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SVD and how to compute it

Given a dense, full-column-rank matrix G , n × k , n ≥ k , compute
the singular value decomposition (SVD) of G ,

G = UΣV T , U,V orthogonal, Σ diagonal, σi > 0.

What if n, k are sufficiently small (up to a thousand or two)?

I Call Lapack’s xGESVD (bidiagonalization + implicit QR), or
I xGEJSV by Drmač (Jacobi SVD, for high relative accuracy).

And if they reach tens of thousands???

I Go parallel, due to both time and space constraints.
I What’s the adequate hardware and software?



SVD and the hardware choices

Clusters of multi-core CPUs
I The established technology, excellent if you can afford to buy

it, and power it. ScaLapack has PxGESVD. Jacobi SVD works,
usable with multi-level blocking (machines → cores & caches).

Multi-core CPU, a single graphics processor (GPU)

I A modern, cheaper solution for not too large problems.
I A hybrid xGESVD algorithm of Magma: bidiagonalization on a

GPU, QR on a CPU. Jacobi SVD works , entirely on a GPU,
faster than Magma with 1-core MKL, slower than 4-core MKL.

Hybrid multi-CPU, multi-GPU clusters

I A “trendy” solution (see top500.org) for the large systems.

I Jacobi SVD works and scales well, CPU-assisted for now.



What about other accelerators and systems to come?

I Jacobi SVD stays inherently parallel, whatever a definition or
implementation of “parallel processing” might have been so far.

I Hierarchical blocking + optimization tricks for the new
hardware: Jacobi will probably adapt to the future hybrid
topologies and massively parallel accelerator paradigms.

I A Jacobi-type shared-memory generalized SVD algorithm
(Hari–Zimmermann) works on a multi-core, multi-CPU
machine and on an Intel Xeon Phi coprocessor – the same
code (Fortran + OpenMP), with only re-compiling needed.

I A class of hybrid (multi-CPU, multi-Phi) algorithms possible.
Optimal division of work between CPUs and Phis, as well as
MPI communication pattern, still a matter of research.



The one-sided Jacobi SVD

The (one-sided) Jacobi algorithm computes the SVD of G ,

G = UΣV T , UTU = I , V TV = I .

In each step of the pointwise algorithm:
I form 2× 2 pivot submatrix Â of A := GTG

Â =

[
akk ak`
ak` a``

]
=

[
gT
k gk gT

k g`
gT
` gk gT

` g`

]
=

[
gT
k

gT
`

] [
gk g`

]
,

from two pivot columns (e.g. gk and g`) of G ,
I diagonalize A with a single Jacobi rotation R̂k`,

R̂ :=

[
cosϕ sinϕ
− sinϕ cosϕ

]
, R̂T

k`ÂR̂k` = diag(λ̂k , λ̂`).



The one-sided Jacobi SVD (continued)

Implicit orthogonalization: Transformations R̂ are then applied
from the right on G , orthogonalizing the pivot columns

Ĝ = GR̂.

The Jacobi process iterates over pivot pairs (usually in sweeps over
all pairs) until the convergence criterion is met.

I How to choose pivots? According to a suitable pivot strategy.
I What criterion to take for the convergence? E.g. the pivot

columns are relatively orthogonal up to the machine precision ε

ak`√
akka``

< ε
√
n.

I May stop earlier by controlling when the rotations are
“sufficiently close” to identity.



Blocking of the Jacobi algorithm

Correspondence between the non-blocked and the blocked Jacobi:
I a pair (gk , gl) of columns ↔ a pair (Gk ,Gl) of block-columns;
I 2× 2 pivot matrix Â2 ↔ m ×m pivot matrix Âm (m ≥ 2).

Factorize the pivot block-columns, or pivot matrix Âm, either:
I implicitly: Gm := [Gk Gl ], Gm = QmRm (more accurate), or
I explicitly: compute Âm by multiplication and Rm is obtained

by the (diagonally pivoted) Cholesky factorization (faster).
With Rm there are (at least) two choices:

I block-oriented: apply one sweep of the “ordinary” one-sided
Jacobi algorithm to reduce the pivot’s off-diagonal norm, or

I full-block: fully diagonalize the pivot matrix.
The accumulated transformations are applied to the block columns.



Hierarchical (multi-level) blocking

Subdivide recursively the larger blocks into smaller ones:

I the pivot block columns of a level `,
[
G

(`)
k G

(`)
l

]
, are

“shortended” by either of the factorizations to R(`);
I R(`) is further subdivided into block columns at the level `− 1,

as if
[
U(`),Σ(`),V (`)

]
= Jacobi

(
R(`)

)
is recursively called;

I V (`) might be accumulated (product of rotations → stable), or
found as the solution of a triangular linear system (fast):

R(`)V (`) = U(`)Σ(`);

I the pivot columns are updated (orthogonalized):[
Ĝ

(`)
k Ĝ

(`)
l

]
=
[
G

(`)
k G

(`)
l

]
V (`);

I Jacobi
(
R(0)) is the pointwise algorithm.



Jacobi parallelization = X + Y + Z

Three important ingredients of a parallel Jacobi SVD

I X : a parallel pivot strategy makes the Jacobi SVD – parallel;
I Y : the hardware and its constraints;
I Z : a blocking hierarchy that reflects Y ’s memory hierarchy.

The main idea
I Process as many blocks as possible in parallel.
I Find just the right level and coarseness of blocking to

optimally exploit the hardware (e.g., saturate the caches).



Jacobi strategies

Definition
A cyclic Jacobi strategy O is a periodic sequence of pivot pairs,

O = ((pk , qk) | k ∈ N), 1 ≤ pk < qk ≤ n,

where a cycle contains τ = n(n − 1)/2 successive pivots.
Well-known (sequential) examples: row- (R) and column-cyclic (C).

Definition
A parallel Jacobi strategy (p-strategy) simultaneously processes ≤ t
independent pivots in ≥ s parallel steps (p-steps). If, for even n,

t = n/2, s = n − 1,

the strategy is perfectly parallel (i.e., minimal number of p-steps,
with maximal amount of parallel tasks possible).
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Cyclic Jacobi p-strategies

Some examples of p-strategies in common usage:
I Modulus (Sameh) – convergent by equivalence to row-cyclic;
I Brent-Luk – convergent for odd n, problematic for even n;
I Mantharam-Eberlein Block Recursive – for the hypercube

topologies, i.e., power-of-two n only; convergence unknown.

Can we do better, i.e., find a p-strategy that is:

I faster than the “usual” p-strategies;
I with more accurate results;
I easy to generate or describe;
I and provably convergent?
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Cyclic Jacobi p-strategies

Some examples of p-strategies in common usage:
I Modulus (Sameh) – convergent by equivalence to row-cyclic;
I Brent-Luk – convergent for odd n, problematic for even n;
I Mantharam-Eberlein Block Recursive – for the hypercube

topologies, i.e., power-of-two n only; convergence unknown.

Can we do better, i.e., find a p-strategy that is:

I faster than the “usual” p-strategies; YES (probably)
I with more accurate results; YES (probably)
I easy to generate or describe; MAYBE (describe for now)
I and provably convergent? MAYBE (future work)

Main idea: inherit the “good” properties of the row/column-cyclic
strategies by finding a parallel one “closest” to them in some sense.



What it means to tell that O1 is closer to O than O2?

Depends on a definition of “closeness”. . . let’s try with this one!

Take a pivot (p, q), and the same-sized cyclic strategies O (fixed)
and O′. If (p, q) = (pk , qk) ∈ O, then (p, q) = (p`(k), q`(k)) ∈ O′,
for some k and `(k), and k 7→ `(k) is a permutation. Let

IO(O′) = (`(1), `(2), . . . , `(k), . . . , `(τ)) ∈ Sym(n).

Definition
For any two cyclic Jacobi strategies, O1 and O2, we say O1 is closer
to O than O2, and denote that by O1 �O O2, if IO(O1) � IO(O2),
where � stands for the lexicographic ordering of permutations.

There exist a unique p-strategy O‖ closest to a given O, since � is
a total order. E.g., for O = Rn (or Cn), R

‖
n and C

‖
n are well-defined.



So, O‖ exists and is unique. . . Now, how to find it?

Just rephrase the question in the graph-theoretical parlance!

Let G be a simple, connected graph with τ vertices.
I Each vertex represents a pivot from a given O.
I An edge exist whenever two pivots share a column index (i.e.,

can not be processed indepenently, in the same p-step).
Any maximal independent set1 of G may be processed in parallel.

I Each MIS has no more than n vertices/pivots.
I Any MIS S with n vertices is an admissible p-step.
I The previous statements hold for G \ S , also.

The Jacobi method is invariant to the order of pivots in a p-step, so
the vertices in a MIS may be assumed to be sorted ascendingly.

Therefore, p-step candidates may be compared lexicographically!

1MIS: a maximal set of vertices, no two of which are adjacent.
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MIS-based generation of the p-strategy O‖ closest to O

Take S , lexicographically next2 MIS(G) with n vertices, as a p-step
candidate and try to complete a sweep with G \ S . If you cannot,
take the next MIS and try again. You will eventually3 succeed :-)
Desc.: Input: a graph G induced by O. Output: O‖ (initially ∅).
boolean gen_strat(in G);
begin

if G = ∅ then return true; // no more pivots (success)
begin loop

S ← next_lex(G) // lexicographically next MIS...;
if S = ∅ then return false; // ...but there are none; fail
append S to O‖ // S is a new p-step candidate;
if gen_strat(G \ S) then return true; // try recursively
remove S from the back of O‖ // backtrack if failed;

end loop;
end

2D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou, On generating all
maximal independent sets, Inform. Process. Lett., 27 (1988), pp. 119–123.

3. . . but maybe not before the end of the universe



A simple backtracking-based search, yet infeasible for large G
(in general, the maximum independent set problem is NP-hard).
But, the multi-level blocking requires only moderately sized graphs!

I E.g., n = 15 · 1024 with three-level blocking on 4 GPUs needs
n2 = 8, n1 = 15 · 1024/(4 · 16) = 240, and n0 = 32 strategies.

I A simple “blow-up” (duplication) procedure exist (no proof
yet) for R‖/C‖. The pivots of e.g. R‖n become 2× 2 blocks of
R
‖
2n. Easy to show: the first step is always superdiagonal.

I Find the strategies for n = 2o, o odd; all others by duplication.
I E.g., 240 = 23 · (2 · 15). Find R/C

‖
30, and duplicate 3 times.

I Feasible to verify for n ≤ 38 (a few days of CPU time).
I Duplication is almost instant, generation takes forever. . .

I Hard-code (tabulate) the strategies into an executable!
I Practical for the GPU RAM sizes of today and tomorrow4.

4. . . but in a few years, who knows
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The new strategies – a conclusion

The strategies progress from the diagonal outwards, but. . .
I the off-diagonal norm in the last sweeps concentrates

towards the diagonal ridge (remember the movies?);
I Reverse the strategies (read the pivot list backwards).

I R
‖
n and C

‖
n are equivalent, for power-of-two ns, to the

Mantharam-Eberlein block recursive strategy; a kind of
generalization for all even n (irregular communication).

Why all the trouble?
6 strategies compared on a single GPU (two-level full block) for
speed and accuracy:

I R
‖
n and C

‖
n; R

‖
n and C

‖
n; the modified modulus strategy Mn,

the Brent-Luk strategy Bn.
The results confirm that the reversed strategies should be used. . .



Time ratio for the parallel strategies, new and old
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Relative errors for the parallel strategies, new and old
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CUDA: NVidia’s platform for developing the GPU programs

A short, incomplete and a bit incorrect CUDA summary

I Many concurrent threads of execution, all executing the same
kernel (i.e. GPU subroutine) over different data (SIMT).

I Threads are grouped into warps (32 threads), warps into
autonomous Cartesian blocks, and blocks into grids.

I Various storage spaces, of different size and speed:
I Global memory (RAM) – large (in GB) and slow.
I Shared memory – per block, small (in kB) and fast. Acts as

the user-managed cache. Our primary blocking target.
I Registers – fast, per thread, strongly limited storage, where the

data (integers, floating-point numbers) operated upon reside.
I CPU ↔ GPU and GPU ↔ GPU communication available;

should be used when necessary and “hidden” if possible.



Intra-GPU blocking (2-level)

The input factor G , n × n is split into block columns, n × 16.
In a p-step, simultaneously, all the pivot block column pairs are:

I shortened into 32× 32 factors, which are then
I orthogonalized (the full block or block oriented approach),
I finally, the original block columns are updated.

A single kernel thread block does all three jobs for a pivot pair

I The block columns are read from and written to GPU’s RAM.
I Shortening phase leaves the small factor in shared memory.
I A thread block: 32× 16 = 512 threads, 16 kB of shared mem.
I Reaches the register limit (register spills to local mem.) on

GPUs ⇒ no sense in enlarging the thr. blocks or shared mem.

Note: the GPU does the job, the CPU only orchestrates it.
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A closer look at the Cholesky factorization

L L L

︷ ︸︸ ︷
16

︷ ︸︸ ︷
16

I First, the current column is scaled.
I Then, 16 warps update 16 forward columns.

Threads above the diagonal “sleep”, i.e., do nothing.
I Finally, the rest of the columns are updated.

Entire warps might sleep.



For CUDA experts: some implementation details

Almost 100% GPU utilization. Tested on a Tesla C2070 GPU.

Multiplications

I Hand-written GTG (the intermediate values in registers).
I G ,V · V̂ Cannon-like (consider in-kernel DGEMM for Kepler).

Cholesky

I Forward looking. The only operation with dormant threads.
I Transpose the only op. to incur shared mem. bank conflicts.

Jacobi (pointwise)

I A warp “in charge” of a pivot pair: 3 dot-products, computing
and applying a rotation to Ri and Vi . The warps synchronize
to agree on satisfying the convergence criterion.

I Warp-level reductions: half of Vi ’s memory backed by registers.



Orthogonality matters (work in progress)

I Jacobi is self-correcting: it stays on “the right track” as long as
the applied transformations are numerically orthogonal, i.e.,

cos2 ϕ+ sin2 ϕ = 1± O (ε) ; ‖V TV − I‖, ‖VV T − I‖ small.

I Full block principle: accumulate many (millions of) rotations.
How to keep the accumulated V as orthogonal as possible?

I A naïve approach: don’t spoil immediately; which formula gets
a more orthogonal rotation (without, e.g., higher precision)?

cot 2ϕ = (Aqq − App)/(2Apq);

| cotϕ| = | cot 2ϕ|+
√

fma (cot 2ϕ, cot 2ϕ, 1);

tanϕ = sign (cot 2ϕ) /| cotϕ|;

cosϕ = 1/
√

fma (tanϕ, tanϕ, 1); This one (and when)?

cosϕ = | cotϕ|/
√

fma (cotϕ, cotϕ, 1); Or this one (and when)?



When to stop a blocked Jacobi? (work in progress)

Blocking introduces additional errors. . .
. . . vs. the pointwise algorithm, with shortening and block updates.
Net effect: stopping on relative orthogonality doesn’t work well!
Unnecessary sweeps at the end of the process due to “flutters”: a
few rotations chasing the big off-diagonal “ghost” elements that
shoudn’t be there if it were not for the blocking-specific errors.

A simple heuristic based on quadratic convergence

I Stop on relative orthogonality in the pointwise (lower level)
Jacobi, where the sweeps (i.e., arithmetic) are inexpensive.

I Stop globally when all the rotations in an outer sweep are
close enough to identity (e.g., cosines equal to 1.0).



Speedup of R‖ vs. DGESVJ (with 8-core MKL BLAS1)

Intel Xeon E5620 @ 2.40GHz, normal distribution set.
Matrix size Time Matrix size Time
×1024 DGESVJ/ R‖ ×1024 DGESVJ/ R‖

1 5.57 9 14.89
2 8.61 10 15.45
3 11.75 11 15.62
4 11.83 12 16.14
5 12.34 13 16.49
6 13.47 14 16.46
7 13.62 15 16.19
8 13.58 16 16.00



Speedup % on a Kepler vs. a Fermi GPU, the full block

k Kepler [s] Fermi [s] K/F

1 1.413 2.376 59.5
2 7.206 12.439 57.9
3 22.981 35.783 64.2
4 46.358 84.467 54.9
5 95.829 160.383 59.8
6 154.643 261.918 59.0
7 246.114 403.151 61.0
8 346.689 621.341 55.8

k Kepler [s] Fermi [s] K/F

9 506.366 850.280 59.6
10 682.577 1153.338 59.2
11 904.212 1545.452 58.5
12 1148.882 1970.592 58.3
13 1439.392 2500.931 57.6
14 1809.888 3158.117 57.3
15 2196.755 3820.552 57.5
16 2625.643 4662.749 56.3

Kepler’s main advantage: 8-byte shared memory banks!



Inter-GPU blocking (3-level)

Many-GPU hardware, e.g., NVidia Tesla S2050 (4 Fermi GPUs).
One CPU thread per GPU. CPU assists Magma’s DPOTRF only.

Outer-level blocking (with n × n factor G )
Each GPU has a part of the input, split into “big” block-columns:

I 2 buffers (block-columns) of G , 2× 2× n × n/4
I 2 buffers (block-columns) of V , 2×, and 2× n × n/4
I 2 auxiliary buffers. 2× n/4× n/4
⇒> twice the storage than the size of the output data – but only
in the GPUs’ RAM! The CPU data needed is small, constant size.

Communication in a global step
In each outer (global) step GPUs (quasi-)cyclically exchange:

I 1 “big” block-column of G , n × n/8
I 1 “big” block-column of V . n × n/8



GPU’s operation in the multi-GPU algorithm

G
A
V
A
G
B
V
B

GT

A
G

A

̂

V
AUX

Cholesky
Jacobi

GB = GA · V̂

VB = VA · V̂

same number
=

concurrently
receive receive send send

(1)
(2)

(3)

(4) (4)

(5) synchronize

The same-numbered operations can proceed concurrently, in
CUDA streams. Choose between DTRSM or the accumulation of V̂ .



Problems with 4 GPUs

Problem 1
Cyclic exchange in MPI: MPI_Sendrecv_replace.
But there are no such operations in CUDA!
Asynchronous communication; voluntary send, involuntary receive.

Solution: Hand-code it via auxiliary buffers. Do concurrently:
Send a block-column from GB , (passively) receive a new one to GA,
copy the remaining one from GB to GA (in-GPU transfer only).

Drawback: increased RAM usage.

Problem 2
GPU communication 0↔ 1 and 2↔ 3 faster than other
combinations (some GPUs are “peers”, some not)!

Solution: Find an equivalent p-strategy that maximizes the amount
of the fast inter-GPU communication (“rename” the GPUs).

Drawback: Maybe there is no optimal equivalent.
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A few words about accuracy

Testing data

I Context: symmetric pos. definite eigenproblem (H = GGT ).
I Σ2 (G ), i.e. eigenvalues Λ (H) prescribed.
I N (µ = 1, σ = 0.1), with 16 eigenvalues fixed to 1.5.

I Highly clustered.
I Uniformly in [10−7, n · 10], 1 ≤ n ≤ 16, order n · 1024.

I Constant density.

I Orders of 1024 up to 16384 with step 1024 (limited RAM).

Generation in quadruple (128-bit) precision

dlarnd−−−−→ Λ64
cast−−−−→ Λ128

qlagsy−−−−→ H128

qpstrf−−−−→ G128
cast−−−−→ G64.

Intel Fortran real(kind=16) — emulated (slow)!
The quadruple SVD a better but unfeasible option for testing!



Time comparison, normal distribution, Fermi
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Relative error comparison in Σ2, normal distribution
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Time comparison, uniform distribution
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Relative error comparison, uniform distribution
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Future work

Short term
I Orthogonality of transformations.
I Stopping criterion in a presence of blocking.

Medium term
I Port to other massively parallel architectures (e.g., Intel MIC).

Papers
http://venovako.eu/CV.html (see Publication list)

http://venovako.eu/CV.html


Thank you!
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