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Abstract

The paper proves the quadratic convergence of the complex HZ method for
solving the positive definite generalized eigenvalue problem. The proof is made
for a general cyclic pivot strategy in the case of simple eigenvalues and for any
wavefront pivot strategy in the case of simple or double eigenvalues. The proof
is valid for the real HZ method. The preliminary numerical tests confirm the
theoretical results.
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1. Introduction

In this paper we consider the asymptotic convergence of the complex HZ
method [7, 17] for the positive definite generalized eigenvalue problem (PGEP)

Ax = λBx , x ̸= 0 (1.1)

with full complex Hermitian matrices A, B such that B is positive definite.
On contemporary parallel computing machines the block Jacobi methods

seem to be the best choice for solving the problem (1.1) with large matrices
A and B (see [20, 24]). This is no surprise since the block Jacobi methods
can be nicely adapted to the conditions required by the modern computational
environments. In the core of each block method lies a kernel algorithm whose
task is to diagonalize the block pivot submatrices Â, B̂ at each step. The
matrices Â, B̂ are of smaller size, usually of order 64, 128 or 256, they are
Hermitian and B̂ is positive definite. The main requirement for the kernel
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algorithm is to solve the PGEP with matrices Â, B̂ accurately and efficiently.
During computation the block pivot submatrices are most of the time nearly
diagonal. The kernel algorithm should perform its task very fast and accurate on
such matrices. These two requirements are well met by the element-wise Jacobi
methods for the PGEP. So far, only three element-wise methods for the PGEP
are known: the complex Falk-Langemeyer (FL) method [16, 4, 25], the complex
Cholesky-Jacobi (CJ) method [15, 14] and the complex Hari-Zimmermann or
shorter HZ method [7, 17]. As has been explained in [20], the HZ method seems
to be more suitable to serve as a kernel algorithm than the FL method. The CJ
method is pretty new and has been less researched.

The complex HZ method was derived and analyzed in [7]. Its global conver-
gence has been proved in [17] under a large class of generalized serial strategies
from [12]. The numerical tests indicate that the method might have an im-
portant property, the high relative accuracy, provided that both matrices A
and B are positive definite and the spectral condition numbers of ∆AA∆A and
∆BB∆B are small for some diagonal matrices ∆A and ∆B .

Here we prove that the convergence of the HZ method is asymptotically
quadratic. The proof is made for a general cyclic pivot strategy and, with a
better bound, for a wavefront strategy. The latter class of wavefront strategies
[23] include the known serial pivot strategies. The results are an immediate
generalization of the known results of Wilkinson [27] for the standard Jacobi
method. The analysis presented here paves the way for the quadratic conver-
gence proof of the block Jecobi method from [18] for the same problem.

The paper is divided into 8 sections. In Section 2 we describe the method,
present its algorithm and define the notion of the quadratic convergence. In
Section 3 we prove several auxiliary results that are needed for the quadratic
convergence proof, which is given in Section 4. As an application, in Section 4
we briefly prove that the same result holds for the real HZ method from [13]. In
Section 5 we present some numerical tests that confirm the theoretical results.
The conclusions and proposals for future work are given in Section 6. Sections 7
is acknowledgements and Section 8 is an appendix where we have proved some
lengthy and less important results.

2. Description of the Method

Let A and B be complex Hermitian matrices of order n such that B is
positive definite. At the beginning of the process, the (complex) HZ method
uses the congruence transformation:

A 7→ A(0) = DAD, B 7→ B(0) = DBD, D = diag(B)−
1
2 , (2.1)

which makes the diagonal elements of B(0) equal to 1. Then (A(0), B(0)) is taken
as the starting matrix pair for the iterative process

A(k+1) = Z∗
kA

(k)Zk, B(k+1) = Z∗
kB

(k)Zk, k ≥ 0, (2.2)
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where A(0) and B(0) are defined by (2.1). In (2.2) each transformation matrix
Zk is an elementary plane matrix. It is a nonsingular matrix which differs from

the identity matrix In in two diagonal elements z
(k)
i(k)i(k), z

(k)
j(k)j(k) and two off-

diagonal elements z
(k)
i(k)j(k), z

(k)
j(k)i(k), where 1 ≤ i(k) < j(k) ≤ n. The subscripts

i = i(k), j = j(k) are called pivot indices, (i, j) is pivot pair and

Ẑk =

[
z
(k)
ii z

(k)
ij

z
(k)
ji z

(k)
jj

]
, k ≥ 0, (2.3)

is called pivot submatrix of Zk. In MATLAB notation Ẑk = Zk([i j], [i j]). If

Ẑk is as in (2.3), we shall briefly denote it by Ẑk = (z
(k)
ij ). The transition

(A(k), B(k)) 7→ (A(k+1), B(k+1)) is called the kth step of the method.
The method is designed to preserve the unit diagonal of each iteration matrix

B(k). This way each B(k) is almost optimally symmetrically scaled that can be
obtained by a diagonal matrix. In other words, for the spectral condition number
of B(k), we have (see [26]), κ2(B

(k)) ≈ min∆ κ2(∆B
(k)∆), ∆ is diagonal. We

also have (see [17, Lemma 4.2(i)],[13, Lemma 4.1])

∥B(k)∥2 ≤ n, ∥A(k)∥2 ≤ nµ, k ≥ 0; µ = max
λ∈σ(A,B)

|λ|, (2.4)

where µ is the spectral radius of the initial matrix pair (A,B). Hence both
sequences (B(k), k ≥ 0) and (A(k), k ≥ 0) are bounded.

2.1. The cyclic pivot strategies

The way of selecting pivot pairs is called pivot strategy. A pivot strategy
can be identified with the function I : N0 → Pn, where N0 = {0, 1, 2, . . .},
Pn = {(r, t); 1 ≤ r < t ≤ n}. We see that Pn contains N = n(n − 1)/2 pairs
of indices. If I is a periodic function, then I is called periodic pivot strategy .
Let I be the periodic (pivot) strategy with period P . If P = N and {I(k) :
k = 0, 1, . . . , P − 1} = Pn, then I is called cyclic strategy. If the HZ method is
defined by some cyclic pivot strategy we speak of the cyclic HZ method.

For t ≥ 1, the transition (A((t−1)N), B((t−1)N)) 7→ (A(tN), B(tN)) is called the
tth cycle or sweep of the method. The most common cyclic strategies are the
row- and column-cyclic ones. In the row-cyclic strategy the pivot pair repeatedly
runs through the sequence of N = n(n− 1)/2 pairs:

(1, 2), (1, 3), . . . , (1, n), (2, 3), . . . , (2, n), (3, 4), . . . , (n− 1, n),

while in the column-cyclic strategy it runs through the sequence: (1, 2), (1, 3),
(2, 3), (1, 4), (2, 4), (3, 4), . . . ,(1, n), (2, n), . . . ,(n−1, n). The common name for
these two pivot strategies is serial strategies.

The set of serial pivot strategies can be enlarged to the set of generalized
serial strategies which was introduced and discussed in [12] and later used in
[13, 14, 17, 18]. This class encompasses the most important cyclic strategies,
including the serial, wavefront and weak wavefront ones from [23] and [19].
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The row-cyclic strategy can be upgraded to the strategy proposed by de
Rijk [2]. Essentially, under that strategy the transformation linking the pair
(A(0), B(0)) with (A(N), B(N)) has the form

PZ12 · · ·Z1nI2,r2Z23 · · ·Z2nI3,r3Z34 · · ·Z3n · · · In−2,rn−2Zn−2,n−1Zn−2,nZn−1,n,

where P is the permutation matrix that orders the diagonal elements of PTA(0)P
in descending order and Ii,ri is the transposition matrix defined by ri which is
determined by: ari,ri = max{att; t ≥ i}. As we shall see in Section 5, the de
Rijk strategy has some advantages over the row-cyclic strategy.

2.2. The global and quadratic convergence, the stopping criterion

To measure advancement of the method we use the quantity S(A,B),

S(A,B) =
[
S2(A) + S2(B)

]1/2
, (2.5)

where generally, S(X) = ∥X − diag(X)∥F . Here ∥X∥F =
√
trace(X∗X) is the

Frobenius norm of X.
The complex HZ method is convergent on the pair (A,B) if the sequence

of generated pairs satisfies (A(k), B(k)) → (Λ, In) as k → ∞. Here In is the
identity matrix and Λ is a diagonal matrix of the eigenvalues of (A,B). The
method is globally convergent if it is convergent on every initial pair.

The global convergence of the HZ method under the generalized serial strate-
gies has been proved in [17].

The cyclic method is asymptotically quadratically convergent on some set of
matrix pairs if

S(A(N), B(N)) ≤ cnS
2(A(0), B(0))

holds for every matrix pair (A,B) from that set. Such a set is characterized by
some requirements, one of them is that S(A(0), B(0)) is sufficiently small. Here
cn is a constant which may depend on n.

If both matrices A and B are positive definite, one can stop the iteration if
the current matrices satisfy the condition

|ars| ≤ tol
√
|arrass|, |brs| ≤ tol, 1 ≤ r < s ≤ n. (2.6)

This condition is usually checked at the end of each cycle. It warrants the
high relative accuracy of the computed eigenvalues provided the initial pair of
positive definite matrices is well-behaved [13] and if the method is proved to
have the high relative accuracy property, as the numerical tests indicate. If A
is indefinite then we must rely on the values S(A(tN), B(tN)), t ≥ 0.

2.3. The complex HZ algorithm

By complex HZ algorithm we mean the algorithm that is used in one step
of the complex HZ method. It computes the pivot submatrix Ẑk and applies
it to the appropriate rows and columns of the current matrices. The complex
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HZ algorithm has been derived in [7, 17] and here we briefly describe it. We
consider step k, omit the appearance of k and denote the pivot indices by i, j.

The input to the algorithm is the pair (Â, B̂) of pivot submatrices,

Â =

[
aii aij
āij ajj

]
, B̂ =

[
1 bij
b̄ij 1

]
,

aij = |aij | eıαij ,

bij = |bij | eıβij .
(2.7)

The principal part of the output are the pivot submatrix Ẑ,

Ẑ =
1

τ

[
cosϕ −eıα sinϕ

e−ıβ sinψ cosψ

]
=

[
c1 −s1
s2 c2

]
, τ =

√
1− |bij |2 (2.8)

and Â′ = ẐT ÂẐ.
Let σij = 1 (σij = −1) provided that aii − ajj ≥ 0 (aii − ajj < 0),

uij + ıvij = e−ıβijaij , uij , vij ∈ R, (2.9)

γij = arg

(
aii − ajj

2
+ ıvij

)
+ (1− σij)

π

2
, −π

2
≤ γij ≤

π

2
. (2.10)

The elements of Ẑ are computed from the expressions:

2 cos2 ϕ = 1− |bij | sin(2θ) +
√
1− |bij |2 cos(2θ) cos(γij),

2 cos2 ψ = 1 + |bij | sin(2θ) +
√
1− |bij |2 cos(2θ) cos(γij),

eıα sinϕ = eıβij

2 cosψ [sin(2θ) + |bij |+ ı
√

1–|bij |2 cos(2θ) sin(γij)],

e−ıβ sinψ = e−ıβij

2 cosϕ [sin(2θ)− |bij | − ı
√
1–|bij |2 cos(2θ) sin(γij)],

(2.11)

where ϕ , ψ ∈ [0, π/2]. For the angles θ and γij , we have

tan(2θ) = σij
2uij − (aii + ajj)|bij |√

1− |bij |2
√
(aii − ajj)2 + 4v2ij

, −π
4
≤ θ ≤ π

4
, (2.12)

cos(γij) =
|aii − ajj |√

(aii − ajj)2 + 4v2ij

, sin(γij) = σ
2vij√

(aii − ajj)2 + 4v2ij

. (2.13)

For the diagonal elements, we have

a′ii = [cos2 ϕaii + sin2 ψajj + 2 cosϕ sinψ ℜ(e−ıβaij)]/(1− |bij |2), (2.14)

a′jj = [sin2 ϕaii + cos2 ψajj − 2 cosψ sinϕ ℜ(e−ıαaij)]/(1− |bij |2). (2.15)

One can show that in floating point arithmetic, the diagonal elements of B̂′ are
computed with tiny relative errors while b′ij is computed as zero. This does
not apply to a′ij , which can be computed by the formula (we use: cφ = cosφ,
sφ = sinφ, φ ∈ {ϕ , ψ}):

a′ij = [cϕcψaij − āije
ı(α+β)sϕsψ + (ajje

ıβcψsψ − aiie
ıαcϕsϕ)]/(1− |bij |2).
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If tan(2θ) has the form 0/0 then the pivot submatrices are proportional: Â =
aiiB̂ (see [17]). From the relation (2.9) we see that vij = 0, uij = aii|bij | and
we choose θ = 0, γij = 0. Then Ẑ reduces to the form

Ẑ =
1

τ

[
ρ −ξ
−ξ̄ ρ

]
, ξ =

bij
2ρ
, ρ =

√
1 + |bij |+

√
1− |bij |

2
. (2.16)

The matrix Ẑ from (2.16) is a direct extension of the real one from [13, Sec-
tion 2.3]. In this case we have a′ii = aii and a

′
jj = ajj .

If bij = 0 and aij ̸= 0 then in the above formulas arg(bij) is replaced by

arg(aij). Hence Ẑ is reduced to the complex Jacobi rotation for Â. If in addition
aij = 0, then uij = vij = γij = θ = 0, hence Z is reduced to the identity matrix.

In the pseudocode below, ℜ(ω), ℑ(ω) and conj(ω) denote the real, imaginary
part and complex conjugate of ω. The names of variables in the pseudocode
are similar to mathematical notation. Thus, t2, cs2, sn2, csg, sng stand for
tan(2θ), cos(2θ), sin(2θ), cos(γij), sin(γij), respectively.

%%% The complex HZ algorithm

select the pivot pair (i, j)

if aij ̸= 0 or bij ̸= 0

b = abs(bij); if b = 0, eb = aij/abs(aij); u = abs(aij); v = 0;

else, eb = bij/b; d = conj(bij)/b · aij;u = ℜ(d); v = ℑ(d);
endif;

e = aii − ajj; σ = 1; if e < 0, σ = −1 endif;

τ =
√

(1− b) · (1 + b); csg = |e|/
√
e2 + 4v2; sng = σ · 2v/

√
e2 + 4v2;

if abs(2 · u− (aii + ajj) · b) = 0, sn2 = 0; cs2 = 1;

elseif abs(e) + abs(v) = 0, sn2 = 1; cs2 = 0;

else, t2 = σ · (2 · u− (aii + ajj) · b)/
√

(e2 + 4v2) · (1− b) · (1 + b);

cs2 = 1/
√
1 + t22; sn2 = t2/

√
1 + t22;

endif;

c1 =
√

(1 + (τ · cs2 · csg − b · sn2))/(2 · (1− b) · (1 + b));

c2 =
√

(1 + (τ · cs2 · csg + b · sn2))/(2 · (1− b) · (1 + b));

s1 = eb · (sn2 + b+ ı τ · cs2 · sng)/(2 · c2 · (1− b) · (1 + b));

s2 = conj(eb) · (sn2− b− ı τ · cs2 · sng)/(2 · c1 · (1− b) · (1 + b));

a′
ii = c12 · aii + |s2|2 · ajj + 2 · c1 · ℜ(s2 · aij);

a′
jj = |s1|2 · aii + c22 · ajj − 2 · c2 · ℜ(conj(s1) · aij);

a′
ij = c1 · c2 · aij − s1 · conj(s2 · aij) + (c2 · ajj · conj(s2)− c1 · aii · s1);

a′
ji = conj(a′

ij); b′ij = 0; b′ji = 0;;

for k = 1, . . . , n, k ̸= i, j do

a′
ki = c1 · aki + s2 · akj; b′ki = c1 · bki + s2 · bkj;

a′
ik = conj(a′

ki); b′ik = conj(b′ki);

a′
kj = c2 · akj − s1 · aki; b′kj = c2 · bkj − s1 · bki;

a′
jk = conj(a′

kj); b′jk = conj(b′kj);

endfor

endif
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Finally, if the eigenvectors are wanted, one can set F (0) = D, where D is
from the relation (2.1), and in each step make the update: F (k+1) = F (k)Zk.
In the case of convergence, after stopping the process, the columns of F (k) will
be good approximations of the eigenvectors of the initial pair (A,B).

3. Some Auxiliary Results

Here we prove several results that are needed in the quadratic convergence
proof of the HZ method. The first subsection sheds some light on the special
structure that lies in the nearly diagonal A(0) and B(0), when the pair (A,B)
has multiple eigenvalues (see [8, 10]). In the second subsection we prove several
lemmas that are needed in the quadratic convergence proof.

3.1. Nearly diagonal matrices A(0) and B(0)

Let A, B be Hermitian matrices of order n such that B is positive definite.
Let the eigenvalues of the pair (A,B) be nonincreasingly ordered,

λ1 = · · · = λs1 > λs1+1 = · · · = λs2 > · · · > λsp−1+1 = · · · = λsp . (3.1)

The case p = 1 implies A = λ1B. Then every nonzero vector is an eigenvector
belonging to the only eigenvalue λ1. So, let p > 1.

If we set s0 = 0, we conclude from the relation (3.1) that nr = sr − sr−1 is
the multiplicity of λsr . Let λs0 = λ0 = ∞, λsp+1

= −∞ and

3δt = min{λst−1 − λst , λst − λst+1}, 1 ≤ t ≤ p. (3.2)

We see that 3δt is the absolute gap in the spectrum of (A,B) associated with
λst . Let

δ = min
1≤t≤p

δt, δ0 =
δ

1 + µ2
, (3.3)

where µ is the spectral radius of (A,B). Obviously, 3δ is the minimum absolute
gap and for δ0 we have

δ0 =
δ

1 + µ2
≤ δ

2µ
≤ 1

3
. (3.4)

Indeed, if p > 1 then the worst possible bound for δ/(2µ) is obtained when
p = 2 and µ = λ1 = −λp. Then 3δ = 2µ. If B has unit diagonal then we have

|arr| =
|eTr Aer|
eTr Ber

≤ max
∥x∥2=1

|x∗Ax|
x∗Bx

= µ , 1 ≤ r ≤ n. (3.5)

Here the last equality sign can serve as definition of µ. The simpler definition,
µ = maxλ∈σ(A,B) |λ|, where σ(A,B) is the spectrum of the matrix pair (A,B),
is given in the relation (2.4).

In the convergence analysis we shall use the following result from [7, Corol-
lary 3.3] or [8, Corollary 3.3].
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Lemma 3.1. Let A, B be Hermitian matrices of order n such that B is positive
definite with unit diagonal. Let the eigenvalues of (A,B) be ordered as in the
relation (3.1) and let δ, δ0 be as in the relation (3.3). If√

1 + µ2S(A,B) < δ, (3.6)

then there is a permutation matrix P such that for the matrix Ã = PTAP =
(ãrt) we have

2

n∑
l=1

|ãll − λl|2 ≤ S4(A,B)

δ20
.

In Lemma 3.1, the condition
√

1 + µ2S(A,B) < δ can be replaced by the simpler
but also the stricter one, S(A,B) < δ0.

Although Lemma 3.1 is sufficient to prove the quadratic convergence of the
HZ method in the case of simple eigenvalues, we shall need a more general result
for the case of double eigenvalues. To this end, let us assume that (3.6) holds,
and let us partition both matrices Ã = PTAP and B̃ = PTBP in accordance
with the multiplicities n1,. . . ,np:

Ã =

 Ã11 · · · Ã1p

...
. . .

...

Ãp1 · · · Ãpp

 , B̃ =

 B̃11 · · · B̃1p

...
. . .

...

B̃p1 · · · B̃pp

 . (3.7)

In the block-matrix partition (3.7), Ãrr and B̃rr have dimension nr, 1 ≤ r ≤ p.
With the partition (3.7) we associate quantity

T (Ã, B̃) = [T2(Ã) + T2(B̃)]1/2 (3.8)

where for any square matrix X partitioned in accordance with the partition
(n1, . . . , np) of n, T(X) = ∥X − diag (X11, . . . , Xpp)∥F .

Theorem 3.2. [8, Theorem 3.1,Corollary 3.2] Let A, B be Hermitian matrices
of order n such that B is positive definite with unit diagonal. Let the eigenvalues
of (A,B) be ordered as in the relation (3.1) and let δ, δ0 be as in the relation
(3.3). If the condition (3.6) holds then there is a permutation matrix P such
that for the matrices Ã = PTAP = (Ãrt) and B̃ = PTBP = (B̃rt), partitioned
as in (3.7), we have

∥Ãrr − λsr B̃rr∥F ≤ 1

δr

p∑
t=1
t̸=r

∥Ãrt − λsr B̃rt∥2F ≤
1 + λ2sr
δr

p∑
t=1
t̸=r

(∥Ãrt∥2F + ∥B̃rt∥2F )

≤
1 + λ2sr
δr

T 2(Ã, B̃)

2
≤

1 + λ2sr
δr

S2(A,B)

2
, 1 ≤ r ≤ p, (3.9)

2

p∑
r=1

∥Ãrr − λsr B̃rr∥2F ≤ (1 + µ2)2T 4(Ã, B̃)

δ2
=

T 4(Ã, B̃)

δ20
≤ S4(A,B)

δ20
. (3.10)

8

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Let us link the above results to the HZ method. The statements of Lemma 3.1
and Theorem 3.2 can be used in connection with the matrices (A(k), B(k)) when-
ever S(A(k), B(k)) satisfies the condition (3.6) (recall that each B(k) has unit
diagonal). By slightly strengthening the condition (3.6) for the starting pair
(A(0), B(0)), we can assure that (3.6) holds during the whole cycle. To make the
quadratic convergence proof easier, we shall also need one additional condition
on S(B(0)). These two conditions will be sufficient for the quadratic convergence
proof. We shall refer to them as asymptotic assumptions. They are given below:

S(B(0)) <
1

2N
, n ≥ 3, (3.11)

S(A(0), B(0)) <
δ

2
√

1 + µ2
, p ≥ 2. (3.12)

In the following, we assume that conditions (3.11) and (3.12) hold for (A(0), B(0)).
We shall consider the first cycle of the HZ method. To simplify exposition, we
shall use the following notation for 0 ≤ k ≤ N :

ak = |a(k)i(k)j(k)|, bk = |b(k)i(k)j(k)|, bmax = max
0≤k≤N

bk,

τk =
√
1− b2k, xk = 1/(1− bk), yk = 1/(1− b2k),

ek = a
(k)
i(k)i(k) − a

(k)
j(k)j(k), σk =

{
1 if ek ≥ 0

−1 if ek < 0

uk + ıvk = e
−ı arg(b(k)

i(k)j(k)
) · a(k)i(k)j(k), γk = γi(k)j(k)

ϵk = S(A(k), B(k)), T k = T (A(k), B(k)).


(3.13)

3.2. The preliminary results

Here we prove several lemmas. Several lengthier proofs are moved to Sec-
tion 8 which is an appendix. The first lemma is not directly connected to the
method.

Lemma 3.3. Let r be an integer and w a nonnegative real number such that
r ≥ 3, 2rw < 1. Then

(i) (1− w)−r ≤ 1 + 12
7 rw (ii) (1− w2)−r ≤ 1 + 72

67rw
2

(iii) (1 + w)r ≤ 1 + 4
3rw (iv) (1− w)−1/2 ≤ 1 + 3

5w.

Proof. (i) Let (1 − w)−1 = 1 + ζ. Since rw < 1/2, w < 1/6,
ζ = w(1 − w)−1 < 1/5, rζ ≤ (6/5)rw < 3/5 and (1 − w)−r = (1 + ζ)r, we
have

(1− w)−r = 1 + rζ

[
1 +

r − 1

2
ζ +

(r − 1)(r − 2)

2 · 3
ζ2 + · · ·+ ζr−2

]
+ ζr

≤ 1 + rζ

[
1 +

(
r − 1

2
ζ

)
++

(
r − 1

2
ζ

)2

+ · · ·

]
= 1 +

rζ

1− r−1
2 ζ

≤ 1 +
6

5

rw

1− 3
5rw

≤ 1 +
12

7
rw.
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The assertion (iii) is proved in an almost identical way while the proof of (ii)
uses the substitution (1−w2)−1 = 1+ ζ ′ and the inequalities rζ ′ ≤ (36/35)rw2,
rζ ′ < 6/70. In the proof of (iv) one can use the expansion of the function
(1−w)−1/2. Another way is to square the left and right side of that inequality,
use 1/(1− w) = 1 + w/(1− w) cancel out 1 and if w > 0, divide by w. �

Lemma 3.4. Let ak, bk, xk, ϵk be defined by the relation (3.13). Then

ϵ2k+1 ≤ xk
[
ϵ2k − 2(a2k + b2k)

]
, k ≥ 0.

Proof. For a given k, let i = i(k), j = j(k),

ai∗ = [a
(k)
i1 , a

(k)
i2 , . . . , a

(k)
i,i−1, a

(k)
i,i+1, . . . , a

(k)
i,j−1, a

(k)
i,j+1, . . . , a

(k)
in ],

aj∗ = [a
(k)
j1 , a

(k)
j2 , . . . , a

(k)
j,i−1, a

(k)
j,i+1, . . . , a

(k)
j,j−1, a

(k)
j,j+1, . . . , a

(k)
jn ],

a∗i = [a
(k)
1i , a

(k)
2i , . . . , a

(k)
i−1,i, a

(k)
i+1,i, . . . , a

(k)
j−1,i, a

(k)
j+1,i, . . . , a

(k)
ni ]

T

a∗j = [a
(k)
1j , a

(k)
2j , . . . , a

(k)
i−1,j , a

(k)
i+1,j , . . . , a

(k)
j−1,j , a

(k)
j+1,j , . . . , a

(k)
nj ]

T

where generally, cT is the transpose of c. Let a′i∗, a
′
j∗, a

′
∗i, a

′
∗j be the row-and

column-vectors built in the same way, but from the elements of A(k+1). The
transformation (2.2) implies[

a′i∗
a′j∗

]
= Ẑ∗

k

[
ai∗
aj∗

]
,

[
a′∗i a′∗j

]
=
[
a∗i a∗j

]
Ẑk.

We obtain∥∥∥∥[ a′i∗
a′j∗

]∥∥∥∥2
F

≤ ∥Ẑ∗
k∥22

∥∥∥∥[ ai∗
aj∗

]∥∥∥∥2
F

, ∥
[
a′∗i a′∗j

]
∥2F ≤ ∥Ẑk∥22 ∥

[
a∗i a∗j

]
∥2F .

Since ∥Ẑ∗
k∥22 = ∥Ẑk∥22 = 1/(1− bk) = xk (see [17]), we have

S2(A(k+1)) ≤ S2(A(k))− 2a2k +
(
∥Ẑk∥22 − 1)(∥ai∗∥2F + ∥aj∗∥2F

+∥a∗i∥2F + ∥a∗j∥2F
)
≤ xk(S

2(A(k))− 2a2k). (3.14)

The same analysis applies to B(k), so we have

S2(B(k+1)) ≤ xk(S
2(B(k))− 2b2k). (3.15)

Since B(k) has unit diagonal, we have ϵ2l = (S2(A(l)) + S2(B(l)) for l = k, k+1.
By adding the inequalities (3.14) and (3.15) we obtain the assertion of the
lemma. �
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Lemma 3.5. Let ak, bk, bmax, xk, ϵk be defined by the relation (3.13). If the
assumptions (3.11) and (3.12) hold, then under any pivot strategy, we have

N−1∑
k=0

(a2k + b2k) ≤ 0.876914ϵ20, (3.16)

bmax < 0.8795
1

2N
, (3.17) S2(A(k))

S2(B(k))
ϵ2k

 ≤ x0 · · · xk−1

 S2(A(0))
S2(B(0))
ϵ20

 , 1 ≤ k ≤ N, (3.18)

x0 · · · xk−1 < (1− bmax)
−N < 1.75383, 1 ≤ k ≤ N. (3.19)

Proof. The proof has been moved to Appendix.

Lemma 3.6. Let the assumptions (3.11) and (3.12) hold and let δ be as in the
relation (3.3). Then for each pair of indices (r, t), 1 ≤ r < t ≤ n, and for each
k such that 0 ≤ k ≤ N , we have:

either |a(k)rr − a
(k)
tt | > 2.56154 δ or |a(k)rr − a

(k)
tt | < 0.43846 δ. (3.20)

The relation (3.20) holds under any pivot strategy.

Proof. By the assumption (3.12) and the assertions (3.18) and (3.19) of
Lemma 3.5 we have

(1+µ2)ϵ2k ≤ 1.75383(1+µ2)ϵ20 <
1.75383 δ2

4
< 0.43846 δ2, 0 ≤ k ≤ N. (3.21)

From the relation (3.21) we see that for each 0 ≤ k ≤ N , Lemma 3.1 can be
applied to the matrix pair (A(k), B(k)). We obtain

2

n∑
r=0

|a(k)rr − λ(k)r |2 ≤ ϵ4k
δ20

< (0.43846δ)2, 0 ≤ k ≤ N, (3.22)

where λ
(k)
1 , . . . ,λ

(k)
n is an ordering of the eigenvalues depending on k. If λ

(k)
r ̸=

λ
(k)
t then by the definition of δ (see (3.2), (3.3)) and by (3.22), we have

|a(k)rr − a
k)
tt | ≥ |λ(k)r − λ

(k)
t | − |a(k)rr − λ(k)r | − |λ(k)t − a

(k)
tt | (3.23)

≥ 3δ −
√
2|a(k)rr − λ

(k)
r |2 + 2|a(k)tt − λ

(k)
t |2 > 2.56154δ.

This proves the first part of the assertion (3.20).

If λ
(k)
r = λ

(k)
t then using (3.22), we have

|a(k)rr − a
(k)
tt | = |a(k)rr − λ(k)r + λ

(k)
t − a

(k)
tt | ≤ |a(k)rr − λ(k)r |+ |λ(k)t − a

(k)
tt |

≤
√
2|a(k)rr − λ

(k)
r |2 + 2|a(k)tt − λ

(k)
t |2 < 0.43846 δ,
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which proves the second part of the assertion (3.20). �

From Lemma 3.6 we see that the set

S ′ =
{
k ∈ {0, 1, . . . , N − 1} ; |a(k)i(k)i(k) − a

(k)
j(k)j(k)| > 2δ

}
(3.24)

is well defined for any pivot strategy, provided the assumptions (3.11) and (3.12)
hold. For simplicity, we use the notation

∑′
k instead of

∑
k, k∈S .

Lemma 3.7. Let the assumptions (3.11) and (3.12) hold and let ϕk, ψk, ϵk, δ
and µ be defined by the relations (2.11), (3.13), (3.3) and (3.5). Then

N−1∑
k=0

′
sin2 ωk ≤ 0.60583283(1 + µ2)

ϵ20
δ2
, (3.25)

where ωk ∈ {ϕk, ψk}, 0 ≤ k ≤ N − 1. The relation (3.25) holds under any pivot
strategy. If all eigenvalues λi are simple then the sum

∑′
k reduces to the usual

sum
∑
k and the constant 0.60583283 can be replaced by 0.4736138.

Proof. The proof has been moved to Appendix.

To simplify notation, let us now assume that besides (3.11) and (3.12) we
also have

a
(0)
11 ≥ a

(0)
22 ≥ . . . ≥ a(0)nn . (3.26)

Then the assertions (3.9) and (3.10) of Theorem 3.2 hold for the partition (3.7)
of A(0) and B(0). The question arises whether those estimates hold for the first
N steps under any pivot strategy. The following lemma states that this is true
provided the condition (3.12) is modified to be more stringent.

Lemma 3.8. Let the assumptions (3.11), (3.12) and (3.26) hold. If

ϵ20 <
δ0

µ+ 1
δ2, (3.27)

where ϵ0, µ and δ0, δ are defined by the relations (3.13), (3.5) and (3.3), re-
spectively, then

∥A(k)
rr − λsrB

(k)
rr ∥F ≤ 1

δr

p∑
t=1
t̸=r

∥A(k)
rt − λsrB

(k)
rt ∥2F , 1 ≤ r ≤ p (3.28)

and

2

p∑
r=1

∥A(k)
rr − λsrB

(k)
rr ∥2F ≤ (1 + µ2)2T 4

k

δ2
=

T 4
k

δ20
≤ ϵ4k
δ20

(3.29)

hold for every 0 ≤ k ≤ N . In the relations (3.28) and (3.29), λsr , δr, T k,
ϵk are defined by the relations (3.1), (3.2), (3.13), and the matrices A(k), B(k)

are partitioned in accordance with the relation (3.7). The both assertions hold
under any pivot strategy.

Proof. The proof has been moved to Appendix.
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4. The Quadratic Convergence Proof

Here we prove the quadratic convergence of the cyclic HZ method in the case
of simple eigenvalues of the pair (A,B). We consider matrix pairs (A(0), B(0)),
(A(1), B(1)),. . . ,(A(N), B(N)) and assume that S(A(0), B(0)) is sufficiently small.
Thus, we have p = n, 3δ = minr ̸=t |λr − λt| and T k = ϵk, k ≥ 0.

Theorem 4.1. Let the assumptions (3.11), (3.12) hold for the pair (A(0), B(0))
and let the sequence of pairs ((A(k), B(k)), k ≥ 0) be generated by a cyclic
HZ method defined by relations (2.7)–(2.16). If the eigenvalues of the pair
(A(0), B(0)) are simple, then

ϵN ≤
√
N(1 + µ2)

ϵ20
δ
. (4.1)

Moreover, if the pivot strategy is row-cyclic, then

ϵN ≤
√
1 + µ2

ϵ20
δ
. (4.2)

Proof. The proof uses the technique developed by J.H. Wilkinson in [27].
We first prove that (4.1) holds for an arbitrary cyclic strategy. Since the trans-
formation of the elements of A(k) use the same formulas as those of B(k), we
shall pay our attention only to the elements of A(k), 0 ≤ k ≤ N .

For a fixed k, 0 ≤ k ≤ N −1, the pivot indices i = i(k) and j = j(k) are also

fixed. Consider the elements a
(r)
ij , r = k + 1, . . . ,N . Note that a

(k+1)
ij = 0 and

after that step a
(r)
ij changes at most 2(n− 2) times. By r1, . . . ,rs (s ≤ 2n− 4)

denote those values of r for which a
(r)
ij changes in the rth step. For simplicity

we set ht = a
(rt+1)
ij , 0 ≤ t ≤ s, where r0 = k and h0 = 0. Then the relations

(2.2), (2.8) and (3.13) imply

h1 =
√
yr1

(
0 · cos(ω′

r1)± a(r1)eıν1 sin(ωr1)
)

h2 =
√
yr2

(
h1 · cos(ω′

r2)± a(r2)eıν2 sin(ωr2)
)

...

ht =
√
yrt

(
ht−1 · cos(ω′

rt)± a(rt)eıνt sin(ωrt)
)


(4.3)

where ω′
rt , ωrt ∈ {ϕrt , ψrt}, νt ∈ {αrt ,−αrt , βrt ,−βrt}, while a(rt) is a certain

off-diagonal element of A(rt). From (4.3) we obtain for 1 ≤ t ≤ s,

|ht| ≤
t∑
l=1

√
yrl · · · yrt |a(rl)| | sin(ωrl)| ≤ (1–bmax

2 )−t/2
t∑
l=1

|a(rl)| | sin(ωrl)|. (4.4)

Set
A(k) = D

(k)
A + E(k), D

(k)
A = diag(a

(k)
11 , . . . , a

(k)
nn ), k ≥ 0.
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The matrix E(N) consists exactly of the elements hs. Note that here s is a
function of the pivot pair (i, j) (hence of k) and the cyclic pivot strategy under
consideration. From the relation (4.4) we conclude that

|E(N)| ≤ (1− bmax
2 )−(n−2)

(
|P (1)| | sin(ω1)|+ |P (2)| | sin(ω2)|+ · · ·

+ |P (N−1)| | sin(ωN−1)|
)
, (4.5)

where each matrix P (k) contains nonzero elements only at those positions of
the i’th and j’th row and column which have already been pivot positions. The
nonzero elements of P (k) are certain elements of E(k) belonging to the i’th and
j’th row and column. Here we use notation |C| = (|crt|) where C = (crt) is an
arbitrary matrix.

By the assertions (3.18) and (3.19) of Lemma 3.5 we obtain

∥ |P (k)| ∥F = ∥P (k)∥F ≤ S(A(k)) ≤
√
1.75383S(A(0)), 1 ≤ k ≤ N − 1. (4.6)

Since n ≥ 3, by Lemma 3.3(ii) and the assertion (3.17) of Lemma 3.5, we obtain

(1− bmax
2 )−(n−2) ≤

[
(1− bmax

2 )−2N
]1/n ≤

[
1 +

72

67

0.87952

3 · 2

]1/3
< 1.0442. (4.7)

Finally, using relations (4.5)–(4.7) and the second assertion of Lemma 3.7, we
obtain

S(A(N)) = ∥E(N)∥F = ∥ |E(N)| ∥F ≤ 1.0442
√
1.75383S(A(0))

N−1∑
k=1

| sin(ωk)|

≤ 1.0442
√
1.75383S(A(0))

[
(N − 1)

N−1∑
k=1

sin2(ωk)

]1/2
≤ 1.0442

√
1.75383 · 0.4736138

√
(N − 1)(1 + µ2)

ϵ0
δ
S(A(0))

≤ 0.95168
√
N(1 + µ2)

ϵ0
δ
S(A(0)). (4.8)

The same analysis applies to the matrices B(k), 0 ≤ k ≤ N , yielding the same
bound connecting S(B(N)) and S(B(0)). Therefore, the first assertion (4.1)
follows from (4.8) and the definition of ϵk (see (2.5) and (3.13)).

To prove the assertion (4.2) we apply the analysis that was used in proving
the relation (4.3). Recall that by our notation, for 2 ≤ t ≤ n, the (1, t)-element

is annihilated in step k = t − 2. Thus a
(t−1)
1t = 0 and we consider how that
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(1, t)-element changes in the next n− t steps. We have

a
(t)
1t =

√
yt−1

(
0 · cos(ϕt−1) + a

(t−1)
t+1,t e

ıβt−1 sin(ψt−1)
)

a
(t+1)
1t =

√
yt

(
a
(t)
1t · cos(ϕt) + a

(t)
t+2,te

ıβt sin(ψt)
)

...

a
(n−1)
1t =

√
yn−2

(
a
(n−2)
1t · cos(ϕn−2) + a

(n−2)
n,t eıβn−2 sin(ψn−2)

)
.

Therefore, for the elements of the first row we have

|a(n−1)
1t | ≤

n−1∑
r=t

√
yr−1yr · · · yn−2| sin(ψr−1)| |a(r−1)

r+1,t |, 2 ≤ t ≤ n− 1.

Using the Cauchy-Schwarz inequality, we obtain for 2 ≤ t ≤ n− 1,

|a(n−1)
1t |2 ≤

n−1∑
r=t

|a(r−1)
r+1,t |2

n−1∑
r=t

yr−1yr · · · yn−2 sin
2(ψr−1)

=

n∑
r=t+1

|a(r−2)
rt |2

n−2∑
r=t−1

yryr+1 · · · yn−2 sin
2(ψr). (4.9)

Since a
(n−1)
1n = 0, the relation (4.9) implies

n∑
t=2

|a(n−1)
1t |2 ≤

[
n−1∑
t=2

n∑
r=t+1

|a(r−2)
rt |2

]
n−2∑
r=1

yryr+1 · · · yn−2 sin
2(ψr). (4.10)

Let us estimate the sum in the brackets. Recall that each A(k) is Hermitian.
Hence

|a(r−2)
rt |2 = |a(r−2)

tr |2, t < r.

Note that a
(r−2)
tr is the element at (t, r) position just prior to the transformation

that annihilates (1, r)-element. Therefore its value is the same as of a
(t−1)
tr .

Hence, we have

Γ =

n−1∑
t=2

n∑
r=t+1

|a(r−2)
rt |2 =

n−1∑
t=2

n∑
r=t+1

|a(t−1)
tr |2 =

n−1∑
r=2

n∑
t=r+1

|a(r−1)
rt |2, (4.11)

where we switched the indices t↔ r. To bound Γ, we use the inequality

n∑
t=r+1

|a(r−1)
1t |2+

n∑
t=r+1

|a(r−1)
rt |2 ≤ xr−2

n∑
t=r+1

|a(r−2)
1t |2+xr−2

n∑
t=r+1

|a(0)rt |2, (4.12)

which holds for 2 ≤ r ≤ n−1. Namely, we have ∥Ẑ∗
r−2∥22 = 1/(1−br−2) = xr−2,

2 ≤ r ≤ n−1 (cf. the proof of Lemma 3.4). For r = 2, 3, . . . , n−2 let us multiply
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(4.12) by xn−3xn−4 · · ·xr−1. We obtain

xn−3 · · ·xr−1

n∑
t=r+1

|a(r−1)
1t |2 + xn−3 · · ·xr−1

n∑
t=r+1

|a(r−1)
rt |2

≤ xn−3 · · ·xr−2

n∑
t=r+1

|a(r−2)
1t |2 + xn−3 · · ·xr−2

n∑
t=r+1

|a(0)rt |2, 2 ≤ r ≤ n− 2,

For r = n− 1, the last inequality in (4.12) is left unchanged:

|a(n−2)
1n |2 + |a(n−2)

n−1,n|2 ≤ xn−3|a(n−3)
1n |2 + xn−3|a(n−3)

n−1,n|2.

Let us sum so obtained inequalities. After cancelation, we obtain

|a(n−2)
n−1,n|2 + xn−3

n∑
t=n−1

|a(n−3)
n−2,t |2 + xn−3xn−4

n∑
t=n−2

|a(n−4)
n−3,t |2 + · · ·

+xn−3 · · ·x1
n∑
t=3

|a(1)2t |2 + z ≤ xn−3 · · ·x0

(
n∑
t=3

|a(0)1t |2 +
n∑
t=3

|a(0)2t |2
)

+ xn−3 · · ·x1
n∑
t=4

|a(0)3t |2 + · · ·+ xn−3|a(0)n−1,n|2, (4.13)

where z,

z = x1 · · ·xn−3|a(1)13 |2 + x2 · · ·xn−3|a(2)14 |2 + · · · xn−3|a(n−3)
1,n−1|2 + |a(n−2)

1,n |2

is a nonnegative quantity. Since all xk, 0 ≤ k ≤ n − 3 are not smaller than
1, we see that Γ from the relation (4.11) is not larger than the left side of the
inequality (4.13) without z. Hence it is not larger than the right side of (4.13).
Therefore, we have

Γ ≤ x0 · · ·xn−3
S2(A(0))

2
. (4.14)

Combining relations (4.10), (4.11) and (4.14), we have

n∑
t=2

|a(n−1)
1t |2 ≤ x0 · · ·xn−3 · y1 · · · yn−2

S2(A(0))

2

n−1∑
r=1

sin2(ψr−1). (4.15)

During later transformations the elements of the first row can increase by mod-
ulus. Since ∥Ẑk∥2 =

√
xk, it is easy to show that for 2 ≤ i(k) < j(k) ≤ n, we

have

|a(k+1)
1,i(k) |

2+ |a(k+1)
1,j(k)|

2 ≤ xk(|a(k)1,i(k)|
2+ |a(k)1,j(k)|

2) ≤ 1

1− bmax
(|a(k)1,i(k)|

2+ |a(k)1,j(k)|
2).

Furthermore, we know that after step k = n − 1 each element of the first row
(except of the (1, 2)-element) will change exactly n− 2 times. Hence, the latest

16

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



relation and relation (4.15) imply

n∑
t=2

|a(N)
1t |2 ≤ 1

(1− bmax)n−2

n∑
t=2

|a(n−1)
1t |2

≤ S2(A(0))

2(1− bmax)2(n−2)(1− bmax
2 )n−2

n−2∑
r=1

sin2(ψr). (4.16)

We can make the same analysis for other rows. To this end it is convenient
to temporarily denote the angle ψk which is used in the annihilation of the
(i, j)-element by ψij . Then for the second row we have

n∑
t=3

|a(N)
2t |2 ≤ S2(A(n−1))

2(1− bmax)2(n−3)(1− bmax
2 )n−3

n∑
r=4

sin2(ψ2r)

≤ x0x1 · · ·xn−2 S
2(A(0))

2(1− bmax)2(n−3)(1− bmax
2 )n−3

n∑
r=4

sin2(ψ2r). (4.17)

Here, we used assertion (3.18) of Lemma 3.5. More generally, for 1 ≤ r ≤ n− 2
we have

n∑
t=r+1

|a(N)
rt |2 ≤ (1− bmax)

n−(n+n−1+···+n−r+1) S2(A(0))

2(1− bmax)2(n−(r+1))(1− bmax
2 )n−(r+1)

n∑
s=r+2

sin2(ψrs)

≤ 1.75383S2(A(0))

2(1− bmax
2 )n−(r+1)

n∑
s=r+2

sin2(ψrs), (4.18)

where we used assertions (3.18) and (3.19) of Lemma 3.5 and the fact that

n−1+ · · ·+n−r+1+2(n−(r+1) < n−1+ · · ·+n−r+1+n−r+n−r−1 ≤ N.

Summing up the inequalities in (4.18) for r = 1, 2, . . . n − 2 and taking into

account a
(N)
n−1,n = 0, we obtain

1

2
S2(A(N)) ≤ 1.75383S2(A(0))

2(1− bmax
2 )n−2

n−2∑
r=1

n∑
s=r+2

sin2(ψrs). (4.19)

Using yet Lemma 3.7 (the second assertion), we have

S2(A(N)) ≤ 1.75383S2(A(0))

(1− bmax
2 )n−2

0.4736138(1 + µ2)
ϵ20
δ2
. (4.20)

Note that relation (3.17) implies 2(n − 2)bmax < 2 · 0.8795/n < 1. Hence the
assertion (ii) of Lemma 3.3 can be applied to obtain

(1− bmax
2 )−(n−2) ≤ 1 +

72

67
(n− 2)bmax

2 < 1 +
72

67
(n− 2)

0.87952

n2(n− 1)2

< 1 +
72

67

0.87952

9 · 2
< 1.04618032. (4.21)
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Combining the relations (4.21) and (4.20) we obtain

S2(A(N)) ≤ 0.869(1 + µ2)
ϵ20
δ2

S2(A(0)).

The same analysis applies to matrices B(k), 0 ≤ k ≤ N and it yields the
same bound connecting S(B(N)) and S(B(0)). Hence, summing up the obtained
inequalities, we have

ϵN ≤
√

0.869(1 + µ2)
ϵ20
δ

≤ 0.932201
√

1 + µ2
ϵ20
δ
, (4.22)

which proves the theorem. �

The estimates (4.1) and (4.2) are quite analogous to the known ones for the
standard Jacobi method for symmetric matrices obtained by Wilkinson [27].

The factor
√

1 + µ2, which does not appear in the estimates for the standard

Jacobi method, originates from the presence of the sum a
(k)
ii + a

(k)
jj in the nu-

merator of the ratio defining tan(2θk). The assumption (3.12) is approximately√
1 + µ2 times stronger than the assumption in [27].
By inspecting the quadratic convergence proof of the row-cyclic HZ method,

especially the derivation of the relation (4.19), one can see that the angles ψr,r+1,
r = 1, . . . , n−1, do not appear in the bound. This fact can be used to prove the
quadratic convergence if the eigenvalues have multiplicity at most 2. However,
the asymptotic assumption (3.12) has to be replaced by a more stringent one,
so that during iteration the diagonal elements converging to the same double
eigenvalue remain in adjacent positions on the diagonal.

Corollary 4.2. Let the assumptions (3.11), (3.12), (3.27) hold. Let the eigen-
values of of the pair (A(0), B(0)) be at most double. If the condition

|a(0)rr − a(0)ss | < δ ⇒ s ∈ {r − 1, r, r + 1} (4.23)

holds, then the row-cyclic HZ method is quadratically convergent and the relation

ϵN ≤ 1.055
√
1 + µ2

ϵ20
δ
. (4.24)

holds. The estimate (4.24), as well as (4.22) in the case of simple eigenvalues,
remain to hold if the pivot strategy is any wavefront strategy or the de Rijk
strategy.

Proof. The condition (4.23) together with relations (3.12), (3.27), (3.11) and
Lemma 3.8 ensure that the diagonal elements affiliated with double eigenvalues
take adjacent positions on the diagonal of A(0) and remain such during the whole
cycle. This then ensures that the relation (4.19) holds. Now, using Lemma 3.7
(this time with the constant 0.6058327 instead of 0.4736138), we obtain

ϵN ≤
√
1.75383 · 0.6058327 · 1.04618032 (1 + µ2)

ϵ20
δ

≤ 1.0543223
√

1 + µ2
ϵ20
δ
,
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which proves the bound in (4.24).
For the second assertion, it suffices to show that matrices A(N) and B(N)

obtained from A(0) and B(0) using the row-cyclic pivot strategy are the same as
those obtained by any wavefront strategy. For the column-cyclic strategy the
proof can be found in [7, 3.7 Lemma]. It is based on the proof from [6]. For
a general wavefront strategy, the proof is combinatorial and almost identical to
that from [23]. The only difference comes from the fact that the transformation
matrices are not orthogonal, which is irrelevant for the proof.

Finally, for the de Rijk strategy, one can check whether the main relations in
the proof, like relations (4.15), (4.16), (4.17) and (4.18) remain to hold. They do
because the transposition Is,rs does not change the sum of squares of elements
in row l, l < i. �

If δ is tiny due to a pair of very close eigenvalues then the estimates (4.1) and
(4.2) imply that ϵN is not “essentially smaller” than ϵ0. The following result
implies that in such a situation, certain off-diagonal elements of A(N) and B(N)

are still essentially smaller than ϵ0. To simplify notation, we introduce vector
δ̃,

δ̃ = [δ̃1, . . . , δ̃n] = [δ1, . . . , δ1, . . . , δp, . . . , δp]. (4.25)

For each r, 1 ≤ r ≤ p, δr is defined by the relation (3.2) and it appears in δ̃
exactly nr times.

Corollary 4.3. Let the assumptions (3.11), (3.12), (3.26) and (3.27) hold and
let the eigenvalues of the pair (A(0), B(0)) be at most double. Let the sequence of
pairs ((A(k), B(k)), k ≥ 0) be generated by the HZ method under some wavefront
strategy. Then we have

n∑
t=r+1

(
|a(N)
rt |2 + |b(N)

rt |2
)
≤ 0.5558

1 + µ2

δ̃2r
ϵ40, 1 ≤ r ≤ n− 1,

where δ̃r are defined by the relation (4.25). If all eigenvalues are simple than
the constant 0.5558 can be replaced by 0.4345.

Proof. The proof has been moved to Appendix.

If any of the conditions in Theorem 4.1 fails to hold, one can easily find a
matrix pair for which the quadratic convergence fails. The following example
sheds light to the failure of the quadratic convergence of the HZ method under
the row-cyclic strategy provided that some eigenvalue has multiplicity larger
than 2. The analysis for the de Rijk strategy is the same.

Example 4.4. Let n = 5 and let the eigenvalues of the initial matrix pair
(A,B) satisfy λ1 > λ2 = λ3 = λ4 > λ5. Using the notation from (3.1), we
have s1 = 1, s2 = 4 and s3 = 5. Suppose the row-cyclic HZ method is ap-
plied to (A,B) and we stop the process in step k when the conditions (3.11),
(3.12) and (3.27) are met. Then we apply the transformation (A(k), B(k)) 7→
(PTA(k)P, PTB(k)P ) where the permutation matrix P is chosen to order the
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diagonal elements of PTA(k)P nonincreasingly. We reset the step counter, so
that (A(0), B(0)) = (PTA(k)P, PTB(k)P ). Then we consider one cycle of the
row-cyclic HZ method applied to (A(0), B(0)).

After the first 5 steps we obtain (A(5), B(5)). We consider the subsequent step
(k = 6) and apply the qualitative analysis which uses the asymptotic notation
with big O symbol. To simplify notation, we set A(5) = (art), B

(5) = (brt),
A(6) = (a′rt), B

(6) = (b′rt) and ε = S(A(5), B(5)). We have

A(5) =


a11 a12 a13 a14 a15
ā12 a22 0 a24 a25
ā13 0 a33 a34 a35
ā14 ā24 ā34 a44 a45
ā15 ā25 ā35 ā45 ā55

 , B(5) =


1 b12 b13 b14 b15
b̄12 1 0 b24 b25
b̄13 0 1 b34 b35
b̄14 b̄24 b̄34 1 b45
b̄15 b̄25 b̄35 b̄45 1

 .

From the proof of Theorem 4.1 we know that ∥[a12 a13 a14 a15]∥2 = O(ε2),
∥[b12 b13 b14 b15]∥2 = O(ε2). Other off-diagonal elements of both matrices are
generally equal to O(ε). In particular, we assume |a24| + |b24| = O(ε) and
|a34|+ |b34| = O(ε).

To simplify exposition, let λs1 = 3, λs2 = 2, λs3 = 1, so that δ1 = δ2 = δ3 =
δ = 1. By Theorem 3.2 we have

∥

 a22 0 a24
0 a33 a34
ā24 ā34 a44

− 2

 1 0 b24
0 1 b34
b̄24 b̄34 1

 ∥ = 5(∥[a12 a13 a14 a15]∥2

+ ∥[b12 b13 b14 b15]∥2 + ∥[a25 a35 a45]∥2 + ∥[b25 b35 b45]∥2) = O(ε2).(4.26)

In step 6 the pivot elements are a24 and b24. From relations (2.9)–(2.13) and
(4.26) we obtain

u24 + ıv24 =
a24b̄24
|b24|

=
(2b24 + α24)b̄24

|b24|
= 2|b24|+ α′

24,

τ24 =
√
1− |b24|2 = 1−O(ε2),

| tan(2θ24)| =
|2u24 − (a22 + a44)|b24| |
τ24
√

(a22 − a44)2 + 4v224
=

|4|b24| − 4|b24|+ β24|
τ24
√
(β′

24)
2 + 4(α′′

24)
2

=
|β24|

τ24
√

(β′
24)

2 + 4(α′′
24)

2
=
O(ε2)

O(ε2)
,

where β24 = O(ε2), β′
24 = O(ε) and α24, α

′
24, α

′′
24 = O(ε2). Thus, θ24 can be

any value in the segment [−π/4, π/4]. In a similar way we obtain cos(γ24) =
O(ε2)/O(ε2), sin(γ24) = O(ε2)/O(ε2), so γ24 can be any value in [−π/2, π/2].
Hence ϕ24 and ψ24 can be any value in [−π/2, π/2].

The same conclusion can be made for ϕ34 and ψ34 in step 8. Now, for
|a′23|+ |b′23| we have

|a′23|+ |b′23| = | sinψ24| · (|ā34|+ |b̄34|) = | sinψ24| · (|a34|+ |b34|) = O(ε).
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By a similar analysis one can see that in the steps 7, 9 and 10, the contributions
to all matrix elements are either 0 or equal to O(ε2). In step 8 the element

a
(8)
24 (b

(8)
24 ) is obtained from an expression that includes a

(7)
23 (b

(7)
23 ), respectively.

Hence they can become equal to O(ε). In any case, we conclude that |a(N)
23 | +

|a(N)
24 | = O(ε) or |b(N)

23 |+ |b(N)
24 | = O(ε), which shows the failure of the quadratic

convergence. �

4.1. The bounds for the real HZ method

All obtained results can be almost directly applied to the real HZ method.
So, the next section can be seen as an application of the previous theory.

If A and B are real then the complex HZ algorithm reduces to the real one.
Let us present the formulas of the real HZ algorithm, which can be found in
[7, 13]. We have

Ẑ =
1√

1− (bij)2

[
cosϕ − sinϕ
sinψ cosψ

]
=

[
c1 −s1
s2 c2

]
, (4.27)

where

cosϕ = cos θ − ξ(sin θ + η cos θ) = ρ cos θ − ξ sin θ

sinϕ = sin θ + ξ(cos θ − η sin θ) = ρ sin θ + ξ cos θ

cosψ = cos θ + ξ(sin θ − η cos θ) = ρ cos θ + ξ sin θ

sinψ = sin θ − ξ(cos θ + η sin θ) = ρ sin θ − ξ cos θ.

 (4.28)

Here

ξ =
bij√

1 + bij +
√
1− bij

, η =
bij

(1 +
√

1 + bij)(1 +
√
1− bij)

, (4.29)

ρ = 1− ξη = ξ +
√
1− bij =

1

2
(
√

1 + bij +
√
1− bij). (4.30)

One can show that ρ2 + ξ2 = 1 and (since |bij | < 1) |ξ| < ρ. The values of sin θ
and cos θ are computed from tan θ while tan θ is computed from tan(2θ),

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

, −π
4
≤ θ ≤ π

4
. (4.31)

If aii = ajj and 2aij = (aii + ajj)bij then Â and B̂ are proportional and we

choose θ = 0. Then Ẑ reduces to the relation (2.16) and it is easy to show that
a′ii = aii, a

′
jj = ajj .

The diagonal elements of B̂′ are ones, while the diagonal elements of Â′ can
be computed using the formulas [13],

a′ii = aii +
1

1− b2ij

[
(b2ij − sin2 ϕ) aii + 2 cosϕ sinψ aij + sin2 ψ ajj

]
,(4.32)

a′jj = ajj −
1

1− b2ij

[
(sin2 ψ − b2ij) ajj + 2 cosψ sinϕaij − sin2 ϕaii

]
.(4.33)
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To prove the quadratic convergence of the real HZ method, we shall use the
same asymptotic assumptions (3.11), (3.12) and all of the notation from (3.13)
that applies to the real algorithm. Note that all matrices A(k) are symmetric
and all B(k) are symmetric positive definite with unit diagonal.

Theorem 4.5. Let the assumptions (3.11), (3.12) hold for real symmetric A(0)

and B(0), where B(0) is positive definite with unit diagonal. Let the sequence of
pairs ((A(k), B(k)), k ≥ 0) be generated by the real cyclic HZ method defined by
the relations (4.27)–(4.33).

If the eigenvalues of the pair (A(0), B(0)) are simple, then the relation (4.1)
holds for any cyclic pivot strategy. If the pivot strategy is row-cyclic or any
wavefront strategy, then the relation (4.2) holds.

If in addition the conditions (3.27) and (4.23) hold then the relation (4.2)
holds for any wavefront strategy even if the eigenvalues are double.

Corollary 4.3 holds with constants 0.4079 and 0.2863 instead of 0.5558 and
4345.

Proof. The proof has been moved to Appendix.

5. The numerical experiments in MATLAB

The goal of this section is twofold. First, to inspect how the method behaves
asymptotically when the eigenvalues of the PGEP are simple, double and mul-
tiple. Second, to see whether some special pivot strategies, such as the de Rijk
strategy from [2] can reduce total number of cycles. We have made two MAT-
LAB functions, dsychz qc(A,B,eivec) and dsychz qcsortd(A,B,eivec). In
the first (second) function the method uses the row-cyclic (de Rijk) strategy.
The de Rijk strategy is essentially the row-cyclic strategy that tries to order the
diagonal elements of A(k) in descending order during the process, with mod-
est cost. The function dsychz qc(A,B,eivec) was coded exactly following the
lines of the HZ algorithm which is displayed at the end of Section 2. Except for
the pivot strategy, all other parameters of the two functions are identical (same
input, same output, same statements).

The input to dsychz qc(A,B,eivec) are the initial matrices A, B and eivec

parameter which determines whether the matrix of eigenvectors has to be com-
puted.

The output to dsychz qc are: the eigenvector matrix, the column vector of
eigenvalues, the total number of cycles (cycles) and steps (steps), the vari-
able info and steps×5 matrix qc. The k’th row of qc is row-vector with 5

components: S(A
(k)
S ), S(A(k)), S(B(k)), S(A(k), B(k)) and S(A

(k)
S , B(k)).

We shall construct 3 matrix pairs. The first has simple, the second has
double and the third has multiple eigenvalues. For each pair (A,B) we display
2 figures. The first (second) is related to the method that uses the row-cyclic
(de Rijk) strategy. In each figure we display the graphs of 4 functions. The
first function is k 7→ S(A(k), B(k)), k ≥ 0, then k 7→ S(A(k)), k 7→ S(B(k)) and

k 7→ S(A
(k)
S ), where A

(k)
S = D

−1/2
k A(k)D

−1/2
k , Dk = diag(|A(k)|), k ≥ 0. These
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functions are obtained from the output matrix qc. We note that the function

S(A
(k)
S ) is important when both matrices A and B are positive definite. Then the

spectral condition numbers of A
(0)
S and B(0) determine whether the pair (A,B)

is well-behaved [13, 3, 26]. Also, in the stopping criterion (2.6) the quantity

S(A
(k)
S , B(k)) is used. We have displayed the graphs of those 4 functions using

the logarithmic scale (y-axis only). This is accomplished by the MATLAB
semilogy function.

Once the quadratic convergence assumptions are met, we expect a significant
drop of the function values at the end of every cycle. Therefore we have labeled
x-axis ticks by 0, . . . cycles. The tick labeled t corresponds to the step t ·N .

The matrix pairs have been generated using the following code:

function [A,B] = genmatAB(da,db,cndF);

n=length(da); X= ones(n)-2*rand(n)+1i*rand(n); [U,~] = qr(X);

D=diag(linspace(1e1^(-cndF/2),1e1^(cndF/2),n)); F=D*U;

A = F’*diag(da)*F; A=0.5*(A+A’); B = F’*diag(db)*F; B=0.5*(B+B’);

end

This way we have control over the condition of the transformation matrix F :
κ2(F ) = 10cndF. We know that the eigenvalues of the pair (A,B) are (up to the
influence of rounding errors) entries of the vector da. This is a consequence of
the choice of the vector db. It contains n units: db= [1, 1, . . . , 1].

Our choice is n= 128, cndF= 2. We shall not delve in the construction of the
vector da which depends on several parameters. Since the figures are displayed
for only 3 matrix pairs, we only describe how these 3 vectors da are constructed.
Then we shall present and comment the graphs of the functions.

5.1. Simple eigenvalues

The vector da is computed using the code: da = linspace(1.0,1000.0,n);

Hence both matrices A and B are positive definite and the eigenvalues of the
pair (A,B) are very close to the entries of the vector da. The characteristic
data are: δ ≈ 2.622, µ = 103, κ2(A) ≈ 107, κ2(B) ≈ 104, κ2(AS) ≈ 9.89 · 106,
κ2(BS) ≈ 9.93 · 103. The diagonal elements of A(0) make a slowly increasing
sequence of numbers: 743.54, 768.07, . . . , 760.01. The asymptotic conditions
(3.11) and (3.12) take the form:

S(B(0)) <
1

128 · 127
≈ 6.15·10−5, ϵ0 <

δ

2
√
1 + µ2

≈ 2.622

2
√
1000001

≈ 1.311·10−3.

We expect that after S(A(k), B(k)) reaches the value 10−5, the quadratic con-
vergence will commence. In Figure 1 (Figure 2) are displayed the graphs of the
functions obtained by applying the complex HZ method with the row-cyclic (de
Rijk) pivot strategy.

We can see from the graphs that the quadratic convergence commenced
after S(A(k), B(k)) reached the value 10−5. We see that the total number of
cycles equals 14 (9) for the row-cyclic (de Rijk) strategy. The behavior of the
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
cycle

10-20

10-15

10-10

10-5

100

105

y

The row-cyclic HZ method

   S(A(k),B(k))

   S(A(k))

   S(B(k))

   S(A
S
(k))

Figure 1: The graphs of the functions S(A(k), B(k)), S(A(k)), S(B(k)), S(A
(k)
S )

]

0 1 2 3 4 5 6 7 8 9 10
cycle

10-20

10-15

10-10

10-5

100

105

y

The HZ method under the deRijk strategy

   S(A(k),B(k))

   S(A(k))

   S(B(k))

   S(A
S
(k))

Figure 2: The graphs of the functions S(A(k), B(k)), S(A(k)), S(B(k)), S(A
(k)
S )

functions in Figure 2 is just perfect. This probably comes from the fact that
the descending ordering of the diagonal elements during the process plays an
important role in better performance of the method. We note that the diagonal
elements of A(0) are increasingly ordered, so the row-cyclic method had to cope
with that. On the other hand, under the de Rijk strategy the matrices A(0)

and B(0) are symmetrically permuted by permutation P so that PTA(0)P has
nonincreasing ordering of the diagonal entries.

5.2. Double eigenvalues

In this case the vector da has been generated by the statements:

da = linspace(1.0,1000,n); for i = 1:2:n-1, da(i) = da(i+1); end

Again, we have µ = 103 and since all components of da are double, we have
δ ≈ 5.2. The asymptotic assumptions (3.11) and (3.12) have the form: S(B(0)) <
6.2 · 10−5 and ϵ0 < 2.6 · 10−3. The additional condition (3.27) takes the form

ϵ0 <
[

δ0
µ+ 1

]1/2
δ =

[
δ

(µ+ 1)(µ2 + 1)

]1/2
δ ≈ 3.75 · 10−4

Thus ϵ0 ≈ 10−5 is the expected threshold. We note that yet the condition
(3.26) has to be satisfied. The behavior of the considered functions is displayed
in figures 5.2 and 5.2.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
cycle

10-20

10-15

10-10

10-5

100
y

The row-cyclic HZ method

   S(A
S
(k))

   S(A(k))

    S(B(k))

   S(A(k),B(k))

Figure 3: The graphs of the functions S(A(k), B(k)), S(A(k)), S(B(k)), S(A
(k)
S )

0 1 2 3 4 5 6 7 8 9 10 11
cycle

10-20

10-15

10-10

10-5

100

105

y

The HZ method under the deRijk strategy
   S(A

S
(k))

   S(A(k))

   S(B(k))

   S(A(k),B(k))

Figure 4: The graphs of the functions S(A(k), B(k)), S(A(k)), S(B(k)), S(A
(k)
S )

In Figure 3 we see the failure of the quadratic convergence. This comes from
the fact that the starting matrix A(0) has the diagonal elements in increasing
order and after 11 cycles when S(A(k), B(k)) is reduced to 10−5, the diagonal
elements failed to satisfy the condition (4.23).

On the other hand, the de Rijk strategy will ensure that the condition (4.23)
holds after just a few cycles. The quadratic convergence is clearly observed after
cycle 6. The total number of cycles is also reduced from 14 to 9. It is interesting
to see the slowdown of the quadratic convergence when S(A(k), B(k)) approaches
the convergence criterion. This is due to the rounding error influence. During
the generation of A and B, the double eigenvalues have been perturbed by tiny
perturbations and for small S(A(k), B(k)) the relevant δ is not 5.2 but a quantity
close to the unit round-off.

5.3. Multiple eigenvalues

In this case da has been generated by the code:

da=linspace(-1000, 1000,n);

for i=1:10:n-10, j=i; for k=j+1:j+9, da(k)=da(i); end, end

We have 12 multiple eigenvalues of the pair (A,B), each of multiplicity 10. Their
approximate values are −1000, −842.52, −685.04, . . . , 574.80, 732.28. We also
have 8 simple and equidistant eigenvalues in the interval [889.76, 1000]. These
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simple eigenvalues determine the value of δ. The diagonal elements of A(0) are
scattered between 360.58 and 527.92. They are not in a monotone order.

We have µ = 103 and δ ≈ 1.575. The conditions (3.11) and (3.12) have the
form: S(B(0)) < 6.2 ·10−5 and ϵ0 < 7.875 ·10−4. The condition (3.27) takes the
form ϵ0 < 3.967 · 10−5. If the quadratic convergence occurred, the threshold
would be ϵ0 ≈ 10−5. From figures 5.3 and 5.3 we see the failure of the quadratic
convergence.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
cycle

10-20

10-15

10-10

10-5

100

105

y

The row-cyclic HZ method

 S(A(k),B(k))

   S(A(k))

  S(B(k))

 S(A
S
(k))

Figure 5: The graphs of the functions S(A(k), B(k)), S(A(k)), S(B(k)), S(A
(k)
S )

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
cycle

10-20

10-15

10-10

10-5

100

105

y

The HZ method under the deRijk strategy

  S(A(k),B(k))

   S(A(k))

   S(B(k))

   S(A
S
(k))

Figure 6: The graphs of the functions S(A(k), B(k)), S(A(k)), S(B(k)), S(A
(k)
S )

Nevertheless, we see that the row-cyclic method required full 21 cycles to
reach the stopping criterion. On the other hand, the de Rijk strategy reduced
the number of cycles to 13.

6. Conclusions and Future Work

In this paper we have proved the quadratic asymptotic convergence of the
general cyclic complex HZ method in the case of simple eigenvalues. For the
wavefront pivot strategies the multiplicities of the eigenvalues can be at most
double. The same conclusion holds if a wavefront strategy is replaced by the de
Rijk strategy. The same results hold for the real method.

Future work can be concentrated on modifying the method to become quadra-
tically convergent in the case of multiple eigenvalues. In that case a prominent

26

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



role will be played by the quantity T (Ã, B̃) from the relation (3.8) and by The-
orem 3.2. The first steps in that direction are already made in [7]. The most
difficult obstacle appears to be detecting the multiplicities of the eigenvalues.
In the presence of tiny clusters of eigenvalues, the problem can be reduced to
the case of multiple eigenvalues by the technique presented in [9].

Since the de Rijk pivot strategy has proven to reduce the total number of
cycles, its importance has increased. So, the global convergence problem of
the HZ method under that pivot strategy should be solved by inspecting the
proofs and techniques from [5, 1, 17]. Another important problem that remains
open is the asymptotic quadratic convergence of the general cyclic block Jacobi
method from [18, 11]. Finally, an open problem is to prove the global and
asymptotic quadratic convergence of the real and complex, element-wise and
block HZ methods under the special parallel strategies from [21, 22].
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8. Appendix

8.1. Proof of Lemma 3.5

Using Lemma 3.4 we have

ϵ2k+1 ≤ xk
[
ϵ2k − 2(a2k + b2k)

]
≤ xk

{
xk−1

[
ϵ2k−1 − 2(a2k−1 + b2k−1)

]
− 2(a2k + b2k)

}
≤ . . . ≤ xkxk−1 · · ·x0ϵ20 − 2

k∑
r=0

xk · · ·xr(a2r + b2r)

≤ xk(1− bmax)
−kϵ20 − 2xk

k∑
r=0

(a2r + b2r), 0 ≤ k ≤ N − 1. (8.1)

Thus

ϵN/xN−1 ≤ (1− bmax)
−(N−1)ϵ20 − 2

N−1∑
r=0

(a2k + b2k),

and since ϵN ≥ 0, xN−1 = 1− bN−1 > 0, we have

N−1∑
r=0

(a2k + b2k) ≤
1

2
(1− bmax)

−(N−1)ϵ20 ≤ 1

2
(1− bmax)

−Nϵ20. (8.2)

To prove the bound for bmax we set βk = S(B(k))/
√
2, k ≥ 0. Then we have

bk ≤ βk, k ≥ 0. (8.3)

From the relation (3.15) we obtain

βk+1 ≤
√
xkβk ≤ βk√

1− βk
, k ≥ 0. (8.4)

By induction with respect to k, we obtain

βk ≤ β0√
1− kβ0

provided that kβ0 < 1.
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The assumption (3.11) yields kβ0 ≤ Nβ0 <
√
2/4. Hence

βk ≤
√
2

4N
/

√
1− k

√
2

4N
≤

[
4 +

√
2

7

]1/2
1

2N
, 0 ≤ k ≥ N. (8.5)

From relations (8.3) and (8.5) we obtain

bmax ≤ max
0≤k≤N

βk < 0.8794652241
1

2N
,

which proves the assertion (3.17).
To prove the assertion (3.16), note that (3.17) implies 2Nbmax < 1. Since

N ≥ 3, Lemma 3.3(i) implies

(1− bmax)
−N ≤ 1 +

12

7
Nbmax < 1 +

6

7

[
4 +

√
2

7

]1/2
< 1.753827335. (8.6)

Now, the assertion (3.16) follows from the inequalities (8.2) and (8.6). Since
x0 · · · xk−1 ≤ (1− bmax)N , the relation (8.6) implies the assertion (3.19).

Finally, the assertion (3.18) is implied by the relations (3.14), (3.15), (8.1)
and (8.6). Namely, for the first two components, S2(A(k)) and S2(B(k)), the
proof is quite similar to the proof for ϵ2(A(k)). �

8.2. Proof of Lemma 3.7

Using relation (2.12) and the Cauchy-Schwarz inequality, we obtain for k ≥
0,

tan2(2θk) ≤
4 + (a

(k)
ii + a

(k)
jj )

2

τ2k (e
2
k + 4v2k)

(u2k + b2k) ≤
4 + (a

(k)
ii + a

(k)
jj )

2

τ2ke
2
k

(a2k + b2k). (8.7)

To bound (a
(k)
ii + a

(k)
jj )

2, we use inequality 3δ ≤ 2µ (which was already used in
relation (3.4)) and relation (3.22). We have

|a(k)ii + a
(k)
jj | = |λ(k)i + λ

(k)
j + a

(k)
ii − λ

(k)
i + a

(k)
jj − λ

(k)
j |

≤ |λ(k)i + λ
(k)
j |+

√
2|a(k)ii − λ

(k)
i |2 + 2|a(k)jj − λ

(k)
j |2

< 2µ+ 0.43846δ ≤ µ(2 +
2

3
0.43846) < 2.2923067µ, k ∈ S ′.

The relations (3.13), (3.20) and (3.17) imply

e2k ≥ 2.561542δ2, k ∈ S ′, (8.8)

τ2k ≥ 1− bmax
2 ≥ 1−

(
0.8795

2N

)2

≥ 1−
(
0.43975

3

)2

> 0.9785133. (8.9)
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Inserting the obtained lower bounds for e2k and τ2k into (8.7), we have

sin2(2θk) ≤ tan2(2θk) ≤ 0.8184204
1 + µ2

δ2
(a2k + b2k), k ∈ S ′. (8.10)

To bound max{sin2 ϕk, sin2 ψk} we use relation (2.11) and nonnegativity of
cos(2θk) and cos γk. We have

2max{sin2 ϕk, sin2 ψk} ≤ 1− τk cos(2θk) cos γk + bk| sin(2θk)|

=
sin2(2θk) + cos2(2θk)(sin

2 γk + b2k cos
2 γk)

1 + τk cos(2θk) cos γk
+ bk| sin(2θk)|, k ≥ 0.(8.11)

For k ∈ S ′ the relations (8.10), (3.18), (3.19), (3.21), (2.13), (3.16) and (3.13)
imply

sin2(2θk) ≤ 0.8184204
1 + µ2

δ2
ϵ2k
2
< 0.179422,

cos(2θk) >
√
1− 0.179422 > 0.9058576,

| sin γk| ≤ 2
|vk|
|ek|

≤ 2

2.56154

ak
δ

≤ 0.780781
ak
δ
,

cos γk ≥
√
1− 0.7807812 · 0.876914

4
> 0.93078.


(8.12)

Since 3δ ≤ 2µ, we have √
1 + µ2

δ
>
µ

δ
≥ 3

2
. (8.13)

Using the inequalities (8.12), (8.13), (8.9) and (8.10) we obtain for k ∈ S ′

1

1 + τk cos(2θk) cos γk
< 0.545242402,

sin2 γk + b2k cos
2 γk ≤ 0.609619

1 + µ2

δ2
(a2k + b2k),

bk| sin(2θk)| ≤
√

4

9

1 + µ2

δ2
(a2k + b2k) ·

√
0.8184204

1 + µ2

δ2
(a2k + b2k)

≤ 0.60311061
1 + µ2

δ2
(a2k + b2k).

Inserting these bounds into (8.11) we obtain

2max{sin2 ϕk, sin2 ψk} ≤ 1 + µ2

δ2
(a2k + b2k) [0.545242402(0.8184204 + 0.609619)

+0.60311061] ≤ 1.3817383
1 + µ2

δ2
(a2k + b2k), k ∈ S ′. (8.14)

If p = n, i.e. if all eigenvalues are simple, then the assumption p ≥ 2, n ≥ 3
implies 3δ ≤ µ. Hence

√
1 + µ2/δ > µ/δ ≥ 3 and therefore

1 + µ2

δ2
> 3

√
1 + µ2

δ
> 9. (8.15)
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From the relations (8.12) and (8.15) we obtain

2max{sin2 ϕk, sin2 ψk} ≤ 1 + µ2

δ2
(a2k + b2k) [0.545242402(0.8184204 + 0.609619)

+0.301555305] ≤ 1.080183
1 + µ2

δ2
(a2k + b2k), k ∈ S ′. (8.16)

The relations (8.14) and (8.16) imply

max{sin2 ϕk, sin2 ψk} ≤

{
0.69086915 1+µ2

δ2 (a2k + b2k), p < n

0.5400915 1+µ2

δ2 (a2k + b2k), p = n

}
, k ∈ S ′. (8.17)

In the case bk = 0, ak ̸= 0 we have ϕk = ψk = θk, where

tan(2θk) = 2
|ak|
|ek|

≤ 2

2.56154

|ak|
δ
, k ∈ S ′,

hence

max{sin2 ϕk, sin2 ψk} ≤
(

1

2.56154

ak
δ

)2

, k ∈ S ′.

Thus, the inequality (8.17) also holds. Now, Lemma 3.7 follows from the in-
equalities (3.16) and (8.17). �

8.3. Proof of Lemma 3.8

Note that the inequality (3.21) holds for any pivot strategy. It implies√
1 + µ2ϵk ≤

√
0.43846 δ, 0 ≤ k ≤ N , which means that the assumption (3.6)

of Lemma 3.1 and Theorem 3.2 holds for all 0 ≤ k ≤ N . By Theorem 3.2, for
each k, 0 ≤ k ≤ N , there is a permutation matrix Pk such that the inequalities
(3.28) and (3.29) hold for the pair (P ∗

kA
(k)Pk, P

∗
kB

(k)Pk). From the relation
(3.26) we see that P0 = In. It remains to prove Pk = In for 1 ≤ k ≤ N . We
prove it by induction.

Suppose Pk = In for some k, 0 ≤ k ≤ N − 1. We shall prove Pk+1 = In.
From the relation (3.22) we obtain

|a(k)rr − λr| <
√
2

2
· 0.43846δ < 0.31004δ, 1 ≤ r ≤ n, (8.18)

where λ1, . . . , λn is an ordering of the eigenvalues. In the kth step only a
(k)
ii and

a
(k)
jj change. If λi ̸= λj there are only two possibilities: either

|a(k+1)
ii − λi| < 0.31004δ and |a(k+1)

jj − λj | < 0.31004δ

or

|a(k+1)
ii − λj | < 0.31004δ and |a(k+1)

jj − λi| < 0.31004δ . (8.19)
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Any other possibility would lead to a contradiction with the assumption on the
multiplicities of the eigenvalues. Therefore, it is sufficient to prove that the
inequalities in (8.19) do not hold.

Since the relations (8.18) and (8.19) imply

|a(k+1)
ii − a

(k)
ii | ≥ |λi − λj | − |a(k+1)

ii − λj | − |λi − a
(k)
ii |

> 3δ − 0.31004δ − 0.31004δ = 2.37992δ ,

it is sufficient to prove that the conditions of Lemma 3.8 imply

|a(k+1)
ii − a

(k)
ii | ≤ 2.37992 δ . (8.20)

Using the relation (2.14) we obtain

a
(k+1)
ii − a

(k)
ii = [(b2k − sin2 ϕk)a

(k)
ii + sin2 ψka

(k)
jj

− 2 cosϕk sinψk ℜ(e−ıβka
(k)
ij ))]/(1− b2k).

Hence

(1− b2k)|a
(k+1)
ii − a

(k)
ii | ≤ max{|a(k)ii |, |a(k)jj |}(|(b

2
k − sin2 ϕk|+ sin2 ψk)

+ sin2 ψk + a2k. (8.21)

Note that relation (8.9) implies

1/τ2k = 1/(1− b2k) ≤ 1/(1− bmax
2 ) < 1.021959.

Since

|b2k − sin2 ϕk|+ sin2 ψk ≤
{

sin2 ϕk + sin2 ψk, sin2 ϕk ≥ b2k
b2k + sin2 ψk, sin2 ϕk < b2k

,

from the relations (8.13) and (8.17) we obtain

|b2k− sin2 ϕk|+sin2 ψk ≤ 2 ·0.6908691 + µ2

δ2
(a2k+b

2
k) = 1.381738

1 + µ2

δ2
(a2k+b

2
k).

Since all matrix pairs (A(k), B(k)) have the same spectral radius µ, relation (3.5)
implies

max{|a(k)ii |, |a(k)jj |} ≤ µ .

Finally, from (8.13) and (8.17), we obtain

sin2 ψk + a2k ≤ 0.690869
1 + µ2

δ2
(a2k + b2k) +

4

9

1 + µ2

δ2
(a2k + b2k)

≤ 1.1353135
1 + µ2

δ2
(a2k + b2k).
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Inserting the obtained inequalities into (8.21) we have

|a(k+1)
ii − a

(k)
ii | ≤ 1.021958

1 + µ2

δ2
(a2k + b2k) [1.381738µ+ 1.1353135]

≤ 1.41208(µ+ 1)
1 + µ2

δ2
ϵ2k
2

≤ 0.70604
1 + µ2

δ2
(µ+ 1)ϵ2k.

The assertions (3.18), (3.19) of Lemma 3.5 and the assumption (3.27) of this
lemma imply

|a(k+1)
ii − a

(k)
ii | ≤ 0.70604 · 1.753831 + µ2

δ2
(µ+ 1)ϵ20 < 1.2383 δ,

which proves (8.20) and the lemma. �

8.4. Proof of Corollary 4.3

Since any wavefront pivot strategy delivers the same matrices A(N) and
B(N), we can assume that the pivot strategy is row-cyclic.

By Lemma 3.8 we conclude that during the whole cycle, the affiliation of
the diagonal elements to the eigenvalues does not change. Since the eigenvalues
of the pair (A(0), B(0)) and the diagonal elements of A(0) are nonincreasingly

ordered, we conclude that for 1 ≤ r ≤ n and 0 ≤ k ≤ N , each a
(k)
rr is affiliated

with λr, where λr is from the nonincreasing ordering of the eigenvalues (3.1).
A finer estimate than (8.8) can be obtained for the quantity ek. Like in the

relation (3.23), we have

|a(k)ii − a
(k)
jj | ≥ |λi − λj | −

√
2|a(k)ii − λi|2 + 2|a(k)jj − λj |2

> 3max{δ̃i, δ̃j} − 0.43846δ ≥ 2.56154max{δ̃i, δ̃j}.

Note that i = i(k), j = j(k). Using that in the proof of Lemma 3.7, the relation
(8.17) can be replaced by

sin2(ωk) ≤


0.690869

1 + µ2

max{δ̃2i , δ̃2j }
(a2k + b2k), p < n

0.5400915
1 + µ2

max{δ̃2i , δ̃2j }
(a2k + b2k), p = n

 , k ∈ S ′, (8.22)

where ωk ∈ {ϕk, ψk}. By the relations (4.18), (4.21), (8.22), (3.16) and using
ψij = ψi(k)j(k) instead of ψk, we have

n∑
t=r+1

|a(N)
rt |2 ≤ 1

2
· 1.75383 · 1.04618032S

2(A(0))

2

n∑
s=r+2

sin2(ψrs)

≤ 0.917411215 · 0.690869 · 0.8769151 + µ2

δ2r
S2(A(0))ϵ20

≤ 0.5558
1 + µ2

δ̃2r
S2(A(0))ϵ20. (8.23)
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Here we have used the fact that {(r, r + 2), . . . , (r, n)} ⊆ S ′, where S ′ is from
the relation (3.24). We have also used the assertion (3.16) of Lemma 3.5 and
the obvious inequality δ̃r ≤ max{δ̃r, δ̃s}, s > r + 1.

The same estimate can be made for the corresponding elements of B(N),
thus obtaining

n∑
t=r+1

|b(N)
rt |2 ≤ 0.5558

1 + µ2

δ̃2r
S2(B(0))ϵ20.

Summing the last two inequalities one obtains

n∑
t=r+1

(
|a(N)
rt |2 + b

(N)
rt |2

)
≤ 0.5558

1 + µ2

δ̃2r
ϵ40, 1 ≤ r ≤ n− 1.

In the case of simple eigenvalues, the final bound is multiplied by the factor
0.5400915/0.690869. �

8.5. Proof of Theorem 4.5

Let us check whether the results from Section 3 and Section 4 hold for the
real method.

• Lemma 3.1, Lemma 3.3 and Theorem 3.2 are not linked to the HZ algo-
rithm. Lemma 3.1 and Theorem 3.2 obviously hold for real matrices.

• Lemma 3.4 holds because for both the real and complex HZ method we
have ∥Ẑk∥2 = 1/

√
1− bk =

√
xk, k ≥ 0 (see [13]).

• Lemma 3.5 holds because its proof uses Lemma 3.4, Lemma 3.3 and the
inequalities bk ≤ S(B(k))/

√
2, k ≥ 0.

• Lemma 3.6 holds because its proof uses only Lemma 3.5 and Lemma 3.1.

• Let us check whether Lemma 3.7 holds for the real method. From relation
(4.31) we see that relation (8.7) holds. Then relations (8.8)– (8.10) also
hold because they rely on some previously obtained relations. Next, from
relation (4.28), we have

max{sin2 ϕk, sin2 ϕk} ≤ ρ2k sin
2 θk + ξ2k cos

2 θk + ρk|ξk sin(2θk)|
≤ max{ξ2k, sin2 θk}+ |ξk sin(2θk)|,

where ρk and ξk denote ρ and ξ at step k, respectively. Using relations
(8.9) and (8.13), we obtain

ξ2k =
b2k

2 + 2τk
≤ 4

9

1 + µ2

δ2
b2k

2 + 2
√

1− 0.439752/9
≤ 0.1117145

1 + µ2

δ2
b2k,
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which holds for any k ≥ 0. On the other hand, from (8.10) we have

sin2 θk ≤ 0.204605
1 + µ2

δ2
(a2k + b2k), k ∈ S ′,

|ξk sin(2θk)| ≤
√
0.1117145 · 0.818421 + µ2

δ2
bk

√
a2k + b2k

≤ 0.302373
1 + µ2

δ2
(a2k + b2k), k ∈ S ′.

Hence

max{sin2 ϕk, sin2 ϕk} ≤ 0.506978
1 + µ2

δ2
(a2k + b2k), k ∈ S ′.(8.24)

If p = n, using (8.15), we obtain 4 times smaller constant in the bound
for ξ2k. Hence, instead of the constants 0.690869 and 0.5400915, in the
relation (8.17) we have 0.506978 and 0.355792, respectively. Therefore,
the assertions of Lemma 3.7 can be written in the form

N−1∑
k=0

′
sin2 ωk ≤

{
0.445 1+µ2

δ2 ϵ20, p < n

0.312 1+µ2

δ2 ϵ20, p = n

}
, k ∈ S ′. (8.25)

• Let us check whether Lemma 3.8 holds for the real HZ method. By inspect-
ing its proof, we see that the critical checkpoint is relation (8.21). Using
relation (4.32) it is easy to see that (8.21) holds for the real method. The
rest of the proof is trivial for the real method. Only, the constant 0.690869
can be replaced by 0.506978. So, Lemma 3.8 holds for the real method.

• Let us now check whether Theorem 4.1 holds for the real method. We first
consider the general cyclic pivot strategy. The proof is almost the same,
only the final constant 0.932 in relation (4.8) can be replaced by 0.7725.
Namely, we have 1.0442

√
1.75383 · 0.312 < 0.7725.

Similar, for the row-cyclic strategy, the constant 0.932201 that appears in
relation (4.22) can be reduced to 0.7567. This comes from the fact that
the constant 0.4736138 from relation (4.20) can be replaced by 0.312.

• Furthermore, for the real method the constant 1.055 appearing in Corol-
lary 4.2 can be reduced to 0.904. Namely, in the proof the constant
0.6058327 can be replaced by 0.445.

• Finally, the constants 0.5558 and 4345 in the statement of Corollary 4.3
can be reduced to 0.4079 and 0.2863. This comes from replacing the
constants 0.690869, 0.5400915 in the proof of the corollary by 0.506978,
0.355792, respectively. �
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