1 V/1=]bs;] V/1+][bi5] c—3$ —e'i(c+ s)
(3.16) G=3 e~ Pis 1 e~ (c+ s) c—s ’

_\/1*\171'1\ V/1+]bij]

where ¢ and s stand for cos@ and sin 6, respectively. Let G = (gij). After a simple
calculation, one obtains

o=y [V e 4 o) L)

9ij = —— ="\ [T+ [bij|(c + 5) + P [T — [big] (e — 8)} ;
1—1bi[*2

g5 = sy |~ T bl o)+ e [T gl )
1—1bi;[*2 L '

gjj = __ 1 e @i =B\ J1 4 |byj| (¢ + 8) + /1 — |bis](c — s)] :
1—1bi[*2

Let us equate G = F, where F is from the relation (3.14). Comparing the elements
of I with the elements g, gi5, gji, 9;; of G and taking into account the conditions

This manuscript is for review purposes only.
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On the global convergence of the complex HZ method 7
(3.15), we obtain

2cos’ ¢ = 1 — |by|sin(20) + /T — [bs;[% cos(20) cos(vij — Bij),
2sin’¢ = 1+ |b;;|sin
(3.17) \ 1|
2cos®Y = 1+ |b;;|sin
2sin®¢ = 1 — |b;;|sin(20) — /1 — [b;;[? cos(26) cos(vij — Bij)-
Since we want positive cos ¢ and cos ) in Z , it suffices to apply the square root to the
appropriate equations in (3.17).
It remains to determine e, e*7, e'® and e~*?. Obviously, w; and wj will be the
arguments of g;; and g;;. This implies

e = [T+ Tbil(e = s) + e @i T —Tbjl(c + 5)]/(2cos ),
(3.18) w, sy
ei = [eM®i=Bu) /T4 [bi[(c+s) + /1~ [bijl(c — s)]/(2cos ).

Finally, e*® and e~*? will be obtained from the relations

e = e\ /1+ [bj](c+ s) — ePii /T —|bij](c — s)]/(2sin¢),
e" e = [—e i\ /1 +|byjl(c— 5) + e "\ /T — [bij](c+ 8)]/(2sinh).

These two relations together with (3.18) imply

€ = ot [sin(20) + |big] + oy/T by 2 cos(26) sin(a; i),

(3.19)
e = e lsin(20) — |big] — 0y/T by, 2 cos(20) sin(a; ;).

To obtain the off-diagonal elements e*® sin ¢ and e~** sin ), it remains to remove sin ¢
and sin from the denominators on the right-hand sides of (3.19).
Since B" = I and aj; = 0, it remains to find the expressions for aj; and a};. After

that it is easy to apply Z (2*) to the appropriate columns (rows) of A and B and
thus complete the current iteration step on the pair (A, B). For the diagonal elements
we obtain

(3.20) al, = [cos? pa;; +sin®Paj; + 2cos psinyy R(e Pay;)]/(1 — |bij]?),
’ a;j = [sin2 daz; + cos? Ya;; —2cossing R(e "a;5)]/(1 — |bij\2).

It remains to consider the case when tan(26) has the form 0/0. This happens if and
only if
aii = ajj, vi; =0, e Mia;; = uij = ai|bi| .

These 4 conditions are equivalent to
(3.21) Qj5 = Qjj, Aj5 = aiibij.

If the conditions in (3.21) hold then we have A= aiiB and we choose 0 = 0, a;; = f3;;.
In that case we have

. 1] p =€ bij V14 b + /1= byl
22 sz = = — = — 1_ .2
s 2=7| f E =50 ! = 1=

This manuscript is for review purposes only.
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8 V. Hari

and that matrix Z is a direct extension of the real one from one from [9, Section 2.3].
In this case we have aj; = a;; and aj; = a;;.

Let us make a comment on accuracy issues. In a similar way as in [17, Section 3.2]
one can show that setting B =1 is numerically safe, i. e. in floating point arith-
metic the diagonal elements of B’ are computed with tiny relative errors while bi; is
computed as zero. This does not have to be the case with aj;, a}; and a;;. Numerical
tests show that it is better to compute all those elements. Therefore we provide yet
a formula for computing agj:

(3.23) aj; = [cos ¢ cospag; + (a;je'? costhsin — a;e' cos ¢ sin @)
— ;e sin psine /(1 — |by;|?).

In the later stage of the process, |a;;| will be small and |a§j| tiny. So, cancelation takes
place. Then sin¢ and sint will be small, but a; and a;; can be large. So, we have
used the parenthesis to contain maybe those large terms, whose sum will be canceled
out with cos ¢ cos1a;;. The last term will be tiny since all of its factors will be small.

3.1. The complex HZ algorithm. Here, we organize the obtained formulas
in the natural order to obtain the complex HZ algorithm, i. e. the algorithm of one
step of the method. Input to the algorithm is the pair of pivot submatrices, i. e. the
matrices fl, B,

and output consists of the pivot submatrix Z of the transformation matrix Z,

, 1 cos ¢ —esing | | ¢l —sl ] 5
Z_T{e’ﬁsinw cos ]_{32 c2 ]’ T=/1- byl

and of A’

In the pseudocode below, R(w), S(w), and conj(w) denote the real, imaginary, and
complex conjugate of w € C. The names of variables in the pseudocode are linked
with names in our mathematical analysis as follows: t2, ¢s2, sn2, csg, sng stand for
tan(20), cos(26), sin(26), cos(a;;—Bij), sin(a;—PFi;), respectively.

If b;; = 0 and a;; # 0 then in the above formulas arg(b;;) is replaced by arg(a;;).
Hence Z is reduced to the complex Jacobi rotation which diagonalizes A.

If in addition a;; = 0, then ©w = v = sng = t2 = sn2 = 0, hence Z is the identity
matrix.

Finally, if the eigenvectors are wanted, one can set F(®) = D, where D is from
the relation (1.1), and in each step k, & > 0, update it: F*+1) = Fp® 7z, In
case of convergence, after stopping the process, the columns of F*) will be good
approximations of the eigenvectors of the initial pair (A, B).

Below is a simple pseudocode of the algorithm. It can be “updated” by the
formulas (3.20) and (3.23), although the simple one below works quite well.

This manuscript is for review purposes only.
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On the global convergence of the complex HZ method 9

Algorithm 3.1 The complex HZ algorithm

select the pivot pair (i, 7)
if a;; # 0 or b;; # 0 then

b= abs(bij);
if b =0 then
eb = a;;/abs(ai;); v = abs(a;;); v =0;
else
eb=b;;/b; d = conj(bi;)/b- aij; u=R(d); v =3(d);
end if

6:(17;1'—0,]']‘;0':1;
if e <0 then
o=-1
end if
T=4/(1=0) - (1+0b); csg = le|/Ve? + 4v?; sng = o - 2v/v/ e + 4v?;
if abs(2-u — (a;; + a;;) - b) =0 then
sn2=0;cs2=1;
else if abs(e) + abs(v) = 0 then
sn2=1;cs2=0;
else
t2=0-(2-u— (ay+aj;)-b)/\/(e2+4v2)- (1—b)- (1 +b);
cs2 =1/vV1+12%; sn2 =t2/V1 + 12%;
end if
cl=/(1+ (7 cs2-csg—b-sn2))/(2-(1—-b)-(1
2=/(1+ (1 cs2-csg+b-sn2))/(2-(1—-b)-(1
sl=eb-(sn2+b+17-¢s2-sng)/(2-¢2-(1—b)-
(

al; =cl? - a; +152* -aj; +2-cl - R(s2 - aiy);
ay; = |s1]? - a;; + 2% - a;; — 2 - 2 - R(conj(sl) - a;;);
agj =cl-c2-a;; —sl-conj(s2-a;;) + (c2 - aj; - conj(s2) —cl - a;; - s1);
aj; = conj(a,); b, = 0; b, = 0;
for k=1,...,n,k+#1i,j do
ay,; =cl ki + 52 - agj; b%i =cl - by + 52 - byy;
agy, = conj(ag;); by, = conj(b;);
a%j =c2 '.ak.j/v — 51/~ Qi b;cg- :/ €2 - brj — s1 - byy;
A5 = conj(ay,;); Vi = conj(by,;);
end for
end if

3.2. On the convergence and stopping criterion. To measure advancement
of the method we use the quantity S(A, B) defined by

. . 1/2
S(A, B) = [I14 - diag(A) |3 + | B — diag(B)||3]""%,
where generally, | X || = y/trace(X*X) is the Frobenius norm of X. In the following
standard convergence definitions A, B are Hermitian and B is positive definite.

The complex HZ method is convergent on the pair (A, B) if the sequence of
generated pairs satisfies (A®), B®)) — (A, I,,) as k — oo. Here A is a diagonal matrix

This manuscript is for review purposes only.
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10 V. Hari

of eigenvalues and I,, is the identity matrix. The method is globally convergent if it
is convergent on every initial pair.

The cyclic method is asymptotically quadratically convergent on the pair (A, B)
if it is convergent on (A, B) and there is a positive integer ro such that

S(A(TN),B(TN)) < CHSQ(A((T_UN),B((T_l)N))7 r>rg.

Here ¢, is a constant which may depend on n. The method is quadratically convergent
on some set of matrixz pairs if it is quadratically convergent on every pair from that
set.

From [6] we know that such a set consists of the matrix pairs whose eigenvalues
are simple.

If both matrices A and B are positive definite, one can stop the iteration process
if the current matrices satisfy the condition

lars| < toly/arrass, |b,-s| < tol, 1<r<s<n.

This condition is usually checked after completion of each cycle. If the method is high
relative accurate on the considered matrix pair then this stopping criterion warrants
high relative accuracy of the computed eigenvalues. This claim can be proved using
the complex version of [2, Theorem 3.2] (see [11, Theorem 3.2]).

If A is not positive definite, we simply rely upon S(A, B) and Theorem 4.3 for
our stopping criterion.

3.3. A few numerical examples. We have used MATLAB to observe behavior
of S(A®) B®*)) for all steps k until convergence, and to inspect accuracy of the

computed eigenvalues. The following code was used to compute the initial matrix
pair (4, B):

n=128; A=hilb(n);A=A-triu(A);A=gallery(’minij’,n)+eye(n)+1i*(A-A’); A=A+A’;
B=rand(n)-1i*0.5*rand(n); D=diag(logspace(-4,4,n)); B=D*(B’*B)*D; B=B+B’;

Both matrices are of order 128 and they are positive definite. We have computed the
condition numbers of the symmetrically scaled matrices

Ag = diag(A) "2 Adiag(A)~'/?,  Bg = diag(B) /2B diag(B)~'/2.

We have obtained: ko(Ag) ~ 8.7-10%, ko(Bg) ~ 4.9-10°. Note that Ag and Bg have
unit diagonal.

To gain an insight into the properties of the matrices A and B, we have displayed
the following data in Figure 1: the quotient of the diagonal elements of A and B, and
the eigenvalues of A, B and of the matrix pair (A, B).

Since the intrinsic MATLAB function eig did not compute the eigenvalues of B and of
(A, B) with sufficient accuracy, we made the script ABhermeig(A,B,dg) which used
variable precision arithmetic (vpa) with dg decimal digits. In ABhermeig(A,B,dg)
we have used vpa with 32 decimal digits to compute the eigenvalues and eigenvectors
of A, B and (A, B). The double precision matrices A and B are first converted to
symbolic type, then the output data are computed using vpa, and before exit they are
converted to double precision. During computation in vpa, a test is made to ensure
that the output data are accurately computed. In particular, the spectral norm of
the residual ||AF — BFA|2/||AF||2 is computed in vpa, where F' is the matrix of
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Eigenvalues of A, B, (A,B)

1010 F

T
— diag(A)./diag(B) oo™
AA)

1010 I
o 20 40 60 80 100 120

Fi1G. 1. The graphs of the eigenvalues of A, B and (A, B)

eigenvectors and A is the diagonal matrix of eigenvalues. In all cases the values of
that quantity were smaller than 3 - 10727,

Now, that we have at disposal accurate eigenvalues of the pair (4, B), we can
compute the relative errors of the eigenvalues computed by other scripts. To this end
we have made the script dsychz_qc(A,B,eivec) which computes the eigenvalues and
eigenvectors using the row-cyclic complex HZ method.

The same script has been used to check the quadratic convergence of the HZ
method. The code lines follow the lines of the HZ algorithm as is presented above. The
output to dsychz_qc are: the eigenvector matrix, the column-vector of eigenvalues,
the total number of cycles and steps (steps), and matrix gc. The matrix qc has 5
columns each of length steps. The kth row of qc is obtained from step k. The columns
of qc contain the values of S(Agk)), S(AR)), S(BW), S(AK) Bk)) S(Agk), B®) in
their kth component. It has been noticed that the value of S(B*)) is much larger
than the values of S(A(Sk)) and S(A®) in the later stage of the process, so the values
of S(A®), B®) §(AD) B®)) are very close to S(B®)). Therefore, they are not
depicted in Figure 2. Note that the values of S(A(Sk)) and S(B®) determine when to
stop the process.

S(AS), S(A), S(B) during the process

10—10 [ -
y
10>15 L -
®
sa®) —
1020 L --- s(A®) ]
| s@%)
10-25 L L L L L L L L L L L L L L
o N 2N 3N 4N 5N 6N 7N 8N 9N 10N 1IN 12N 13N 14N
steps

F1G. 2. The reduction of S(Agk)), S(AKR)Y and S(BF))
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We have labeled ticks on z-axis as multiples of N steps, where N = 128(127)/2 = 8128.
Vertical grids are displayed in accordance with the ticks. We can observe the quadratic
convergence behavior of all three functions in the later cycles. Once the quadratic
convergence commences, a significant drop of values occurs after each cycle. The delay
of the quadratic convergence of S(A®), B*)) comes from the fact that S(A®*)) and
S(B™)) have their own rates of decrease, and when they become aligned S(A®*), B(*))
strongly decreases. We speculate that slower convergence of S(B (k)) is a consequence
of fact that ka(Ag) < K2(Bs).

10%° ‘ —
L o
[ . a*
+ A(AB) o
L . Wwf*
105 . €, (AB) « eig(ABchol) o ]
L i ¥
L o
L o eA‘(A,B) + complex HZ et
Fe, %*ﬁ****
[ H -
1001 v e, e
r . et
y ) -
. et
L Ve ¥
105" IS ]
L *H***
Y
L MH*****
100 e K
L . . 0, R
) . o %0 500 O e
s . 280 g% 0 000 O 9
to o°°o°°o°%°°° 0 2° % %og0 °°0°°°0°°0000"0°°°°o°oOQ°°°00°°%O°°°°°°°°°°°0°°°o°0000°°°°°°°°°'°°°°5 0,0 ..090"‘: .
o ) ° o o o DRC ..
10.15 | | | | | . |
0 20 40 60 80 100 120

F1G. 3. The relative errors of the eigenvalues computed by eig and by the HZ algorithm

Figure 3 draws the relative errors of the eigenvalues computed by the HZ algorithm
and (for comparison reasons) by the MATLAB eig(A,B,’chol’) function. In the
same figure we have added the graph of the eigenvalues of (A, B) to see if there
is some correlation between magnitudes of the eigenvalues and the corresponding
relative errors. We see that eig(A,B,’chol’) computed the eigenvalues of the pair
(A, B) with large relative errors. The HZ method computed them with high relative
accuracy. This is in accordance with the behavior of the real HZ method [9, 17].

Then we have switched A and B in the matrix pair (A, B). The relative errors of
the eigenvalues computed by the HZ method are even smaller, which reflects the fact
that now Bg has smaller condition number. But in the same time, the relative errors
of the eigenvalues computed by eig(A,B,’chol’) become equally tiny. This seems
to be a consequence of the fact that now the diagonal elements of A) (computed as
diag(A)./diag(B)) are increasingly ordered along the diagonal of A. This interesting
phenomenon of the QR algorithm was noticed and communicated to the author by
Professor Marc Van Barel of Leuven University.

We have made several other numerical experiments and they all indicate that the
complex HZ method appears to have high relative accuracy on well-behaved pairs of
positive definite matrices. It has been noticed that number of cycles needed to reach
the stopping criterion decreases when the algorithm is so modified that it tries to
order the diagonal elements in the nonincreasing order (cf. [5, 1]).

We end this section with an example which shows behavior of the method when
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the matrix A is indefinite and the initial pair (A, B) has both multiple eigenvalues and
clusters of eigenvalues. We shall not delve into the construction of the initial pair since
it is described in [5], where the quadratic asymptotic convergence of the HZ method

has been considered. We display the graphs of the functions S(Agﬂ))7 S(AKk)), S(BF))
and S(A®) B(*)) under the row-cyclic strategy and under the deRijk [1] strategy.

We shall display the most important data linked with (A, B). We have n = 128,
kp(Ag) = 5.1-10M, ky(Bs) ~ 9.97 - 103, the diagonal elements of A®) are scattered
in the interval [—538.35, —365.33]. The pair (A, B) has 10 eigenvalues of multiplicity
10, one cluster of 20 simple eigenvalues around 0 and 8 additional simple eigenvalues.
The approximate values of the multiple (simple) eigenvalues are: —732.28, —574.80,
—417.32, —259, 84, —102.36, 370.08, 527.56, 685.04, 842.58, 1000 (—1000.0, —984.25,
—968.50, —952.76, —937.01, —921.26, —905.51, —8.8976). The cluster is made of
the eigenvalues whose approximations are: —4.7 - 107!, —7.96 - 1072, —4.2 - 1073,
—4.2-107%, -9.7-107°, =3.3-1075, =1.1-107%, —4.9-1077, —1.97-107%, —8.4-1077,
2.6-107%,1.2-1077,8.3-1077,2.6-107°,3.4-1074,2.5-1073, 1.5- 1072, 8.4 - 1072,
3.3-107', 7.5. The relative accuracy of the computed eigenvalues has been computed
and it is around 1074, with the exception of the eigenvalues which form the cluster.
Their relative accuracy varies from 107! to 6.5-107%, the smaller the magnitude of an
eigenvalue the lower the relative accuracy. The same can be said for the eigenvalues
computed by eig(A,B,’chol’). In Figure 4 and Figure 5 are displayed the graphs
of the functions. We can see failure of the asymptotic quadratic convergence.

10-15 L

20 I I I I I I I I I I I I I I I I I I I I I I
(0] 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22
cycle

10

F1G. 4. The reduction of S(Agk)), S(A®)), 5(B®)), S(AK) B()) under the row-cyclic strategy

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
cycle

10-20 L
0

F1G. 5. The reduction of S(Agc)), S(AK)), S(BK)), S(AK) BK)) under the deRijk strategy
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14 V. Hari

4. The Global Convergence. Here we prove the global convergence of the
complex HZ method under the large class of generalized serial strategies. This class
of cyclic strategies was introduced in [13] and it includes serial, wavefront, weak-
wavefront, inverse of weak-wavefront strategies and those cyclic strategies that are
permutational equivalent to all of them. Hence they also include the modulus strategy
[15, 19] and some other cyclic strategies that are used for parallel processing.

The convergence proof is similar to that of the complex CJ method [14, 10],
although it is more complicated. It is based on the following general theorem from
[14].

THEOREM 4.1. Let H # 0 be a Hermitian matriz and let (H®), k > 0) be the
sequence generated by applying a Jacobi-type process to H,

D) — F,jH(’“)Fk, 7O — H, k>0

Here each Fy is an elementary plane matriz which acts in the (i(k),j(k)) plane,
1 <i(k) < j(k) < n. Suppose the following assumptions are satisfied:

(A1) the pivot strategy is generalized serial

(A2) there is a sequence (Uy, k > 0) of unitary elementary plane matrices such
that khm (Fk — Uk) =0
—00

(A8) the diagonal elements of Fy, satisfy the condition likm inf |fi((i))i(k)| >0
— 00
(A4)  the sequence (H®) | k> 0) is bounded.

Then the following two conditions are equivalent

N s
() Jo i) =0

(i)  lim S(H®)=o0.
k—o0

We shall apply Theorem 4.1 to the sequences (A*), k > 0) and (B*), k > 0) obtained
by the HZ method. To this end we shall prove some preparatory results. First, we
want to prove that all matrices A*%), B(*) generated by the method are bounded.
That accounts for the assumption A4 of Theorem 4.1. Then we want to prove that
bﬂ%j(k) tends to zero as k increases. Once we prove it, the other assumptions of
Theorem 4.1 will be easy to show.

In the following lemma we use the spectral radius of the matrix pair (4, B),

= max
A€o (A,B)

AL

where o(A, B) denotes the spectrum of (A, B).

LEMMA 4.2. Let A and B be Hermitian matrices of order n such that B is positive
definite. Let the sequences of matrices (A%, k> 0), (B®) | k > 0) be generated by
applying the complex HZ method to the pair (A, B) under an arbitrary pivot strategy.
Then the assertions (i)—(iv) hold.

(i)  The matrices generated by the method are bounded and we have

(4.1) 1Bz <n,  JA® 2 < u| BW )2 < npe

(i)  For the pivot element bg?g)j(k) of B®) we have leH;O bz(.?,z)j(k) =0

This manuscript is for review purposes only.



138

439

440

141

442

143
444

446

448

449

450

460

461

462

463

464

465

466

On the global convergence of the complex HZ method 15

(i)  For the transformation matrices Zy, we have

hm (Zr —Ug) =0

k—o0

where Uy are unitary plane matrices
(iv)  For the diagonal elements of Uy, we have

(k) V2

ioo] = W50l = 5 B0

Proof. (i) The proof of the relation (4.1) is identical to the proof of [9, Lemma 4.1].
One only has to replace the adjective “symmetric” by “Hermitian”.

(i4) The proof follows the lines in the proof of [9, Proposition 4.1]. Let B*) = (b,ﬁ’;))

and
det(B®)

k) _ — (k
H(BY) = gy = det(BY), k20,
by by - bnn

By the Hadamard’s inequality we have
(4.2) 0<HBM®)<1, k>o0.

By the relations (2.1) and (3.2) we have

1
H(B®) = | det(Z;,)[2 det(B®)) = a5 HBY), k=0
= Ibigyim]
Hence
_ (
(4.3) H(BM) = (1= o)) ) HBED), k>0,

From the relations (4.3) and (4.2) we see that H(B®*)) is a nondecreasing sequence
of positive real numbers, bounded above by 1. Hence it is convergent with limit
¢, 0 < ¢ < 1. By taking the limit on the both sides of the equation (4.3), after
cancelation with ¢, we obtain

_ T (k) 2 2
1= lim ( |b(k)]( )\ ) =1- hm |b (k](k)|

k—o0
which proves (i4).

(#31) Recall that each Z is product Zj = ng)DkRék) (%) where R ) and R are
complex rotations from the relation (3.2) related to step k. Let U = ng)Rék)q) k).
Since ®*) is unitary, we have

12y, — Urll2 = | R (Dy, — L)RY @ W||y = | Dy — L |2
_ |diog (1/ L1, 11 ] 1) e

= B8]/ (1 — B8] + /1 — ).

Hence ||Zy — Ugll2 — 0 as k — oco. Here we have used the assertion (ii).
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16 V. Hari

(iv) Note that the diagonal elements of |Uy| are equal since Uy, is unitary of order 2.
Nevertheless, we shall find expressions for both |u£2)i(k)| and |u§.l(€,)€)j(k)|. Since d*) is

diagonal and unitary we have
Ukl = [RP R = |RP AP, k>0

From the relations (3.3), (3.4) and (3.8) one easily obtains expressions for the diagonal
elements of |R§k)f%§k)|. They are also the diagonal elements of |Uy|. We have

Al = ek = s+ €7 (e + 31) | = 2+ 2cos(203) cos .,
Al sl = lek = sk + €7 (er + 51)[2 = 2+ 2 008(20)) cos i,

where ¢, = cosfy, sp = sinfy, v, = B;Zc))j(k) — o%('éclz)j(k)' This proves the assertion
(tv). Indeed, our choice of o;; in (3.11) ensures —7/2 < 7, < 7/2 and we also have
—m/4 < O < w/4. 0

In the convergence proof we shall need to estimate how close are the diagonal
elements of A to the corresponding eigenvalues of the pair (A®*), B(*)). To this end
let the eigenvalues of the initial pair (A4, B) be nonincreasingly ordered:
(4.4) M= = A S A1 = = A, > s > Ay p1 == A

Sp*

The case p = 1 implies A = A\ B. Then every nonzero vector is an eigenvector
belonging to the only eigenvalue A;. So, let p > 1.

If we set sy = 0 we conclude from the relation (4.4) that n, = s, — s,_1 is the
multiplicity of As.. Let Agy = Ao =00, A = —oo0 and

Sp+1

30, = min{s,_, — As;, As, — Asppnfs 1<t <p.

We see that 30; is the absolute gap in the spectrum of (A, B) associated with A,,. Let

. 0
(45) 6= 1I§nt1£1p 6,5, (50 = m,

where p is the spectral radius of (A, B). Obviously, 39 is the minimum absolute gap
and for §y we have
1

(4.6) 0o = 7 2

) 1
< — < -,
—2n 3

Indeed, if p > 1 then the worst possible bound for §/(2u) is obtained when p = 2 and
= A1 = —Xp. Then 36 = 2u. Note also that

lel Ae,| < |z* Az| _

el'Be, ~ |z|,=1 x*Bzx

(4.7) lar-| =

pw, 1<r<n

In the convergence theorem we shall need the following result from [8, Corollary 3.3]
or from [9, Lemma 4.3] .

LEMMA 4.3. Let A, B be Hermitian matrices of order n such that B is positive
definite with unit diagonal. Let the eigenvalues of (A, B) be ordered as in the relation
(4.4) and let &, 0o be as in the relation (4.5). If

V1+ p2S(A,B) < 6,
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On the global convergence of the complex HZ method 17

then there is a permutation matriz P such that for the matriz A = PT AP = (a,,) we
have

(48) 2 Z |all - )\ll ﬂ

In Lemma 4.3, the condition /1 + u2S(A, B) < § can be replaced by the simpler and
stricter one, S(A4, B) < dp. Similar estimates that include relative distances between
ay and \; can be found in [12].

THEOREM 4.4. The complexr HZ method is globally convergent under the class of
generalized serial pivot strategies.

Proof. Let us apply Theorem 4.1 to (B%*) &k > 0) and (A® & > 0). In both
cases the assumptions (A1), (A2), (A4) and the condition (%) hold. Indeed, (A1)
is just selection of the pivot strategy while (A2) and (A4) are the assertions (iii)
and (¢) of Lemma 4.2, respectively. The condition (%) holds because the HZ method
diagonalizes the pivot submatrices, that is agéc,;g]gk) =0 and bgfk";;g k) = = 0 holds for all
k> 0.

It remains to prove the assumption (A3), that is lim inf |z(k) v] > 0. By the

koo | i(k)i(k)

assertion (iv) of Lemma 4.2, we have

— 1 Zk — Uk|l2

(k) (k) (k) V2
|Zz(k) (k)| 2 |ui(k ‘ |Zz(k)z(k) ui(k)i(k)‘ 2 o5

and by the assertion (iii) of the same lemma, ||Zy — Ug|l2 — 0 as k — oo. Hence
et (R)
hknigﬂzi(k)i(k)' >/2/2.

From Theorem 4.1 we conclude that S(A®*)) — 0 and S(B®*)) — 0 as k — oco. Since
each B*®) has unit diagonal, it is shown that B®) — I, as k — co.

If 0(A, B) is singleton, ie. if p = 1 holds in the relation (4.4), the proof is
completed. Namely, if A = A\ B, we shall have A®) = \;B(®) k > 0. In that case
the HZ algorithm chooses 6 = 0, k£ > 0, and 7y is computed by the relation (3.22).
Since B%) — T,,, we shall have A®) — X\ I,, as k — cc.

It remains to prove that the diagonal elements of A*) converge in the case p > 1.
This comes down to showing that for large enough k the diagonal elements of A®*)
cannot change their eigenvalue affiliations.

Suppose kg is so large that we have

(4.9) S(A® BR)Y < 52 k > k.

Let us consider step k of the process when k > ko. Set A = (a,1) = A®), A’ = (d!,) =
AR B = (b)) = B® | B = (b.,) = B**D. From the relation (4.6) we see that
the assumption (4.9) implies

(4.10) S(A,B) < 8 <

and therefore we have

Vi, 2 iz

(4.11) |b13| < — 6 ﬁ, Tij = 1-— |bij|2 >
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Using (4.10), the upper bound appearing in (4.8) can be further bounded as follows:
SYAB) _ %
52 81°
Hence, from Lemma 4.3 we can conclude that all diagonal elements of A are contained
in the union of disks

2
Dt:{x:|x—At|<g5O}, 1<t<n.

Since (v/2/18)8y < 0.07868y < 0.07866, these disks are disjoint. Hence, Lemma 4.3
implies that each disk D; contains exactly n; diagonal elements of A.

The same conclusion holds for the diagonal elements of A’. The proof will be
completed if we show that no diagonal element of A can jump from one disk to
another.

Suppose a;; is affiliated with A, and a;; with A;. Then by Lemma 4.3 and the
relation (4.10) we have

SYA,B) 1 1
4.12 i — A2 = MP< T2 < —S?%(A,B) < — 62
( ) la Arl® + ag; — Al < 202 = ISS (A,B) < 16250’

2 2 2
(413) max{|a“ — )\T‘, |ajj — )\t|} < %S(A,B) < %50 < \1/7876

We consider two cases: (a) A, # A\, and (b) A, = A
(a) Using the relations (4.5), (4.12) and the Cauchy-Schwarz inequality, we have
26

1
(4.14)  ag — ajz| > [ = M| = las — Ae| = |aj; — A > 30 — \/imtso = 35

Let us bound |a}; — a;;|. To this end we denote vij = aij — Bij. From the relations
(3.20) and (4.7) we obtain

(4.15)  Thlal; — ai| = |(|bi;]* — sin® ¢)as; + sin® vaj; + 2 cos ¢ sin uyj|
< pu(sin® ¢ + sin® ¢) + 2cos g siny) |ag;| + g |bi;|>.

From the relations (3.10) and (3.12) we have cosv;; > 0 and cos(20) > 0, respectively.
Hence, from the relation (3.17), we have

sin® ¢ + sin® ¢ = 1 — 735 cos(260) cosy;; < 1 — (1 — |by;]?)(1 — sin?(260))(1 — sin® ;)
= sin?(26) + sin” v;; — sin?(26) sin® ;; + |bi;|? cos?(20) cos® 75
< tan?(20) + tan® v;; + |by; |,

4cos? psin® i = (1 — |by;] sin(26))? — (1 — |by;]?)(1 — sin?(260))(1 — sin? ;)

< |byj|? + sin?(20) + sin® v;; + 2|b;;|| sin(260)]
< 2 (tan2(29) + tan2 Vij + |b7,j|2)

We have thus obtained

(4.16) sin® ¢ + sin® ¢ + |b;;|? < tan®(20) + tan® v;; + 2 b, |?

(4.17) 2cos psiny < ﬁ\/tan2(20) + tan? y;; + |bij|2.
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On the global convergence of the complex HZ method 19

Using relations (3.12), (4.11), (4.14) and (4.10), one obtains

(2lais| + 20lbis)? _ 201+ 14?)S*(A, B)

4.1 2(20) <
(4.18) tan®(20) < 2(an —az)? — (322/182) - (26/9)2 52
2-182-9%2 S(A, B) S(A, B)
<0. —_—.
S Smae 142 ST e
Using (3.9), (4.14), (4.6) and (4.10), we have
4la;|? 252%(A) 2u
4.19) tan®v;; + 2[by;|* < d HB) < o+ (52)2S%(B
( 9) an ’Y]+ ‘ ]| _(aii_ajj)2+8( )—(26/9)262+(36)S( )
_ 4042 (AB) _4S(A.B)
=9 52 S92
Combining relations (4.16), (4.18), (4.19) and (4.10), we have
. . 4 S(A,B) 1
4.2 2 2 517) < p(0.2412 + —)=—=——~ < 0. A,B
(4.20) p(sin® ¢ + sin® ¢ + |b;;|%) < p(0 + 9) T2 S 06861+M25( ,B)

< 0.343 S(A, B) < 0.1144 5.

In a similar way, from the relations (4.17) and (4.20), we obtain

(4.21) 2cos ¢siny |a;;| < v24/0.343 S(A, B) < 0.8283 &.

Combining relation (4.15) with (4.20), (4.21) (4.11), we have

(4.22) la); — asi| = (0.1144 + 0.8283) §y < 0.9486 &y < 0.9486 6.

1= [by;[?
Finally, from the relations (4.22) and (4.13) we obtain

|a§i — >\r| § |a;l — a“-\ + |aii — )\r| < (09486 + \1/785)6 < 1.036.
We conclude that a;; cannot move from D, to any other disk. So, aj;, must remain in
D,.

Quite similar estimates can be made for |a}; — A;|. But that is not needed. We
know that except for a;; and a;; no other diagonal element of A is affected by the
transformation. Since a}; remained in D,., jump of a;; to any other disk but D, would

violate the rule on the number of the diagonal elements in the disks.

(b) In this case a;; and aj; both lie in D,.. After the transformation they both have to
remain in D,., because otherwise D,. and some other disk(s) would violate the rule on
the number of the diagonal elements in the disks. Thus, we must have al,, a;j € D,,
which completes the proof of the theorem.

5. Conclusions and Future Work. The complex HZ method has proved to
be a reliable diagonalization method for PGEP. In this paper we have derived its
algorithm and have proved the global convergence under the class of generalized serial
strategies. The numerical tests indicate that it might be high relative accurate on the
set of well-behaved pairs of positive definite matrices.

Future work can be concentrated on proving the asymptotic quadratic convergence
of the method and on proving the high relative accuracy of the method for certain
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20 V. Hari

classes of matrix pairs. The first problem has already been solved [6, 5] for the case
of simple and double eigenvalues, but in the case of multiple eigenvalues the method
will need some kind of modification.

Concerning the numerical code, there are many details that can be improved (cf.
[20]). In particular, how to reduce the total number of cycles (compare Fig. 4 and
Fig. 5), what are the best formulas for updating the diagonal elements of A, what
are the most efficient pivot strategies, what is the best stopping criterion, how to
implement one-sided version of the method, etc.
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