
The implicit Hari–Zimmermann algorithm for
the generalized SVD

Sanja Singer1 Vedran Novaković2 Saša Singer3

1University of Zagreb, Faculty of Mechanical Engineering and Naval
Architecture, Croatia

2STFC, Daresbury Laboratory, United Kingdom
3University of Zagreb, Faculty of Science, Department of Mathematics,

Croatia

Seminar za numeričku matematiku i znanstveno računanje,
14. 01. 2016., PMF-Matematički odsjek

This work has been supported in part by Croatian Science Foundation
under the project IP–2014–09–3670.



Introduction

Outline of the talk:
I brief description of the original Falk–Langemeyer algorithm,

and the Hari–Zimmermann (HZ) algorithm for the GEP,
I description of the HZ algorithm for the GSVD computation,
I some implementation details,
I results of numerical testing.



The Falk–Langemeyer method for the GEP

The Falk–Langemeyer method

I invented in 1960, paper published in two parts, in the
collection Elektronische Datenverarbeitung,

I quadratic convergence of the cyclic method is proved in
M.Sc. thesis of Slapničar (1989, supervised by Hari),

I the method solves the Generalized Eigenvalue Problem
(GEP) for a symmetric and definite matrix pair (A,B),

I it constructs a sequence of congruent pairs,

A(`+1) = CT
` A

(`)C`, B(`+1) = CT
` B

(`)C`,

where (A(1), B(1)) := (A,B).



Symmetry is not enough (Parlett)

Example 1

A = B =

[
1 0
0 0

]
, eigenpairs (1, e1),

(
0

0
, e2
)

Example 2

A =

[
1 0
0 0

]
, B =

[
0 0
0 1

]
, eigenpairs

(
1

0
, e1
)
,

(
0

1
, e2
)

Example 3

A =

[
0 1
1 0

]
, B =

[
1 0
0 −1

]
, eigenpairs

(
i,

[
i
−1

])
,

(
i,

[
i
1

])



The Hari–Zimmermann method for the GEP

The Hari–Zimmermann method
I Zimmermann in her Ph.D. thesis (1969) briefly sketched a

method for the GEP when B is positive definite,
I Hari in his Ph.D. thesis (1984) filled in the missing details,

proved global and quadratic convergence (cyclic strategies)
I before the iterative part, the pair is scaled so that the

diagonal elements of B are all equal to one,

A(1) := DAD, B(1) := DBD,

D = diag
(
(b11)

−1/2, (b22)
−1/2, . . . , (bkk)−1/2

)
,

I the method constructs a sequence of congruent pairs

A(`+1) = ZT
` A

(`)Z`, B(`+1) = ZT
` B

(`)Z`.



The Hari–Zimmermann method for the GEP

The transformation matrix Z`

I resembles an ordinary plane rotation: it is the identity
matrix, except for its (i, j)-restriction Ẑ`, where

Ẑ` =
1√

1−
(
b
(`)
ij

)2
[

cosϕ` sinϕ`

− sinψ` cosψ`

]
,

I ϕ` and ψ` are determined so that the transformations
diagonalize the pivot submatrices Â(`) and B̂(`)

I the transformation keeps the diagonal elements of B intact
I if B = I then Z` is the ordinary rotation, the method is the

ordinary Jacobi method for a single matrix.



The Hari–Zimmermann method for the GEP

Computation of the elements of Ẑ`

I for simplicity, the transformation index ` is omitted

tan(2ϑ) =
2aij − (aii + ajj)bij

(ajj − aii)
√

1− (bij)2
, −π

4
< ϑ ≤ π

4

ξ =
bij√

1 + bij +
√

1− bij

η =
bij(

1 +
√

1 + bij
)(

1 +
√

1− bij
)

cosϕ = cosϑ+ ξ(sinϑ− η cosϑ)

cosψ = cosϑ− ξ(sinϑ+ η cosϑ)

sinϕ = sinϑ− ξ(cosϑ+ η sinϑ)

sinψ = sinϑ+ ξ(cosϑ− η sinϑ)



The pointwise algorithm for the GEP

An example — A and B positive definite of order 52

A B
the starting pair



The pointwise algorithm for the GEP

An example — A and B positive definite of order 52

A B
end of sweep 1



The pointwise algorithm for the GEP

An example — A and B positive definite of order 52

A B
end of sweep 2



The pointwise algorithm for the GEP

An example — A and B positive definite of order 52

A B
end of sweep 3



The pointwise algorithm for the GEP

An example — A and B positive definite of order 52

A B
end of sweep 4



The pointwise algorithm for the GEP

An example — A and B positive definite of order 52

A B
end of sweep 5



The pointwise algorithm for the GEP

An example — A and B positive definite of order 52

A B
end of sweep 6



The pointwise algorithm for the GEP

An example — A and B positive definite of order 52

A B
end of sweep 7



The pointwise algorithm for the GEP

An example — A and B positive definite of order 52

A B
end of sweep 8



The pointwise algorithm for the GEP

An example — A and B positive definite of order 52

A B
end of sweep 9



The generalized SVD

Definition
I For given matrices F ∈ Cm×n and G ∈ Cp×n, where

K =

[
F
G

]
, k = rank(K),

there exist unitary matrices U ∈ Cm×m, V ∈ Cp×p, and a
matrix X ∈ Ck×n, such that

F = UΣFX, G = V ΣGX, ΣF ∈ Rm×k, ΣG ∈ Rp×k.

I ΣF and ΣG are real, “diagonal”, and nonnegative.
I Furthermore, ΣF and ΣG satisfy

ΣT
FΣF + ΣT

GΣG = I.

I The ratios (ΣF )ii/(ΣG)ii are called the generalized singular
values of the pair (F,G).



The GEP and the GSVD

Connection between the GEP and the GSVD
I Given matrices: F0 ∈ Rm×n and G0 ∈ Rp×n.
I If G0 is not of full column rank, then use, for example,

LAPACK preprocessing to obtain square matrices (F,G),
with G of full rank k.

I For such F and G, since GTG is a positive definite matrix,
the pair (F TF,GTG) in the corresponding GEP is
symmetric and definite.

I There exist many nonsingular matrices Z that
simultaneously diagonalize (F TF,GTG) by congruences,

ZTF TFZ = ΛF , ZTGTGZ = ΛG,

where ΛF and ΛG are diagonal, (ΛF )ii ≥ 0 and (ΛG)ii > 0,
for i = 1, . . . , k.



The GEP and the GSVD

Connection between the GEP and the GSVD
I Since ΛF and ΛG are diagonal, the columns of FZ and GZ

are orthogonal (not orthonormal),

FZ = UΛ
1/2
F , GZ = V Λ

1/2
G ,

where U and V are orthogonal matrices.
I If ΛF + ΛG 6= I, then the matrices in the GSVD are

X := SZ−1, ΣF := Λ
1/2
F S−1, ΣG := Λ

1/2
G S−1.

where S = (ΛF + ΛG)1/2 is the diagonal scaling.
I If only the generalized singular values are needed, rescaling

is not necessary, and σi = (Λ
−1/2
G Λ

1/2
F )ii, for i = 1, . . . , k.



The pointwise algorithm for the GSVD

The implicit HZ algorithm for the GSVD
Z = I; it = 0
repeat // sweep loop
it = it+ 1
for all pairs (i, j), 1 ≤ i < j ≤ k
compute

Â =

[
fTi fi fTi fj
fTi fj fTj fj

]
; B̂ =

[
gTi gi gTi gj
gTi gj gTj gj

]
compute the elements of Ẑ
// transform F , G and Z

[fi, fj ] = [fi, fj ] · Ẑ
[gi, gj ] = [gi, gj ] · Ẑ
[zi, zj ] = [zi, zj ] · Ẑ

until (no transf. in this sweep) or (it ≥ maxcyc))



How to make the algorithm faster and more accurate

Sequential algorithms

I blocking – each block has ki ≈ k/nb columns

F = [F1, F2, . . . , Fnb], G = [G1, G2, . . . , Gnb].

I each pivot block can either be fully orthogonalized –
full-block algorithm, or,

I each pair of columns in each block is orthogonalized once in
a sweep – block oriented algorithm

I pivoting – transformations are applied in such way that
after each transformation it holds

‖f ′i‖2
‖g′i‖2

≥
‖f ′j‖2
‖g′j‖2

, i < j.



Numerical testing of the sequential algorithms

I Implementation: Fortran routines with MKL.

with threaded MKL (12 cores)
k DTGSJA pointwise HZ HZ-FB-32 HZ-BO-32

500 16.16 3.17 4.36 2.03
1000 128.56 26.89 18.50 7.65
1500 466.11 105.31 42.38 19.31
2000 1092.39 273.48 86.01 41.60
2500 2186.39 547.84 139.53 73.07
3000 3726.76 1652.14 203.00 109.46
3500 6062.03 2480.14 294.58 186.40
4000 8976.99 3568.00 411.71 239.89
4500 12805.27 4910.09 553.67 343.58
5000 20110.39 6599.68 711.86 426.76

Times (in seconds).



Shared memory algorithms

Parallel pivoting strategy

I Choose pivot blocks independently in each step, for
example, by using (block)-modulus strategy (not optimal!)

3 4 k 1

2

3

k-2

k-1

k-2

3 4 k 1

2

3

k-1

I stopping criterion
I skip a transformation if cosines are 1
I final stop — all transformations are skipped.



Shared memory algorithms

I Implementation: OpenMP in Fortran routines.

with sequential MKL
k P-HZ-FB-32 P-HZ-BO-32

500 1.41 0.88
1000 4.78 2.02
1500 14.57 5.99
2000 30.02 12.13
2500 53.13 22.34
3000 86.78 36.08
3500 129.37 55.20
4000 180.32 86.36
4500 249.92 119.74
5000 320.39 159.59

Times (in seconds).



Shared memory algorithms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

sp
e
e
d
u
p

matrix size /1000

block-oriented algorithms

2

4

6

8

10
12

Speedup of the shared memory block-oriented algorithms on
2–12 cores vs. the sequential block-oriented Hari–Zimmermann

algorithm (threaded MKL on 12 cores).



Shared memory algorithms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.5

1.0

1.5

sp
e
e
d
u
p

matrix size /1000

full block algorithms

seq.

2

4

6

8

10

12

Speedup of the shared memory full block algorithms on 2–12
cores vs. the sequential block-oriented Hari–Zimmermann

algorithm (threaded MKL on 12 cores).



Accuracy (matrix of order 5000)

Test matrix condition number maxσi/minσi ≈ 6.32 · 105

10−3 10−2 10−1 100 101 102 103

2

4

6

8

10

12

14

16

18

re
la
ti
v
e
e
rr
o
rs

·
1
0
1
4

generalized singular values

DTGSJA



Accuracy (matrix of order 5000)

Test matrix condition number maxσi/minσi ≈ 6.32 · 105

10−3 10−2 10−1 100 101 102 103

2

4

6

8

10

12

14

16

18

re
la
ti
v
e
e
rr
o
rs

·
1
0
1
4

generalized singular values

pointwise HZ



Accuracy (matrix of order 5000)

Test matrix condition number maxσi/minσi ≈ 6.32 · 105

10−3 10−2 10−1 100 101 102 103

2

4

6

8

10

12

14

16

18

re
la
ti
v
e
e
rr
o
rs

·
1
0
1
4

generalized singular values

HZ-BO-32



Accuracy (matrix of order 5000)

Test matrix condition number maxσi/minσi ≈ 6.32 · 105

10−3 10−2 10−1 100 101 102 103

2

4

6

8

10

12

14

16

18

re
la
ti
v
e
e
rr
o
rs

·
1
0
1
4

generalized singular values

P-HZ-BO-32



Distributed memory algorithms

Distributed algorithms = another level of hierarchy added

I shared-memory algorithm — a building block for the
distributed memory algorithm (hybrid MPI/OpenMP)

I only conceptual difference between the distributed memory
and the shared memory HZ algorithm — exchange updated
block-columns among the MPI processes

I Cartesian topology — one dimensional torus of processes.

I each MPI process in each step sends only one block-column
and receives only one block column.



Distributed vs. shared memory algorithms

number of time
MPI processes cores MPI-HZ-BO-32

2 24 15323.72
4 48 8229.32
6 72 6049.77
8 96 4276.65
10 120 3448.90
12 144 3003.39
14 168 2565.29
16 192 2231.71

The running times of the hybrid MPI/OpenMP version HZ,
matrix pair of order 16000.



Distributed vs. shared memory algorithms

number of time
cores P-HZ-FB-32 P-HZ-BO-32

2 – 42906.93
4 35168.73 18096.72
6 21473.00 10936.10
8 13745.17 7651.86
10 9901.96 5599.25
12 8177.90 4925.56

The running times for the full block and block-oriented shared
memory algorithms for the same matrix.



Conclusion

On a particular hardware (with threaded MKL on 12 cores)

I Pointwise HZ method is 3 times faster than DTGSJA on
matrices of order 5000.

I Sequential block-oriented HZ-BO-32 algorithm is 15 times
faster than the pointwise algorithm, i.e., more than 47
times faster than DTGSJA.

I For the fastest, explicitly parallel, shared memory
algorithm P-HZ-BO-32, the speedup factor is 126!

I DTGSJA is unable to handle large matrices in any reasonable
time.

I Triangularization is mandatory for DTGSJA, but not
necessary for the Hari–Zimmermann method, when G is of
full column rank.


