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Abstract

The paper proves the quadratic convergence of the complex HZ method for
solving the positive definite generalized eigenvalue problem. The proof is made
for a general cyclic pivot strategy in the case of simple eigenvalues and for any
wavefront pivot strategy in the case of simple or double eigenvalues. The proof
is valid for the real HZ method. The preliminary numerical tests confirm the
theoretical results.
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1. Introduction

In this paper we consider the asymptotic convergence of the complex HZ
method [7, 17] for the positive definite generalized eigenvalue problem (PGEP)

Az =ABx, z#0 (1.1)

with full complex Hermitian matrices A, B such that B is positive definite.
On contemporary parallel computing machines the block Jacobi methods
seem to be the best choice for solving the problem (1.1) with large matrices
A and B (see [20, 24]). This is no surprise since the block Jacobi methods
can be nicely adapted to the conditions required by the modern computational
environments. In the core of each block method lies a kernel algorithm whose
task is to diagonalize the block pivot submatrices A, B at each step. The
matrices A, B are of smaller size, usually of order 64, 128 or 256, they are
Hermitian and B is positive definite. The main requirement for the kernel
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algorithm is to solve the PGEP with matrices A, B accurately and efficiently.
During computation the block pivot submatrices are most of the time nearly
diagonal. The kernel algorithm should perform its task very fast and accurate on
such matrices. These two requirements are well met by the element-wise Jacobi
methods for the PGEP. So far, only three element-wise methods for the PGEP
are known: the complex Falk-Langemeyer (FL) method [16, 4, 25], the complex
Cholesky-Jacobi (CJ) method [15, 14] and the complex Hari-Zimmermann or
shorter HZ method [7, 17]. As has been explained in [20], the HZ method seems
to be more suitable to serve as a kernel algorithm than the FL method. The CJ
method is pretty new and has been less researched.

The complex HZ method was derived and analyzed in [7]. Its global conver-
gence has been proved in [17] under a large class of generalized serial strategies
from [12]. The numerical tests indicate that the method might have an im-
portant property, the high relative accuracy, provided that both matrices A
and B are positive definite and the spectral condition numbers of A4 AA 4 and
ApBApg are small for some diagonal matrices A 4 and Ap.

Here we prove that the convergence of the HZ method is asymptotically
quadratic. The proof is made for a general cyclic pivot strategy and, with a
better bound, for a wavefront strategy. The latter class of wavefront strategies
[23] include the known serial pivot strategies. The results are an immediate
generalization of the known results of Wilkinson [27] for the standard Jacobi
method. The analysis presented here paves the way for the quadratic conver-
gence proof of the block Jecobi method from [18] for the same problem.

The paper is divided into 8 sections. In Section 2 we describe the method,
present its algorithm and define the notion of the quadratic convergence. In
Section 3 we prove several auxiliary results that are needed for the quadratic
convergence proof, which is given in Section 4. As an application, in Section 4
we briefly prove that the same result holds for the real HZ method from [13]. In
Section 5 we present some numerical tests that confirm the theoretical results.
The conclusions and proposals for future work are given in Section 6. Sections 7
is acknowledgements and Section 8 is an appendix where we have proved some
lengthy and less important results.

2. Description of the Method

Let A and B be complex Hermitian matrices of order n such that B is
positive definite. At the beginning of the process, the (complex) HZ method
uses the congruence transformation:

A A9 =DAD, B+ B® = DBD, D=diag(B)"?, (2.1)

which makes the diagonal elements of B(?) equal to 1. Then (A(O), B(O)) is taken
as the starting matrix pair for the iterative process

AR+ — zepg® 7 B — zxp z k>0, (2.2)
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where A©) and B are defined by (2.1). In (2.2) each transformation matrix
Zy, is an elementary plane matrix. It is a nonsingular matrix which differs from

the identity matrix I,, in two diagonal elements zgégk))i(k), Z;?z)j(k) and two off-

diagonal elements Z;?Z)j(k)’ zj(?]l)i(k), where 1 < i(k) < j(k) <n. The subscripts

i =1i(k), j = j(k) are called pivot indices, (4, ) is pivot pair and

AP
k)

Zis

2
e

Zy = k>0, (2.3)

7

is called pivot submatriz of Z,. In MATLAB notation Z = Zi([i j],[i]). If
Zy, is as in (2.3), we shall briefly denote it by Z, = (zfjk)) The transition
(A®) BR)) s (AKR+D)  B(+1)) g called the kth step of the method.

The method is designed to preserve the unit diagonal of each iteration matrix
B®)_ This way each B®) is almost optimally symmetrically scaled that can be
obtained by a diagonal matrix. In other words, for the spectral condition number
of B®) we have (see [26]), xa(B®) ~ mina ra(AB®A), A is diagonal. We
also have (see [17, Lemma 4.2(i)],[13, Lemma 4.1])

BN <n AV Snpn k200 p= mex N (24)

where p is the spectral radius of the initial matrix pair (A, B). Hence both
sequences (B®) | k > 0) and (A®), k > 0) are bounded.

2.1. The cyclic pivot strategies

The way of selecting pivot pairs is called pivot strategy. A pivot strategy
can be identified with the function | : Ny — P,, where Ny = {0,1,2,...},
Pn ={(r,t); 1 <r <t <n} We see that P, contains N = n(n — 1)/2 pairs
of indices. If | is a periodic function, then | is called periodic pivot strategy.
Let | be the periodic (pivot) strategy with period P. If P = N and {l(k) :
k=0,1,...,P—1} = P,, then | is called cyclic strategy. If the HZ method is
defined by some cyclic pivot strategy we speak of the cyclic HZ method.

For t > 1, the transition (A((t*=DN) B(E=DN))  (AEN) BEN)) is called the
tth cycle or sweep of the method. The most common cyclic strategies are the
row- and column-cyclic ones. In the row-cyclic strategy the pivot pair repeatedly
runs through the sequence of N = n(n — 1)/2 pairs:

(1,2),(1,3),...,(1,n), (2,3),...,(2,n), (3,4), ... ,(n—1,n),

while in the column-cyclic strategy it runs through the sequence: (1,2),(1,3),
(2,3),(1,4),(2,4),(3,4), ... ,(1,n),(2,n), ...,(n—1,n). The common name for
these two pivot strategies is serial strategies.

The set of serial pivot strategies can be enlarged to the set of gemeralized
serial strategies which was introduced and discussed in [12] and later used in
[13, 14, 17, 18]. This class encompasses the most important cyclic strategies,
including the serial, wavefront and weak wavefront ones from [23] and [19].
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The row-cyclic strategy can be upgraded to the strategy proposed by de
Rijk [2]. Essentially, under that strategy the transformation linking the pair
(A©) BO)Y with (AN) B(N)) has the form

PZyy- - ZindapyZog -+ Zopl3 py L34+ L3y -+ In_2r, 3 Zn—2n-12n—2nZn—1n,

where P is the permutation matrix that orders the diagonal elements of PT A P
in descending order and I; ., is the transposition matrix defined by r; which is
determined by: a,, ,, = max{ay; t > i}. As we shall see in Section 5, the de
Rijk strategy has some advantages over the row-cyclic strategy.

2.2. The global and quadratic convergence, the stopping criterion

To measure advancement of the method we use the quantity S(A, B),
S(A, B) = [S2(A) + S%(B)]'/?, (2.5)

where generally, S(X) = || X — diag(X)||r. Here | X||r = /trace(X*X) is the
Frobenius norm of X.

The complex HZ method is convergent on the pair (A, B) if the sequence
of generated pairs satisfies (A®), B(®)) — (A, I,,) as k — oo. Here I,, is the
identity matrix and A is a diagonal matrix of the eigenvalues of (A4, B). The
method is globally convergent if it is convergent on every initial pair.

The global convergence of the HZ method under the generalized serial strate-
gies has been proved in [17].

The cyclic method is asymptotically quadratically convergent on some set of
matrix pairs if

S(A(N),B(N)) < Cn52(A(0),B(0))

holds for every matrix pair (A, B) from that set. Such a set is characterized by
some requirements, one of them is that S(A©®), B(9)) is sufficiently small. Here
¢n, is a constant which may depend on n.

If both matrices A and B are positive definite, one can stop the iteration if
the current matrices satisfy the condition

‘a7~3| < t01\/ |a7"rass‘7 |brs| < tol, 1<r<s<n. (2.6)

This condition is usually checked at the end of each cycle. It warrants the
high relative accuracy of the computed eigenvalues provided the initial pair of
positive definite matrices is well-behaved [13] and if the method is proved to
have the high relative accuracy property, as the numerical tests indicate. If A
is indefinite then we must rely on the values S(A®N) BUN)) > 0,

2.8. The complex HZ algorithm

By complex HZ algorithm we mean the algorithm that is used in one step
of the complex HZ method. It computes the pivot submatrix Z; and applies
it to the appropriate rows and columns of the current matrices. The complex
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HZ algorithm has been derived in [7, 17] and here we briefly describe it. We
consider step k, omit the appearance of k and denote the pivot indices by 1, j.
The input to the algorithm is the pair (A, B) of pivot submatrices,

~ .. L. N L. a;; = |ai; ezai]‘7
A= EI’ZZ A5 7 B = 7]. b” 7 J | ]‘ - (27)
Qij  @jj bij 1 bi; = |bij| €.

The principal part of the output are the pivot submatrix Z ,

, 1 cos ¢ —€e"“sing | | 1 —sl ] "2
Z= T { e P sin cos ] o { s2 2 ] o T= bl (28)

and A' = ZTAZ.
Let Oij = 1 (Jij = —1) provided that a;; — Qjj >0 (aii —aj; < 0),

Ui + 105 = e_lﬁ"jaij, Uiz, Vi € R, (2.9)
Qi — ajj T v T
Yij = arg (“2”+Zvi]‘) +(1—Jij)§, —3 <y < 3 (2.10)
The elements of Z are computed from the expressions:
2cos’¢p = 1— |b;;|sin(20) + /1 — [b;;]% cos(26) cos(vij),
2cos? = 1+ |by|sin(20) + /1 — [bi;]2 cos(26) cos(vij),
Bis 2.11
esing = QECj;Jw [sin(20) + |b;;] + 14/1-]b;;|? cos(20) sin(~i;)], @11)
e Psing = £2[sin(20) — |bi;| — 11/T-[oi] cos(26) sin(;;)],
where ¢, ¢ € [0,7/2]. For the angles 6 and ~;;, we have
Qi — (a; )by
tan(20) = oy vy — (@i as)lbil —% <9< Z, (2.12)
V1= \bz‘j|2\/(az'i —aj;)? + 4
|aii — aj,| , 2vi;
cos(vyij) = ,  sin(yy) =0 . (2.13)
\/(an' — ajj)? + 40}, \/(a“ — ajj)? + 4
For the diagonal elements, we have
al; = [cos? pay; +sin® Yaj; + 2cos psinyy R(e Pag;)] /(1 — |bii[?), (2.14)
ay; = [sin? pa;; + cos? a;; — 2cossing R(e " aiy)] /(1 — |biy|?).  (2.15)

One can show that in floating point arithmetic, the diagonal elements of B’ are
computed with tiny relative errors while b;j is computed as zero. This does

not apply to agj, which can be computed by the formula (we use: ¢, = cosp,

s = sing, p € {4, Y}):

al; = [cocpai — e sysy + (aj;ePeysy — aiecysy)] /(1 — |bij]?).
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If tan(20) has the form 0/0 then the pivot submatrices are proportional: A=

a; B (see [17]). From the relation (2.9) we see that v;; = 0, u;; = a4;|bs;;| and
we choose § =0, v;; = 0. Then Z reduces to the form

s _ 1| p. ¢ _ by VI byl + /1= by
Z—T[_f p], §=5, P= 5 . (2.16)

The matrix Z from (2.16) is a direct extension of the real one from [13, Sec-
tion 2.3]. In this case we have a}; = a;; and a;J = a;j.

If b;; = 0 and a;; # 0 then in the above formulas arg(bw) is replaced by
arg(a;;). Hence Z is reduced to the complex Jacobi rotation for A. If in addition
ai; = 0, then u;; = vi; = v;; = 0 = 0, hence Z is reduced to the identity matrix.

In the pseudocode below, R(w), F(w) and conj(w) denote the real, imaginary
part and complex conjugate of w. The names of variables in the pseudocode
are similar to mathematical notation. Thus, t2, ¢s2, sn2, csg, sng stand for
tan(26), cos(20), sin(26), cos(vi;), sin(v;;), respectively.

%%% The complex HZ algorithm
select the pivot pair (i,7)
if a;; #0 or by; #0
b=abs(b;;); if b=0, eb=a;;/abs(ai;); u = abs(ai;); v =0;
else, eb=1b;j/b;d = conj(bi;)/b-aij; u=R(d); v=S(d);
endif;
e=ay —aj;; o=1; if e<0, o= —1 endif;
(1=0)-(1+0b); csg=le|/Ve2+42%; sng =0 -2v/Ve? + 4v?;
if abs(2-u — (aii +aj;)-b) =0, sn2=0; cs2=1;
elseif abs(e)+abs(v) =0, sn2=1; cs2=0;
else, t2=0- (2 -u— (ai + aj;) - b)/\/(e2 +4v2) - (1 —b) - (1 +b);
cs2 = 1/V/1+122; sn2 = t2/V/1+ t22;
endif;

cl=/(1+(r-cs2-csg—b-sn2))/(2- (1 =b) - (1+b));
2= /(14 (1 -cs2-csg+b-sn2))/(2-(1=0b) - (1+b));
sl=eb-(sn24+b+17-¢cs2-sng)/(2-c2-(1—b)-(140));
s2 = conj(eb) - (sn2—b—17-¢cs2-sng)/(2-cl-(1—0b)-(140));
aly = cl1? - aiy; +|821* a5 +2-cl - R(s2 - aiy);
= |s1]% - s + c2% - a5 — 2 c2- R(conj(sl) - asj);
aij =cl-c2-ay; —sl- conJ(32 aij) + (c2 - ajj - conj(s2) —cl - as; - s1);
aj; = conj(ai;); bi; =0; by =0;;
for k=1,...,n, k#i,57 do
ap; = ¢l ap; + 82 akj; by = cl - by + 52 - bij;
azx = conj(ay;); bix = conj(b);
j :CZ'bkj—Sl~bki;
ajy = conj(ay;); bjr = conj(bl;);
endfor

ap; = €2 arj — s1- awi; by

endif
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Finally, if the eigenvectors are wanted, one can set F(©) = D, where D is
from the relation (2.1), and in each step make the update: Ft) — pk) z,.
In the case of convergence, after stopping the process, the columns of F'*) will
be good approximations of the eigenvectors of the initial pair (A, B).

3. Some Auxiliary Results

Here we prove several results that are needed in the quadratic convergence
proof of the HZ method. The first subsection sheds some light on the special
structure that lies in the nearly diagonal A(®) and B()| when the pair (4, B)
has multiple eigenvalues (see [8, 10]). In the second subsection we prove several
lemmas that are needed in the quadratic convergence proof.

3.1. Nearly diagonal matrices A©) and B

Let A, B be Hermitian matrices of order n such that B is positive definite.
Let the eigenvalues of the pair (A4, B) be nonincreasingly ordered,

M= =Ag > A1 == A, > o >>\sp_1+1:"':)‘ (3'1)

Sp*
The case p = 1 implies A = A\ B. Then every nonzero vector is an eigenvector
belonging to the only eigenvalue A;. So, let p > 1.

If we set sp = 0, we conclude from the relation (3.1) that n, = s, — s,_1 is
the multiplicity of A;.. Let Ay = Ao =00, A = —o0 and

Sp+1

36, = min{As,_, — As,, As, = Asyi ), 1<t <p. (3.2)

We see that 36; is the absolute gap in the spectrum of (A, B) associated with
As,- Let

6 = min &, do 0

e = 71 T qu, (33)

where p is the spectral radius of (A, B). Obviously, 3¢ is the minimum absolute
gap and for g we have

) 0
=— < — <
14+p? = 2u —
Indeed, if p > 1 then the worst possible bound for §/(2u) is obtained when
p=2and y= A =—\,. Then 30 = 2u. If B has unit diagonal then we have

. (3.4)

W =

do

| lel Ae,.| < |x* Ax|
a = m. =
" el'Be, ~ |lz.=1 x*Bzx

p, 1<r<n. (3.5)

Here the last equality sign can serve as definition of . The simpler definition,
p = maxyey(4,B) |Al, where o (A, B) is the spectrum of the matrix pair (4, B),
is given in the relation (2.4).

In the convergence analysis we shall use the following result from [7, Corol-
lary 3.3] or [8, Corollary 3.3].



O©CO~NOOOTA~AWNPE

Lemma 3.1. Let A, B be Hermitian matrices of order n such that B is positive
definite with unit diagonal. Let the eigenvalues of (A, B) be ordered as in the
relation (8.1) and let 6, &y be as in the relation (3.3). If

VIt 2S(A, B) < 6, (3.6)

then there is a permutation matriz P such that for the matric A = PTAP =
(art) we have
< S4A,B
2> au—Mif* < (58)
1=1

In Lemma 3.1, the condition /1 + p2S(A, B) < 6 can be replaced by the simpler
but also the stricter one, S(4, B) < do.

Although Lemma 3.1 is sufficient to prove the quadratic convergence of the
HZ method in the case of simple eigenvalues, we shall need a more general result
for the case of double eigenvalues. To this end, let us assume that (3.6) holds,
and let us partition both matrices A = PTAP and B = PTBP in accordance
with the multiplicities n1,...,np:

Ay zzhp Bu - Blp

3.
I

A= (3.7)

Ay - A, By - Bpp

In the block-matrix partition (3.7), A,, and B,, have dimension n,, 1 <r < p.
With the partition (3.7) we associate quantity

T(A,B) = [T?(A) + T*(B)]"/? (3.8)

where for any square matrix X partitioned in accordance with the partition
(n1,... ,np) of n, T(X) = || X — diag (X11,... , Xpp)||F-

Theorem 3.2. [8, Theorem 3.1,Corollary 3.2] Let A, B be Hermitian matrices
of order n such that B is positive definite with unit diagonal. Let the eigenvalues
of (A, B) be ordered as in the relation (3.1) and let 0, dg be as in the relation
(3.8). If the condition (3.6) holds then there is a permutation matriz P such
that for the matrices A= PTAP = (Ay) and B = PTBP = (B,y), partitioned
as in (3.7), we have

i 5 1~ SN 1+)‘§T 3 A2 SR
HATT - )\SW‘BTTHF < o Z HArt - )‘87-Brt||F < 5 Z(HANHF + ||Brt||F)
7 =
1+ X2 T2(A,B) _ 1+X2 S%(A,B)
< r <r< .
< =5 > S5 5 Lsr=p (39
p 2274 (A R 404 1 4
~ ~ 14+ pw?)*T (A, B T(A,B S*(A, B
23 A — An, Bl < )52 (4,B) _ (52 ) o (52 ) (310)
r=1 0 0
8
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Let us link the above results to the HZ method. The statements of Lemma 3.1
and Theorem 3.2 can be used in connection with the matrices (A®*), B(*)) when-
ever S(A®) B®)) satisfies the condition (3.6) (recall that each B®*) has unit
diagonal). By slightly strengthening the condition (3.6) for the starting pair
(A© B©) we can assure that (3.6) holds during the whole cycle. To make the
quadratic convergence proof easier, we shall also need one additional condition
on S(B®). These two conditions will be sufficient for the quadratic convergence
proof. We shall refer to them as asymptotic assumptions. They are given below:

1
0
0) B -
S(4®, BO) < - — p>2. (3.12)

In the following, we assume that conditions (3.11) and (3.12) hold for (A(®), B()),
We shall consider the first cycle of the HZ method. To simplify exposition, we
shall use the following notation for 0 < k < N:

_ 1,k _ p® _
W =10y 00l Ok = [Big a0l bmax = max by,
Tk:\/l—bi, xkzl/(l—bk), ykzl/(l—b%),
_ (k) (k) . 1 if e, >0
k= Gikyitk) T Yik)sk)” ok = { —1 if ex <0 (3:13)
—tar (k) .
U + W = € ebitson) . al(.?,z)j(k), Ve = Vi(k)j(k)
€, = S(A(k)73(k)), T = T(A(’f),B(’“)).

3.2. The preliminary results

Here we prove several lemmas. Several lengthier proofs are moved to Sec-
tion 8 which is an appendix. The first lemma is not directly connected to the
method.

Lemma 3.3. Let r be an integer and w a nonnegative real number such that
r>3,2rw<1. Then

(i) (-w)T <1+ Fru (i) (1—w?) <1+ gZro?
(iii)  (14+w)” <14 3rw (i) (1—w) Y2 <14 2w,
Proof. (i) Let (1 —w)™! = 1+ ¢ Since rw < 1/2, w < 1/6,

¢ =wl—-w)"t<1/5 r( < (6/5)rw < 3/5and (1 —w)™" = (1+¢)", we
have

-1 —1)(r—2
(1—’UJ)7T _ 1+7‘<|:1—|—T2 C+(T 2)(; )<2+"'+CT2:|+CT
2

r—1 r—1 r(
< 1 1 el =1
< 1+0¢ +( 5 <>++< 5 C) + +1—T;1€
g 8w 12
T P
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The assertion (iii) is proved in an almost identical way while the proof of (ii)
uses the substitution (1 —w?)~! = 1+’ and the inequalities ¢’ < (36/35)rw?,
r¢’ < 6/70. In the proof of (iv) one can use the expansion of the function
(1 —w)~Y2. Another way is to square the left and right side of that inequality,
use 1/(1 —w) =1+ w/(1 —w) cancel out 1 and if w > 0, divide by w. O

Lemma 3.4. Let ay, by, xk, € be defined by the relation (3.13). Then
€21 <y [€2 —2(a} +0})], k> 0.

Proof.  For a given k, let i = i(k), j = j(k),

o = o) o)
Qjx = [a;?), agg), e 7(15'{?,1, agi)Jrl, cee a;fgj)fl, a§?+1, . ,agi)],
Awi = [aglf), ag’;), e ,agﬁ)l’i, al(i)l’i, e ,ag-ki)l,i, ag-li)l’i, e ag?]T
a,; = [ag?,a(zl;),...7a§]f)17j7a§i)1ﬁj,...,a§]i)17j,a§-?1’j,...,aglk;-)]T
where generally, ¢! is the transpose of c. Let a,, @}y, @y @ ; be the row-and

column-vectors built in the same way, but from the elements of A**D . The
transformation (2.2) implies

a’ o[ oa T ~
a;* :| = ZZ al‘* , [ a,;i G;;] ] = [ Axi  Oxj ]Zk
J%* L “I* |
We obtain

2 r 9112
ag* < ||Z*||2 A x ”[ a a ]H2 < HZ ”2”[ Qui @ ]”2
a’. — k12 Q. ’ *1 *J F = k12 *7 * F-
J* F L “ix JllF

Since || Z; 113 = | Z)|3 = 1/(1 — by,) = i, (see [17]), we have
SP(ARTD) < $2(AW) — 202 + (1203 = 1)Ul I + ol
Hlasillh + llawgllF) < 2r(S*(A®) - 2a5). (3.14)
The same analysis applies to B*), so we have
S2(BHHD) < 2 (S2(BW) — 202). (3.15)
Since B*) has unit diagonal, we have €7 = (S?(A®") +S?(BW) for | = k, k + 1.

By adding the inequalities (3.14) and (3.15) we obtain the assertion of the
lemma. (]

10
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Lemma 3.5. Let ay, bk, bmas, Tk, €x be defined by the relation (3.13). If the
assumptions (3.11) and (3.12) hold, then under any pivot strategy, we have

N-—-1
> (ai+0b7) < 0876914 €3, (3.16)
k=0 1
bmae < 0.8795 o, (3.17)
S2(AMkR) S2(AO)
S2(BW) < @ s wpr | SEBW) |, 1<kE<N, (3.18)
€ €5

o - o1 < (1 —=bmee) ¥ < 175383, 1<Ek<N. (3.19)
Proof.  The proof has been moved to Appendix.

Lemma 3.6. Let the assumptions (3.11) and (3.12) hold and let § be as in the
relation (3.3). Then for each pair of indices (r,t), 1 <r <t <n, and for each
k such that 0 < k < N, we have:

either  |al®) — att)\ > 2.56154 6 or |a®) — att)| < 0.438466. (3.20)

The relation (3.20) holds under any pivot strategy.

Proof. By the assumption (3.12) and the assertions (3.18) and (3.19) of
Lemma 3.5 we have

1.75383 52

(1+p2)€r < 1.75383(1+p?) €2 < < 0.438466%, 0< k< N. (3.21)

From the relation (3.21) we see that for each 0 < k < N, Lemma 3.1 can be
applied to the matrix pair (A®*), B(*)), We obtain

2> lall) — AP < 52 < (0.438466)2, 0<k<N, (3.22)

where )\(k) )\(k) is an ordering of the eigenvalues depending on k. If ,\£’“) %
)\(k) then by the definition of ¢ (see (3.2), (3.3)) and by (3.22), we have

k (k k k
jal®) —ag)| > |A<k AP = 1ol — B — AP — o] (3.23)

> \/2| B _ AP 2 4210 — AW)2 5 2561546,

This proves the first part of the assertion (3.20).
1f AR = )\Ek) then using (3.22), we have

o —aif’] = 1ol = AP + AP —af)| < [al®) AP+ AP - o]

\/2|a$’i’ P2 4910 — AWz < 0.43846.6,

IN
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which proves the second part of the assertion (3.20). t

From Lemma 3.6 we see that the set
S = {k € {01, N =1} falf) 0 — alih 0| > 25} (3.24)

is well defined for any pivot strategy, provided the assumptions (3.11) and (3.12)
hold. For simplicity, we use the notation Y} instead of Dok kes:

Lemma 3.7. Let the assumptions (3.11) and (3.12) hold and let ¢y, Yy, €k, 0
and p be defined by the relations (2.11), (3.13), (3.3) and (3.5). Then

2
Z sin? wy, < 0.60583283(1 4 )5—0 (3.25)
k=0

where wy, € {Pk, Yi}, 0 <k < N —1. The relation (3.25) holds under any pivot
strategy. If all eigenvalues \; are simple then the sum Z; reduces to the usual
sum Y, and the constant 0.60583283 can be replaced by 0.4736138.

Proof.  The proof has been moved to Appendix.

To simplify notation, let us now assume that besides (3.11) and (3.12) we
also have
a9 >alY > .. > a0 (3.26)

— TLTL

Then the assertions (3.9) and (3.10) of Theorem 3.2 hold for the partition (3.7)
of A and B(®. The question arises whether those estimates hold for the first
N steps under any pivot strategy. The following lemma states that this is true
provided the condition (3.12) is modified to be more stringent.

Lemma 3.8. Let the assumptions (3.11), (3.12) and (3.26) hold. If
do
u+1

where €y, p and 0g, 6 are defined by the relations (3.13), (3.5) and (3.3), re-
spectively, then

€2 < 62, (3.27)

1A® — A BW|p < ZHAN — A BPE, 1<r<p (328
t;ér
and , . .
, L+ p?)*Ty _ Ty _ €
2> AR = A Bl < 5t = @ < 5 (3.29)
r=1

hold for every 0 < k < N. In the relations (3.28) and (3.29), Xs., 6r, Tk,
€y are defined by the relations (3.1), (3.2), (3.13), and the matrices A®), B()
are partitioned in accordance with the relation (3.7). The both assertions hold
under any pivot strategy.

Proof.  The proof has been moved to Appendix.

12
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4. The Quadratic Convergence Proof

Here we prove the quadratic convergence of the cyclic HZ method in the case
of simple eigenvalues of the pair (A, B). We consider matrix pairs (A B(),
(AW BMY (AN BV)) and assume that S(A©) B()) is sufficiently small.
Thus, we have p = n, 30 = min, |\, — A| and T = €, k > 0.

Theorem 4.1. Let the assumptions (3.11), (3.12) hold for the pair (A, B(9)
and let the sequence of pairs (A% B®) k > 0) be generated by a cyclic
HZ method defined by relations (2.7)-(2.16). If the eigenvalues of the pair
(A BO) are simple, then

€En < \/N(1+u2)%g. (4.1)

Moreover, if the pivot strategy is row-cyclic, then

€2
En < V14 p2 ?0 (4.2)
Proof. The proof uses the technique developed by J.H. Wilkinson in [27].
We first prove that (4.1) holds for an arbitrary cyclic strategy. Since the trans-
formation of the elements of A®) use the same formulas as those of B*) we
shall pay our attention only to the elements of A*), 0 < k < N.
For a fixed k, 0 < k < N —1, the pivot indices i = i(k) and j = j(k) are also
fixed. Consider the elements a!”, r = k + 1, ...,N. Note that az(-fﬂ) =0 and

1]
Z(;) changes at most 2(n — 2) times. By 1, ... ,rs (s <2n —4)

denote those values of r for which aE;)
we set h; = al(»r»tH), 0 <t <s, where ro = k and hg = 0. Then the relations

(2.2), (2.8) and (3.13) imply

after that step a
changes in the rth step. For simplicity

hl — \/E (0 . COS(W’Ll) + a(rl)elyl Sin(wn))
hy = Uy (hl ~cos(w),) £ alm e sin(wm))

(4.3)
hi = \/yr. (htfl -cos(wy, ) alre™ sin(wn))

where W/, wy, € {¢r,, Vs, }, 11 € {r,, —t,, Br,, —Br, }, while a(™) is a certain
off-diagonal element of A("). From (4.3) we obtain for 1 <t < s,

t t
Bel <D VFr G [aT[sin(wr,)] < (1-bhax) 772 al™)] [ sin(wr,)]. (4.4)

=1 =1

Set
AW =pP 4 E® DY = diag(al?,...,alt)), k>0

y'nn

13



O©CO~NOOOTA~AWNPE

The matrix EXY) consists exactly of the elements hy. Note that here s is a
function of the pivot pair (4,j) (hence of k) and the cyclic pivot strategy under
consideration. From the relation (4.4) we conclude that

BN < (1= bihax) ™" (\P(l)l [sin(wn)] + [P |sin(wz)] + -

+ |PWN=Y) \sin(wN_1)|> ; (4.5)

where each matrix P(*) contains nonzero elements only at those positions of
the 7’th and j’th row and column which have already been pivot positions. The
nonzero elements of P(*) are certain elements of E(*) belonging to the i’th and
j’th row and column. Here we use notation |C| = (|¢,+|) where C' = (¢¢) is an
arbitrary matrix.

By the assertions (3.18) and (3.19) of Lemma 3.5 we obtain

|1 P®]||p =[PP ||r < S(A®) < V1.75383S(A®), 1<k<N-1. (4.6)
Since n > 3, by Lemma 3.3(ii) and the assertion (3.17) of Lemma 3.5, we obtain

2 0.87952

1/3
28097 1.0442. (4.
67 3.2 } < 10442 (47)

(1 _br%lax)_(n_z) S [(1 - brznax)_QN]l/n S |:1 +

Finally, using relations (4.5)—(4.7) and the second assertion of Lemma 3.7, we
obtain

N-1
S(AM) = [EM|[p = [E™]||F < 1.0442v1.75383S(A?) >~ | sin(wy)|
k=1
N-1 1/2
< 1.0442V1.75383S(A?) |(N —1) > sin (wk)‘|
k=1
< 1.0442V/1.75383 - 0.4736138+/(N — 1)(1 + p2) %S(A(O))
< 0.95168y/N(1 + u2) %S(A(O)). (4.8)

The same analysis applies to the matrices B*), 0 < k < N, yielding the same
bound connecting S(BM)) and S(B®). Therefore, the first assertion (4.1)
follows from (4.8) and the definition of € (see (2.5) and (3.13)).

To prove the assertion (4.2) we apply the analysis that was used in proving
the relation (4.3). Recall that by our notation, for 2 <t < n, the (1,t)-element
(t=1)
1t

is annihilated in step k = t — 2. Thus a = 0 and we consider how that

14
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(1,t)-element changes in the next n — ¢ steps. We have

agt) VYt (0 cos( ¢y 1)+at+ D 1B ! gin(thy— 1))
i = v (af? - cos(o) + aflly % sin(vr))

"V = s (aYt’ D cos(fpz) +aly Vet Sin(%—z)) ~

Therefore, for the elements of the first row we have

afy ] <Z\/—yr W gnalsin(@o_1)| a5, 2<t<n- L

r=t

Using the Cauchy-Schwarz inequality, we obtain for 2 <t <n —1,

n—1 n—1
D D
— r=t

n—2

r 2 .
= Z a2 Y st yasin® (@), (49)
r=t+1 r=t—1
Since agrf;l) = 0, the relation (4.9) implies
n—2
Z| P [Z > lan P ] Dyt ynasin(dy). (4.10)
t=2 r=t+1 r=1

Let us estimate the sum in the brackets. Recall that each A% is Hermitian.

Hence
PP =l R, t<r

Note that ag_Q) is the element at (¢,r) position just prior to the transformation
that annihilates (1,r)-element. Therefore its value is the same as of a(t b,
Hence, we have

n—1 n

T = ZZ|Q(T2 ZZ|§t 1)|2 ZZ ‘arl) (4.11)

t=2 r=t+1 t=2 r=t+1 r=2t=r+1

where we switched the indices t <» r. To bound I', we use the inequality

n
Z a7 V)2 Z 16V <z Z jaf, Pz, Y a2, (4.12)
t=r+1 t=r+1 t=r+1 t=r+1
which holds for 2 < r < n—1. Namely, we have || Z* 2||2 = 1/(1 br_2) = Ty_2,
2 <r < n—1 (cf. the proof of Lemma 3.4). For r = 2 3,...,n—2 let us multiply

15
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(4.12) by @y —3Tp—g - xr—1. We obtain

cTp—1 Z |agr 1) + Tp—3° ' Tr—1 Z |aT 1)

t=r+1 t=r+1
n
r—2) 0)2
<z “Tp_o g |a( 2 g Tpg g |a£t)| , 2<r<n-2,
t=r+1 t=r+1

For r = n — 1, the last inequality in (4.12) is left unchanged:

(n—3) |2.

laln 212+ 10212 < wpslall ™Y 4 wslal )

Let us sum so obtained inequalities. After cancelation, we obtain

2 3 4
|0l 202 + s Z 10l 2 + s Z lal" 2 +

t=n—1 t=n—2
n
+xn_3~-~le|a$)|2 + 2z <wp3-x (Z +Z|a£)| >
t=3 t=3
+ Zpg--- gjlz |a§)(t))|2 4+ 4 xn_3|042021_,n|27 (4.13)

where z,

1 -3 -2
z :xl"'l'n—3|ag3)|2+z2 *Tn— 3|a’14)|2 . In—3‘ag7fn_i + | a1 n )|2
is a nonnegative quantity. Since all xp, 0 < k < n — 3 are not smaller than
1, we see that I" from the relation (4.11) is not larger than the left side of the
inequality (4.13) without z. Hence it is not larger than the right side of (4.13).

Therefore, we have

2( A©0)
Combining relations (4.10), (4.11) and (4.14), we have
n—1
Z| o 1) < o Tp—-3 - Y1 Zbln ¢7 1 (415)

During later transformations the elements of the first row can increase by mod-
ulus. Since || Zk||2 = v/Tk, it is easy to show that for 2 < i(k) < j(k) < n, we
have

k k 1
< xk(|a§7¢)(1¢)|2 + |a§7;(k)|2) < 1—

bmax

| (k+1),2 (k+1)|2

®) 2, k) |2
ay i) |- 10y k) (lay iy "+ lay i -

Furthermore, we know that after step k = n — 1 each element of the first row
(except of the (1,2)-element) will change exactly n — 2 times. Hence, the latest

16
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relation and relation (4.15) imply

~ N n—1
Z|a§t)2 (]_*b n22|§ )
t=2

SZ(A(O)) n—2 i
= 2(1 = banax )27 D (1 — b2y )2 Zsm (¥r). (4.16)
max max —1

IN

We can make the same analysis for other rows. To this end it is convenient
to temporarily denote the angle 1, which is used in the annihilation of the
(4, 7)-element by ;;. Then for the second row we have

(N) SQ(A(nfl)) n -
Z |a - 2(1 _ bmaX)Q(n—S)(l _ br%ax n_3 Zbln (er)

ToLy " Tn— QS A(O
= 2(1 - bmaX)Q(n 3)(1 — b2iax )3 Zsm (ar).  (4.17)

A

Here, we used assertion (3.18) of Lemma 3.5. More generally, for 1 <r <n —2
we have

Z |CL(N) < (]- - bmax)

S - 2(1 _ bmaX)Z(n—(r-i-l))(l _ br2nax )n—(r-‘rl)

n—(n+n—1+4--+n—r+1) SZ(A(O)) n

> sin? ()

s=r+2

1.7538352(A) N
= 2(1 = bRiay )~ (r+D) Z sin® (¢ ), (4.18)

s=r+2

where we used assertions (3.18) and (3.19) of Lemma 3.5 and the fact that
n—1+4+---4n—r+1+2(n—(r+1) <n—-1+---+n—r+l+n—r+n—r—-1 < N.

Summing up the inequalities in (4.18) for r = 1,2,...n — 2 and taking into

account G;IX)Ln = 0, we obtain
1.7538352(A) &
(N)y 2299999 A2 7 E §
25 (A < 301 — b )72 sin? (1) (4.19)

r=1 s=r+2

Using yet Lemma 3.7 (the second assertion), we have

1. 2 €2
S2(AM) < 75383 5(Al )0 4736138(1 + p )6—3. (4.20)

B (1 - brzﬂax)n

Note that relation (3.17) implies 2(n — 2)byax < 2-0.8795/n < 1. Hence the
assertion (ii) of Lemma 3.3 can be applied to obtain

72 72 0.87952
_p2 - (n—2) i —
(1—b2ax) < 1t gn 2)bimax” <1+ o(n 2)n2(n_1)2
72 0.87957
G o5 < 1:04618032. (4.21)
17
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Combining the relations (4.21) and (4.20) we obtain
20 (N 2,68 <2/ 40
S2(AM)) < 0.869(1 + p )53S (A,

The same analysis applies to matrices B®), 0 < k < N and it yields the
same bound connecting S(B™)) and S(B(?)). Hence, summing up the obtained
inequalities, we have

€2 €2
€x < /0.869(1 + ,ﬂ)yO < 0.932201+/1 + u27°, (4.22)

which proves the theorem. O

The estimates (4.1) and (4.2) are quite analogous to the known ones for the
standard Jacobi method for symmetric matrices obtained by Wilkinson [27].
The factor /1 + p?, which does not appear in the estimates for the standard
Jacobi method, originates from the presence of the sum al(-f )+ ag-];) in the nu-
merator of the ratio defining tan(26;). The assumption (3.12) is approximately
v/1+ p? times stronger than the assumption in [27].

By inspecting the quadratic convergence proof of the row-cyclic HZ method,
especially the derivation of the relation (4.19), one can see that the angles ¥ 11,
r=1,...,n—1, do not appear in the bound. This fact can be used to prove the
quadratic convergence if the eigenvalues have multiplicity at most 2. However,
the asymptotic assumption (3.12) has to be replaced by a more stringent one,
so that during iteration the diagonal elements converging to the same double
eigenvalue remain in adjacent positions on the diagonal.

Corollary 4.2. Let the assumptions (3.11), (3.12), (3.27) hold. Let the eigen-
values of of the pair (A, B()) be at most double. If the condition

19—V <6 = se{r—1,rmr+1} (4.23)

holds, then the row-cyclic HZ method is quadratically convergent and the relation

62
En < 1.055/1 + p2 70 (4.24)

holds. The estimate (4.24), as well as (4.22) in the case of simple eigenvalues,
remain to hold if the pivot strategy is any wavefront strateqy or the de Rijk
strategy.

Proof. The condition (4.23) together with relations (3.12), (3.27), (3.11) and
Lemma 3.8 ensure that the diagonal elements affiliated with double eigenvalues
take adjacent positions on the diagonal of A(®) and remain such during the whole
cycle. This then ensures that the relation (4.19) holds. Now, using Lemma 3.7
(this time with the constant 0.6058327 instead of 0.4736138), we obtain

2

€2 €
€n < /1.75383 - 0.6058327 - 1.04618032 (1 + ;ﬂ)go < 1.0543223+/1 + ,ﬂ?‘),

18
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which proves the bound in (4.24).

For the second assertion, it suffices to show that matrices AN) and BMY)
obtained from A(© and B(® using the row-cyclic pivot strategy are the same as
those obtained by any wavefront strategy. For the column-cyclic strategy the
proof can be found in [7, 3.7 Lemma]. It is based on the proof from [6]. For
a general wavefront strategy, the proof is combinatorial and almost identical to
that from [23]. The only difference comes from the fact that the transformation
matrices are not orthogonal, which is irrelevant for the proof.

Finally, for the de Rijk strategy, one can check whether the main relations in
the proof, like relations (4.15), (4.16), (4.17) and (4.18) remain to hold. They do
because the transposition I, ,, does not change the sum of squares of elements
inrow [, [ < 1. O

If § is tiny due to a pair of very close eigenvalues then the estimates (4.1) and
(4.2) imply that €y is not “essentially smaller” than €y. The following result
implies that in such a situation, certain off-diagonal elements of AY) and B(N)
are still essentially smaller than €q. To simplify notation, we introduce vector

g,

O =101, 00 =[01,- 100, o 0pyet, By (4.25)

For each r, 1 < r < p, §, is defined by the relation (3.2) and it appears in 5
exactly n,. times.

Corollary 4.3. Let the assumptions (3.11), (3.12), (3.26) and (5.27) hold and
let the eigenvalues of the pair (A®), B(O)) be at most double. Let the sequence of
pairs ((A®), B(R)) k> 0) be generated by the HZ method under some wavefront
strategy. Then we have

n 1 2
3 (|a£§v>|2 n |b£iv)\2) < 0.5558 ;2“ €, 1<r<n-—1,
t=r+1 r

where b, are defined by the relation (4.25). If all eigenvalues are simple than
the constant 0.5558 can be replaced by 0.4345.

Proof.  The proof has been moved to Appendix.

If any of the conditions in Theorem 4.1 fails to hold, one can easily find a
matrix pair for which the quadratic convergence fails. The following example
sheds light to the failure of the quadratic convergence of the HZ method under
the row-cyclic strategy provided that some eigenvalue has multiplicity larger
than 2. The analysis for the de Rijk strategy is the same.

Example 4.4. Let n = 5 and let the eigenvalues of the initial matrix pair
(A, B) satisfy A1 > Ay = A3 = Ay > 5. Using the notation from (8.1), we
have s1 = 1, so = 4 and s3 = 5. Suppose the row-cyclic HZ method is ap-
plied to (A, B) and we stop the process in step k when the conditions (3.11),
(3.12) and (3.27) are met. Then we apply the transformation (A B*F)) s
(PTA®) p, PT B%) P) where the permutation matriz P is chosen to order the
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diagonal elements of PT A% P nonincreasingly. We reset the step counter, so
that (A BO) = (PTA® P, PTB®) P). Then we consider one cycle of the
row-cyclic HZ method applied to (A, B(©)).

After the first 5 steps we obtain (A(E’), B(5)). We consider the subsequent step
(k = 6) and apply the qualitative analysis which uses the asymptotic notation
with big O symbol. To simplify notation, we set A®) = (a,;), B®) = (b,),
A©) = (al,), BO = (b.,) and e = S(A®) BO)). We have

aj; | @12 a3 day | ais 1 | b2 b1z big | bis
a1z | az2 0 az4 | ass bia| 1 0 bog | bos
A® =1 a3 | 0 azgs asa|azs |, B =|biz| 0 1 ba|bss
Q14 | G24 034 Q44 | Q45 big | baa bzs 1 | bys
as | Gos G35 Q45 | G55 bis | bas b3s bas | 1

From the proof of Theorem 4.1 we know that |[a12 a13 a14 aisl|lz = O(g?),
[b12 b13 bia bis]llz2 = O(e?). Other off-diagonal elements of both matrices are
generally equal to O(g). In particular, we assume |ags| + |b2a| = O(e) and
|aga| 4 |bsa| = O(e).

To simplify exposition, let Ag, =3, As, =2, Ay =1, so that 61 = 02 =03 =
6 = 1. By Theorem 3.2 we have

aze 0 agy 1 0 by
Il 0 ass azs | =2 O 1 b3g ||| =5([a12 a13 a4 ays)||?
Q24 G34 Q44 bos b3q4 1

+ [[[b12 bis bia bis]||* + [[[azs ass aus]||* + [[bas bss bas]||*) = O(e?).(4.26)

In step 6 the pivot elements are azy and bey. From relations (2.9)-(2.13) and
(4.26) we obtain

agabas  (2b24 + ag)bay

Ugg + W24 s s |bos| + gy,
T24 = 1-— |b24‘2 =1- 0(62),
2 — b 4|boy| — 4|b
| tan(2624)] = [2u24 — (a22 +a4;4)| 24L| _ 4]b24] / \224| +€24|2
T24\/(CL22 — CL44> + 4’1}24 To4 (ﬁ24) 4+ 4(@24)
|B24] _0(e?)

o1/ (B3a)? + 4(a5,)2 O
where Bay = O(g?), Bhy = O(c) and agy, by, of, = O(e?). Thus, 024 can be
any value in the segment [—m/4,7/4]. In a similar way we obtain cos(ya4) =
0(?)/0(£?), sin(y24) = O(e?)/O(£?), 50 724 can be any value in [—7/2,7/2].
Hence ¢oq and o4 can be any value in [—mw/2,7w/2].

The same conclusion can be made for ¢s4 and s34 in step 8. Now, for
|abs| + |bhs| we have

|abs| + [bs| = [ sintpas] - (|asa| + |bsal) = [ sintpaa] - (Jaza| + [bsal) = O(e).
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By a similar analysis one can see that in the steps 7, 9 and 10, the contributions
to all matriz elements are either 0 or equal to O(¢?). In step 8 the element

agi) (b(zi) ) is obtained from an expression that includes aé? (bg? ), respectively.

Hence they can become equal to O(e). In any case, we conclude that |a§g)\ +

|aé{p| = O(e) or |bég)| + |béiv)\ = O(e), which shows the failure of the quadratic

convergence. O

4.1. The bounds for the real HZ method

All obtained results can be almost directly applied to the real HZ method.
So, the next section can be seen as an application of the previous theory.

If A and B are real then the complex HZ algorithm reduces to the real one.
Let us present the formulas of the real HZ algorithm, which can be found in
[7, 13]. We have

5 1 cos¢p —sing | | ¢l —sl
Z= 1— (b;)? [ siny  cost ] - { s2 2 ]’ (4.27)
where
cos¢p = cosf —E(sinf +ncosh) = pcosh —Esind
sing = sinf+ &(cosh —nsinh) = psind + £ cos (4.28)
cosyp = cosf+E&(sinf —ncosh) =pcosh+ Esinb '
siny = sinf — &(cos@ + nsinf) = psinf — £ cos b.
Here
¢ = bij bij 4.29)

(] _ v
VI+by+/1T=by’ = (14 /T+by)(1+/T=b;)’ (
p = 1—§n=£+v1—@j=%hﬂ+¢m+vq—@ﬁ~ (4.30)

One can show that p? + &2 = 1 and (since |b;;| < 1) |[£] < p. The values of sin §
and cos @ are computed from tan § while tan 6 is computed from tan(26),

tan(20) = 204 = (ai; L ; -
L= (bij)? (aii — ajj)
If a;; = a;; and 2a;; = (ai; + a;;)b;; then A and B are proportional and we
choose § = 0. Then Z reduces to the relation (2.16) and it is easy to show that
a;i = Qy4;, a;j = ajj. A R
The diagonal elements of B’ are ones, while the diagonal elements of A’ can
be computed using the formulas [13],

<h<—. (4.31)

1
e~

1
al, = a;+ T2 [(b?j — sin? ¢) az; + 2 cos psiny a;; + sin® aj;],(4.32)
i
1
a;j = aj; — ) [(sin2 U — bfj) aj; +2cosysinga;; — sin? qbai,»] (4.33)
i
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To prove the quadratic convergence of the real HZ method, we shall use the
same asymptotic assumptions (3.11), (3.12) and all of the notation from (3.13)
that applies to the real algorithm. Note that all matrices A®*) are symmetric
and all B(®) are symmetric positive definite with unit diagonal.

Theorem 4.5. Let the assumptions (3.11), (3.12) hold for real symmetric A(®)
and B, where BO) is positive definite with unit diagonal. Let the sequence of
pairs (A, B®) k> 0) be generated by the real cyclic HZ method defined by
the relations (4.27)-(4.33).

If the eigenvalues of the pair (A©®), BO)) are simple, then the relation (4.1)
holds for any cyclic pivot strategy. If the pivot strategy is row-cyclic or any
wavefront strategy, then the relation (4.2) holds.

If in addition the conditions (3.27) and (4.23) hold then the relation (4.2)
holds for any wavefront strategy even if the eigenvalues are double.

Corollary 4.3 holds with constants 0.4079 and 0.2863 instead of 0.5558 and
4345.

Proof.  The proof has been moved to Appendix.

5. The numerical experiments in MATLAB

The goal of this section is twofold. First, to inspect how the method behaves
asymptotically when the eigenvalues of the PGEP are simple, double and mul-
tiple. Second, to see whether some special pivot strategies, such as the de Rijk
strategy from [2] can reduce total number of cycles. We have made two MAT-
LAB functions, dsychz qc(A,B,eivec) and dsychz qcsortd(A,B,eivec). In
the first (second) function the method uses the row-cyclic (de Rijk) strategy.
The de Rijk strategy is essentially the row-cyclic strategy that tries to order the
diagonal elements of A*) in descending order during the process, with mod-
est cost. The function dsychz_qc(A,B,eivec) was coded exactly following the
lines of the HZ algorithm which is displayed at the end of Section 2. Except for
the pivot strategy, all other parameters of the two functions are identical (same
input, same output, same statements).

The input to dsychz_qc(A,B,eivec) are the initial matrices A, B and eivec
parameter which determines whether the matrix of eigenvectors has to be com-
puted.

The output to dsychz_qc are: the eigenvector matrix, the column vector of
eigenvalues, the total number of cycles (cycles) and steps (steps), the vari-
able info and stepsxb matrix qc. The k’th row of qc is row-vector with 5
components: S(A(Sk)), S(A®), S(B®), S(A®) B*)) and S(A(Sk),B(k)).

We shall construct 3 matrix pairs. The first has simple, the second has
double and the third has multiple eigenvalues. For each pair (A, B) we display
2 figures. The first (second) is related to the method that uses the row-cyclic
(de Rijk) strategy. In each figure we display the graphs of 4 functions. The
first function is k — S(A®), B k>0, then k +— S(A®), k — S(B®) and
ki S(AY), where AY) = D2 A® D2 D, = diag(|]A®)|), k > 0. These
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functions are obtained from the output matrix gc. We note that the function
S(Agk)) is important when both matrices A and B are positive definite. Then the

spectral condition numbers of A(So) and B(©) determine whether the pair (A, B)
is well-behaved [13, 3, 26]. Also, in the stopping criterion (2.6) the quantity
S (A(Sk), B®) is used. We have displayed the graphs of those 4 functions using
the logarithmic scale (y-axis only). This is accomplished by the MATLAB
semilogy function.

Once the quadratic convergence assumptions are met, we expect a significant
drop of the function values at the end of every cycle. Therefore we have labeled
z-axis ticks by 0, ... cycles. The tick labeled ¢ corresponds to the step ¢t - N.

The matrix pairs have been generated using the following code:

function [A,B] = genmatAB(da,db,cndF);

n=length(da); X= ones(n)-2*rand(n)+li*rand(n); [U,”] = qr(X);
D=diag(linspace(lel”(-cndF/2),1e1” (cndF/2),n)); F=DxU;

A = F’xdiag(da)*F; A=0.5%(A+A’); B = F’*diag(db)*F; B=0.5%(B+B’);
end

This way we have control over the condition of the transformation matrix F"
ko (F) = 104, We know that the eigenvalues of the pair (A, B) are (up to the
influence of rounding errors) entries of the vector da. This is a consequence of
the choice of the vector db. It contains n units: db=[1,1,...,1].

Our choice is n= 128, cndF= 2. We shall not delve in the construction of the
vector da which depends on several parameters. Since the figures are displayed
for only 3 matrix pairs, we only describe how these 3 vectors da are constructed.
Then we shall present and comment the graphs of the functions.

5.1. Simple eigenvalues

The vector da is computed using the code: da = linspace(1.0,1000.0,n);
Hence both matrices A and B are positive definite and the eigenvalues of the
pair (4, B) are very close to the entries of the vector da. The characteristic
data are: § =~ 2.622, = 103, ka(A) ~ 107, ka(B) =~ 10%, ky(Ag) ~ 9.89 - 109,
k2(Bs) =~ 9.93 - 103. The diagonal elements of A©) make a slowly increasing
sequence of numbers: 743.54, 768.07, ..., 760.01. The asymptotic conditions
(3.11) and (3.12) take the form:

_ Lt
128 127

5 2622
2/1+p2  2V/1000001

S(B(O)) < ~6.15-107°, € < ~1.311-1073.

We expect that after S(A®) B(*)) reaches the value 107°, the quadratic con-
vergence will commence. In Figure 1 (Figure 2) are displayed the graphs of the
functions obtained by applying the complex HZ method with the row-cyclic (de
Rijk) pivot strategy.

We can see from the graphs that the quadratic convergence commenced
after S(A®), B®)) reached the value 107°. We see that the total number of
cycles equals 14 (9) for the row-cyclic (de Rijk) strategy. The behavior of the
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The row-cyclic HZ method
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Figure 1: The graphs of the functions S(A*), B(%)) §(A(*)) s(BK)), S(Agk))

}

The HZ method under the deRijk strategy
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cycle
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Figure 2: The graphs of the functions S(A*), B(*)) §(A(*)) s(BK)), S(Ag ))

functions in Figure 2 is just perfect. This probably comes from the fact that
the descending ordering of the diagonal elements during the process plays an
important role in better performance of the method. We note that the diagonal
elements of A are increasingly ordered, so the row-cyclic method had to cope
with that. On the other hand, under the de Rijk strategy the matrices A(®)
and B are symmetrically permuted by permutation P so that PTA® P has
nonincreasing ordering of the diagonal entries.

5.2. Double eigenvalues
In this case the vector da has been generated by the statements:

da = linspace(1.0,1000,n); for i = 1:2:n-1, da(i) = da(i+1); end

Again, we have u = 10% and since all components of da are double, we have
§ & 5.2. The asymptotic assumptions (3.11) and (3.12) have the form: S(B(®) <
6.2-107° and €y < 2.6 - 1073, The additional condition (3.27) t