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GEP and PGEP

Let A = AT , B = BT .

We consider the Generalized Eigenvalue Problem (GEP)

Ax = λBx , x 6= 0.

If B � O, GEP is usually called Positive definite GEP or shorter PGEP.

For such a pair there is a nonsingular matrix F such that

FTAF = ΛA , FTBF = ΛB ,

ΛA = diag(α1, . . . , αn), ΛB = diag(β1, . . . , βn) � O.

The eigenpairs of (A,B) are: (αi/βi ,Fei ), 1 ≤ i ≤ n; In = [e1, . . . , en].
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Little Proof

FTAF = ΛA ⇒ AF = F−TΛA,

FTBF = ΛB ⇒ BF = F−TΛB .

F−TΛA = F−TΛB(ΛAΛ−1B ) = BF (ΛAΛ−1B ),

AF = F−TΛA = BF (ΛAΛ−1B ) = BF diag(α1/β1, . . . , αn/βn),

AFei = BF diag(α1/β1, . . . , αn/βn)ei = (αi/βi )B Fei , 1 ≤ i ≤ n.
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How to Solve PGEP?

One can try with the transformation (A,B) 7→ (L−1AL−T , I ), B = LLT

and reduce PGEP to the standard EP for one symmetric matrix.
If B has very high condition, then L will have high condition

( recall: κ2(L) =
√
κ2(B) ),

then the computed matrix L−1AL−T will have very high condition, so
inaccuracy in L plus high condition of L will imply that the eigenvalues of
L−1AL−T are corrupt.

Then one can try to maximize the minimum eigenvalue of B by rotating
the pair

(A,B) 7→ (Aϕ,Bϕ) = (A cosϕ+ B sinϕ,−A sinϕ+ B cosϕ),

or derive a method which works with the initial pair (A,B).

We follow the second path.
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Jacobi methods for PGEP

We have two diagonalization methods for PGEP

• Falk-Langemeyer method (shorter: FL method)
(Elektronische Datenverarbeitung, 1960)

• Hari-Zimmermann variant of the FL method (shorter: HZ method)
(Hari Ph.D. 1984)

The two methods are connected: the FL method can be viewed as the HZ
method with “fast scaled” transformations. So, the FL method seems to
be somewhat faster and the HZ method seems to be more robust.
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Jacobi methods for PGEP

However, numerical tests on large matrices, on parallel machines, have
confirmed the advantage of the HZ approach. In the paper

V. Novaković, S. Singer, S. Singer (Parallel Comput., 2015)

it has been shown/written:

When implemented as one-sided block algorithm for the
GSVD, it is almost perfectly parallelizable, so parallel shared me-
mory versions of the algorithm are highly scalable, and their spe-
edup almost solely depends on the number of cores used.

(In this paper the method was first time referred to as the HZ method!)
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Derivation of the HZ Method

Preliminary transformation: A(0) = D0AD0, B
(0) = D0BD0

D0 = [diag(B)]−
1
2 , so that b

(0)
11 = b

(0)
22 = · · · = b

(0)
nn = 1.

This property of B(0) is maintained during the iteration process:

A(k+1) = ZT
k A(k)Zk , B(k+1) = ZT

k B(k)Zk , k ≥ 0.

Each Zk is a nonsingular elementary plane matrix

Zk =


I

ck −sk
I

s̃k c̃k
I


i(k)

j(k)
, i(k) < j(k) are pivot indices at step k,

c2k + s2k = c̃2k + s̃2k = 1/
√

1− b2i(k)j(k) (Gose 1979).

The selection of pivot pairs (i(k), j(k)) defines pivot strategy.
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Derivation of the HZ Method

To describe step k , we assume:

A = A(k), A′ = A(k+1), Zk = Z ,

Ẑ =

[
c −s
s̃ c̃

]
the pivot submatrix of Z .

We have

A′ = ZTAZ , B ′ = ZTBZ
(
Â′ = ẐT ÂẐ , B̂ ′ = ẐT B̂Ẑ

)
.

Z is chosen/constructed to annihilate the pivot elements aij and bij .

Ẑ is sought in the form of a product of two Jacobi rotations and one
diagonal matrix. We have two possibilities:
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Ẑ is sought in the form:

(a)

[ √
2
2 −

√
2
2√

2
2

√
2
2

] 1√
1+bij

0

0 1√
1−bij

[ cos(θ − π
4 ) − sin(θ − π

4 )
sin(θ − π

4 ) cos(θ − π
4 )

]

(b)

[ √
2
2

√
2
2

−
√
2
2

√
2
2

] 1√
1−bij

0

0 1√
1+bij

[ cos(θ + π
4 ) − sin(θ + π

4 )
sin(θ + π

4 ) cos(θ + π
4 )

]
↓ ↓ ↓

B̂ → diag B̂ → I2 Â→ diag

The both possibilities yield the same algorithm.
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Essential Part of the Algorithm

ξ =
bij√

1 + bij +
√

1− bij
, ρ = ξ +

√
1− bij , ξ2 + ρ2 = 1,

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

, −π
4
≤ θ ≤ π

4
,

cosφ = ρ cos θ − ξ sin θ

sinφ = ρ sin θ + ξ cos θ

cosψ = ρ cos θ + ξ sin θ

sinψ = ρ sin θ − ξ cos θ

Ẑ =
1√

1− b2ij

[
cosφ − sinφ
cosψ sinψ

]
.

a′ii = aii +
1

1− b2ij

[
(b2ij − sin2 φ) aii + 2 cosφ sinψ aij + sin2 ψ ajj

]
a′jj = ajj −

1

1− b2ij

[
(sin2 ψ − b2ij) ajj + 2 cosψ sinφ aij + sin2 φ aii

]
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Ẑ =
1√

1− b2ij

[
cosφ − sinφ
cosψ sinψ

]
.

a′ii = aii +
1

1− b2ij

[
(b2ij − sin2 φ) aii + 2 cosφ sinψ aij + sin2 ψ ajj

]
a′jj = ajj −

1

1− b2ij

[
(sin2 ψ − b2ij) ajj + 2 cosψ sinφ aij + sin2 φ aii

]

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 11 / 61



Essential Part of the Algorithm

ξ =
bij√

1 + bij +
√

1− bij
, ρ = ξ +

√
1− bij , ξ2 + ρ2 = 1,

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

, −π
4
≤ θ ≤ π

4
,

cosφ = ρ cos θ − ξ sin θ

sinφ = ρ sin θ + ξ cos θ

cosψ = ρ cos θ + ξ sin θ

sinψ = ρ sin θ − ξ cos θ
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There are more formulas!

ρ =
1

2
(
√

1 + bij +
√

1− bij), 2ρξ = bij .

It is easy to show the following relations: |ξ| ≤
√

2/2,
√

2/2 ≤ ρ ≤ 1.

cosφ sinψ = cos θ sin θ − ρξ = 0.5 (sin 2θ − bij),

cosψ sinφ = cos θ sin θ + ρξ = 0.5 (sin 2θ + bij),

cosφ cosψ = ρ2 cos2 θ − ξ2 sin2 θ,

sinφ sinψ = ρ2 sin2 θ − ξ2 cos2 θ.

min{cosφ , cosψ} ≥ ρ cos θ −
|bij |
2ρ
| sin θ| ≥ (ρ−

|bij |
2ρ

) cos θ > 0,

max{cosφ , cosψ} = ρ cos θ + |ξ sin θ| ≥ cos(θ) ≥
√

2

2
.
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There are more formulas!

Let sin γ = bij , cos γ =
√

1− b2ij . Then

1

cos γ

[
aii aij
aij ajj

] [
cosφ − sinφ
sinψ cosψ

]
=

[
cosψ − sinψ
sinφ cosφ

] [
a′ii

a′jj

]
,

1

cos γ

[
1 bij
bij 1

] [
cosφ − sinφ
sinψ cosψ

]
=

[
cosψ − sinψ
sinφ cosφ

]
,

cos γ =
cosφ

cosψ
+ bij tanψ =

cosψ

cosφ
− bij tanφ,

2 cos(φ+ ψ)aij = aii sin(2φ)− ajj sin(2ψ).
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There are more formulas!

a′ii =
1

cos γ

(
aii

cosφ

cosψ
+ aij tanψ

)
=

aii + aij
sinψ
cosφ

1 + bij
sinψ
cosφ

,

a′jj =
1

cos γ

(
ajj

cosψ

cosφ
− aij tanφ

)
=

ajj − aij
sinφ
cosψ

1− bij
sinφ
cosψ

.

We also have

φ+ ψ = 2θ , hence
φ = θ + γ/2,
ψ = θ − γ/2.

All these relations are used in the global convergence proof and in the
proof of high relative accracy of the method.
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Digression: Complex Matrices

If A = A∗ and B = B∗ are complex, with B � O and diag(B) = In,
then one step of the HZ method uses the transformation

A′ = Z ∗AZ , B ′ = Z ∗BZ ,

Z is chosen to annihilate the pivot elements aij and bij .

It is proved that that pivot submatrix of Z has form

Ẑ =

[
c s̄
−s̃ c̃

]
.

We obtain Â′ = Ẑ ∗ÂẐ , B̂ ′ = Ẑ ∗B̂Ẑ . Ẑ is sought as product of two
complex Jacobi rotations and two diagonal matrices.
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Ẑ is sought in the form:

B̂ → diag B̂ → I2

↑ ↑

Ẑ =

[ √
2
2 −

√
2
2 eı arg(bij )√

2
2 e−ı arg(bij )

√
2
2

]
·

 1√
1+|bij |

0

0 1√
1−|bij |


·
[

cos(θ + π
4 ) eıα sin(θ + π

4 )
−e−ıα sin(θ + π

4 ) cos(θ + π
4 )

]
·
[
eıωi 0

0 eıωj

]
↓ ↓

Â→ diag diag(Ẑ ) � O
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Essential Part of the Algorithm

Let

b = |bij |, t =
√

1− b2, e = ajj − aii , ε =

{
1, e ≥ 0
−1, e < 0

,

u + ı v = e−ı arg(bij ) aij , tan γ = 2 v
|e| , −

π
2 < γ ≤ π

2

tan 2θ = ε
2u−(aii+ajj )b

t
√
e2+4v2

, −π
4 < θ ≤ π

4

2 cos2 φ = 1 + b sin 2θ + t cos 2θ cos γ, 0 ≤ φ ≤ π
2

2 cos2 ψ = 1− b sin 2θ + t cos 2θ cos γ, 0 ≤ ψ ≤ π
2

eıα sinφ = e
ı arg(bij )

2 cosψ [sin 2θ − b − ıt cos 2θ sin γ]

e−ıβ sinψ = e
−ı arg(bij )

2 cosφ [sin 2θ + b + ıt cos 2θ sin γ] .

Then

Ẑ =
1√

1− b2

[
cosφ eıα sinφ

−e−ıβ sinψ cosψ

]
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New Algorithms: Based on LLT and RRT Factorizations

Consider the Cholesky foctorization of B̂:[
1 bij
bij 1

]
= B̂ = L̂L̂T =

[
1 0
a c

] [
1 a
0 c

]
=

[
1 a
a a2 + c2

]
.

Assuming c > 0, one obtains a = bij , c =
√

1− b2ij , hence

L̂ =

[
1 0

bij
√

1− b2ij

]
, L̂−1 =

 1 0

− bij√
1−b2ij

1√
1−b2ij

 .
If we write F̂1 = L̂−T , then F̂T

1 B̂F̂1 = I2 and
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The Algorithm Based on LLT Factorization

F̂T
1 ÂF̂1 =

[
1 0
fij fjj

] [
aii aij
aij ajj

] [
1 fij
0 fjj

]
=

[
aii fijaii + fjjaij

fijaii + fjjaij f 2ij aii + 2fij fjjaij + f 2jj ajj

]

=

 aii
aij−bijaii√

1−b2ij
aij−bijaii√

1−b2ij
ajj −

2aij−(aii+ajj )bij
1−b2ij

bij

 , (1)

where we have used fij = −bij/
√

1− b2ij , fjj = 1/
√

1− b2ij .

The final F̂ has the form F̂ = F̂1R̂, where R̂ is the Jacobi transformation
which diagonalizes F̂T

1 ÂF̂1. Its angle ϑ is determined by the formula
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The Algorithm Based on LLT Factorization

tan(2ϑ) =
2(aij − bijaii )

√
1− b2ij

aii − ajj + 2(aij − bijaii )bij
, −π

4
≤ ϑ ≤ π

4
.

The transformation formulas for the diagonal elements of A read

a′ii = aii + tanϑ ·
aij − aiibij√

1− b2ij

(2)

a′jj = ajj −
2aijbij − b2ij(aii + ajj)

1− b2ij
− tanϑ ·

aij − aiibij√
1− b2ij

(3)

If aii = ajj , aij = aiibij then ϑ is determined from expression 0/0, so we
choose ϑ = 0. In this case a′ii and a′jj reduce to aii and ajj , respectively.
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The Algorithm Based on LLT Factorization

This leads to a simpler matrix

Ẑ =
1√

1− b2ij

[ √
1− b2ij −bij

0 1

] [
cϑ −sϑ
sϑ cϑ

]

=
1√

1− b2ij

[
cϑ̃ −sϑ̃
sϑ cϑ

]
,

cϑ̃ = cϑ
√

1− b2ij − sϑbij ,

sϑ̃ = cϑbij + sϑ
√

1− b2ij .

It is easy to check that c2
ϑ̃

+ s2
ϑ̃

= 1.
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The Algorithm Based on RRT Factorizations

Consider the RRT factorization of B̂:[
1 bij
bij 1

]
= B̂ = R̂R̂T =

[
c a
0 1

] [
c 0
a 1

]
=

[
a2 + c2 a

a 1

]
.

Assuming positive c , one obtains a = bij , c =
√

1− b2ij , hence

R̂ =

[ √
1− b2ij bij

0 1

]
and R̂−1 =

 1√
1−b2ij

− bij√
1−b2ij

0 1

 .

If we write F̂2 = R̂−T , then F̂T
2 B̂F̂2 = I2 and
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√

1− b2ij , hence

R̂ =

[ √
1− b2ij bij

0 1

]
and R̂−1 =

 1√
1−b2ij

− bij√
1−b2ij

0 1

 .
If we write F̂2 = R̂−T , then F̂T

2 B̂F̂2 = I2 and
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The Algorithm Based on RRT Factorization

F̂T
2 ÂF̂2 =

[
fii fji
0 1

] [
aii aij
aij ajj

] [
fii 0
fji 1

]
=

[
f 2ii aii + 2fii fjiaij + f 2ji ajj fiiaij + fjiajj

fiiaij + fjiajj ajj

]

=

 aii −
2aij−(aii+ajj )bij

1−b2ij
bij

aij−bijajj√
1−b2ij

aij−bijajj√
1−b2ij

ajj

 , (4)

where we have used fii = 1/
√

1− b2ij , fji = −bij/
√

1− b2ij .

The final F̂ has the form F̂ = F̂2Ĵ, where Ĵ is the Jacobi transformation
which diagonalizes F̂T

2 ÂF̂2. Its angle ϑ is determined by the formula
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The Algorithm Based on RRT Factorization

tan(2ϑ) =
2(aij − bijajj)

√
1− b2ij

aii − ajj − 2(aij − bijajj)bij
, −π

4
≤ ϑ ≤ π

4
.

The transformation formulas for the diagonal elements of A read

a′ii = aii −
2aij − (aii + ajj)bij

1− b2ij
bij + tanϑ ·

aij − ajjbij√
1− b2ij

a′jj = ajj − tanϑ ·
aij − ajjbij√

1− b2ij

If aii = ajj , aij = ajjbij then ϑ is determined from expression 0/0, so we
choose ϑ = 0. In this case a′ii and a′jj reduce to aii and ajj , respectively.
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The Algorithm Based on RRT Factorization

This leads to a simpler matrix

Ẑ =
1√

1− b2ij

[
1 0

−bij
√

1− b2ij

] [
cϑ −sϑ
sϑ cϑ

]

=
1√

1− b2ij

[
cϑ −sϑ
sϑ̃ cϑ̃

]
,

cϑ̃ = cϑ
√

1− b2ij + sϑbij ,

sϑ̃ = sϑ
√

1− b2ij − cϑbij .

It is easy to check that c2
ϑ̃

+ s2
ϑ̃

= 1.

The algorithms based on LLT and RRT factorizations can be generalized
to work with complex matrices
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Definition of a Hybrid and a General Method

Definition

Let H denote a collection of Jacobi methods for the positive definite
generalized eigenvalue problem Ax = λBx which satisfy the following two
rules:

1 at step k the pivot submatrix Â(k) is diagonalized and B̂(k) is
transformed to I2,

2 at least one of the two diagonal elements of the pivot submatrix F̂k
is not smaller than

√
2/2.

An element of H is called a general PGEP Jacobi method. A hybrid Jacobi
method is any method from H that uses at each step either the HZ, LLT J
or RRT J algorithm.

In this definition the pivot strategy is not specified, hence any can be used.
If a Jacobi method uses only the HZ (LLT J, RRT J) algorithm, it will be
called the HZ (LLT J, RRT J) method.
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Some Remarks

• It is easy to show that HZ, LLT J and RRT J methods belong to the
class H.

• Algorithms based on LLT and RRT factorizations have got their
names LLT J and RRT J algorithm, because LLT and RRT

factorizations are followed by one step of the Jacobi method for the
symmetric matrix.

• The general (PGEP) Jacobi method can use at each step any
conceivable algorithm which satisfies the above two rules. For
example, it can use the FL method combined with normalization of
the elements of B.
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Some Remarks

• All real algorithms have the form

Ẑ =
1√

1− b2ij

[
cosφ − sinφ
cosψ sinψ

]
.

This follows from a result of Gose (ZAMM 59, 1979), who found the
general form of a matrix Ẑ which diagonalizes a positive definite
symmetric matrix B̂ of order 2 via the congruence transformation
B̂ 7→ ẐT B̂Ẑ .

If we assume b11 = · · · = bnn and the same condition for ẐT B̂Ẑ ,
then this form of Ẑ is just the Gose’s theorem.

Later Hari generalized that result to complex matrices.
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Global Convergence (Real and Complex Algorithm)

We have used the following measure in the convergence analysis:

S2(A) = ‖A− diag(A)‖2F , S(A,B) =
[
S2(A) + S2(B)

]1/2
.

The HZ method converges globally if

A(k) → Λ = diag(λ1, . . . , λn), B(k) → In as k →∞,

holds for any initial pair of symmetric matrices (A,B) with B � O.

Actually, it is sufficient to show that S(A,B)→ 0 as k →∞.

We have first proved the global convergence for the serial pivot strategies.

Then we have proved the global convergence for a new much larger class
of generalized serial strategies which includes the class of weak wavefront
strategies.
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Asymptotic Convergence (Real and Complex Algorithm)

Let (A,B) have simple eigenvalues:

λ1 > λ2 > · · · > λn, µ = max{|λ1| , |λn|},

3δi = min
1≤i≤n

j 6=i

| λi − λj |, 1 ≤ i ≤ n; δ = min
1≤i≤n

δi .

Theorem

If S(B(0)) <
1

n(n − 1)
and S(A(0),B(0)) <

δ

2
√

1 + µ2
,

then for the general cyclic and for the serial strategies it holds, respectively:

S(A(N),B(N)) ≤
√
N(1 + µ2)

S2(A(0),B(0))

δ
, N = n(n − 1)/2

S(A(N),B(N)) ≤
√

1 + µ2
S2(A(0),B(0))

δ
.

In the case of multiple eigenvalues, the method is not quadratically
convergent, but can be modified to be such.
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Multiple Eigenvalues

The situation complicates because the positive definite pair (A,B) with
multiple eigenvalues, and with nearly diagonal matrices, has special
structure.

Let A = A∗ with a11 ≥ a22 ≥ · · · ≥ ann,

B = B∗ with B � O, diag(B) = In.
Let

λ1 = · · · = λs1 > λs1+1 = · · · = λs2 > · · · > λsp−1+1 = · · · = λsp ,

where sp = n. Then

ni = si − si−1, 1 ≤ i ≤ p (s0 = 0),

ni is the multiplicity of λsi . Again, let µ = max{|λs1 | , |λsp |}.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 31 / 61



Multiple Eigenvalues

The situation complicates because the positive definite pair (A,B) with
multiple eigenvalues, and with nearly diagonal matrices, has special
structure.

Let A = A∗ with a11 ≥ a22 ≥ · · · ≥ ann,

B = B∗ with B � O, diag(B) = In.

Let

λ1 = · · · = λs1 > λs1+1 = · · · = λs2 > · · · > λsp−1+1 = · · · = λsp ,

where sp = n. Then

ni = si − si−1, 1 ≤ i ≤ p (s0 = 0),

ni is the multiplicity of λsi . Again, let µ = max{|λs1 | , |λsp |}.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 31 / 61



Multiple Eigenvalues

The situation complicates because the positive definite pair (A,B) with
multiple eigenvalues, and with nearly diagonal matrices, has special
structure.

Let A = A∗ with a11 ≥ a22 ≥ · · · ≥ ann,

B = B∗ with B � O, diag(B) = In.
Let

λ1 = · · · = λs1 > λs1+1 = · · · = λs2 > · · · > λsp−1+1 = · · · = λsp ,

where sp = n.

Then

ni = si − si−1, 1 ≤ i ≤ p (s0 = 0),

ni is the multiplicity of λsi . Again, let µ = max{|λs1 | , |λsp |}.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 31 / 61



Multiple Eigenvalues

The situation complicates because the positive definite pair (A,B) with
multiple eigenvalues, and with nearly diagonal matrices, has special
structure.

Let A = A∗ with a11 ≥ a22 ≥ · · · ≥ ann,

B = B∗ with B � O, diag(B) = In.
Let

λ1 = · · · = λs1 > λs1+1 = · · · = λs2 > · · · > λsp−1+1 = · · · = λsp ,

where sp = n. Then

ni = si − si−1, 1 ≤ i ≤ p (s0 = 0),

ni is the multiplicity of λsi . Again, let µ = max{|λs1 | , |λsp |}.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 31 / 61



Multiple Eigenvalues

The minimum distance between two distinct eigenvalues plays special role
in the analysis. Let δr be the absolute gap (separation) of λsr from other
eigenvalues,

3δr = min
1≤t≤p

t 6=r

| λsr − λst |, 1 ≤ r ≤ p.

Then δ = min
1≤r≤p

δr is the minimum absolute gap.
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Multiple Eigenvalues

Next we consider the following matrix block-partition

A =

 A11 · · · A1p
...

. . .
...

Ap1 · · · App

 , B =

 B11 · · · B1p
...

. . .
...

Bp1 · · · Bpp

 ,
Art ,Brt are nr × nt blocks, i.e. A11,. . . ,App have orders n1, . . . ,np, resp..
For a square matrix X = (Xrt) partitioned according to n1, . . . , np, let

τ(X ) = ‖X − diag(X11, . . . ,Xpp)‖F .

For our positive definite pair (A,B), let

τ(A,B) =
[
τ2(A) + τ2(B)

]1/2
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Multiple Eigenvalues

Theorem (Hari 91)

Let Dr + Er = A− λsrB, diag(Er ) = 0, 1 ≤ r ≤ p. If

‖Er‖2 < δr , 1 ≤ r ≤ p,

then

‖Arr − λsrBrr‖F ≤
1

δr

p∑
t=1
t 6=r

‖Art − λsrBrt‖2F , 1 ≤ r ≤ p

and

n∑
s=1

∣∣∣∣assbss
− λs

∣∣∣∣2 ≤ p∑
r=1

‖Arr − λsrBrr‖2F ≤
[

(1 + µ2)τ2(A,B)

δ

]2
.
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Multiple Eigenvalues

Let us return to the HZ method.

Let (A,B) be obtained at step k .
Suppose that k is large enough, so that the last theorem holds for (A,B).
Let τ = τ(A,B), ε = S(A,B). Note that τ ≤ ε.
Then the theorem implies

Arr = λsrBrr + Frr , ‖Fr‖F = O(τ2), 1 ≤ r ≤ p.

If the pivot element aij (bij) lies within the diagonal block Arr (Brr ), then
we shall have:

• Huge cancelations in the numerator and denominator when computing

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

=
O(τ2)

O(τ2)

• Possibly large θ when ε and τ are tiny.

This impacts asymptotic convergence and accuracy of the algorithm.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 35 / 61



Multiple Eigenvalues

Let us return to the HZ method. Let (A,B) be obtained at step k .

Suppose that k is large enough, so that the last theorem holds for (A,B).
Let τ = τ(A,B), ε = S(A,B). Note that τ ≤ ε.
Then the theorem implies

Arr = λsrBrr + Frr , ‖Fr‖F = O(τ2), 1 ≤ r ≤ p.

If the pivot element aij (bij) lies within the diagonal block Arr (Brr ), then
we shall have:

• Huge cancelations in the numerator and denominator when computing

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

=
O(τ2)

O(τ2)

• Possibly large θ when ε and τ are tiny.

This impacts asymptotic convergence and accuracy of the algorithm.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 35 / 61



Multiple Eigenvalues

Let us return to the HZ method. Let (A,B) be obtained at step k .
Suppose that k is large enough, so that the last theorem holds for (A,B).

Let τ = τ(A,B), ε = S(A,B). Note that τ ≤ ε.
Then the theorem implies

Arr = λsrBrr + Frr , ‖Fr‖F = O(τ2), 1 ≤ r ≤ p.

If the pivot element aij (bij) lies within the diagonal block Arr (Brr ), then
we shall have:

• Huge cancelations in the numerator and denominator when computing

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

=
O(τ2)

O(τ2)

• Possibly large θ when ε and τ are tiny.

This impacts asymptotic convergence and accuracy of the algorithm.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 35 / 61



Multiple Eigenvalues

Let us return to the HZ method. Let (A,B) be obtained at step k .
Suppose that k is large enough, so that the last theorem holds for (A,B).
Let τ = τ(A,B), ε = S(A,B).

Note that τ ≤ ε.
Then the theorem implies

Arr = λsrBrr + Frr , ‖Fr‖F = O(τ2), 1 ≤ r ≤ p.

If the pivot element aij (bij) lies within the diagonal block Arr (Brr ), then
we shall have:

• Huge cancelations in the numerator and denominator when computing

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

=
O(τ2)

O(τ2)

• Possibly large θ when ε and τ are tiny.

This impacts asymptotic convergence and accuracy of the algorithm.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 35 / 61



Multiple Eigenvalues

Let us return to the HZ method. Let (A,B) be obtained at step k .
Suppose that k is large enough, so that the last theorem holds for (A,B).
Let τ = τ(A,B), ε = S(A,B). Note that τ ≤ ε.

Then the theorem implies

Arr = λsrBrr + Frr , ‖Fr‖F = O(τ2), 1 ≤ r ≤ p.

If the pivot element aij (bij) lies within the diagonal block Arr (Brr ), then
we shall have:

• Huge cancelations in the numerator and denominator when computing

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

=
O(τ2)

O(τ2)

• Possibly large θ when ε and τ are tiny.

This impacts asymptotic convergence and accuracy of the algorithm.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 35 / 61



Multiple Eigenvalues

Let us return to the HZ method. Let (A,B) be obtained at step k .
Suppose that k is large enough, so that the last theorem holds for (A,B).
Let τ = τ(A,B), ε = S(A,B). Note that τ ≤ ε.
Then the theorem implies

Arr = λsrBrr + Frr , ‖Fr‖F = O(τ2), 1 ≤ r ≤ p.

If the pivot element aij (bij) lies within the diagonal block Arr (Brr ), then
we shall have:

• Huge cancelations in the numerator and denominator when computing

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

=
O(τ2)

O(τ2)

• Possibly large θ when ε and τ are tiny.

This impacts asymptotic convergence and accuracy of the algorithm.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 35 / 61



Multiple Eigenvalues

Let us return to the HZ method. Let (A,B) be obtained at step k .
Suppose that k is large enough, so that the last theorem holds for (A,B).
Let τ = τ(A,B), ε = S(A,B). Note that τ ≤ ε.
Then the theorem implies

Arr = λsrBrr + Frr , ‖Fr‖F = O(τ2), 1 ≤ r ≤ p.

If the pivot element aij (bij) lies within the diagonal block Arr (Brr ), then
we shall have:

• Huge cancelations in the numerator and denominator when computing

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

=
O(τ2)

O(τ2)

• Possibly large θ when ε and τ are tiny.

This impacts asymptotic convergence and accuracy of the algorithm.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 35 / 61



Multiple Eigenvalues

Let us return to the HZ method. Let (A,B) be obtained at step k .
Suppose that k is large enough, so that the last theorem holds for (A,B).
Let τ = τ(A,B), ε = S(A,B). Note that τ ≤ ε.
Then the theorem implies

Arr = λsrBrr + Frr , ‖Fr‖F = O(τ2), 1 ≤ r ≤ p.

If the pivot element aij (bij) lies within the diagonal block Arr (Brr ), then
we shall have:

• Huge cancelations in the numerator and denominator when computing

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

=
O(τ2)

O(τ2)

• Possibly large θ when ε and τ are tiny.

This impacts asymptotic convergence and accuracy of the algorithm.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 35 / 61



Multiple Eigenvalues

Let us return to the HZ method. Let (A,B) be obtained at step k .
Suppose that k is large enough, so that the last theorem holds for (A,B).
Let τ = τ(A,B), ε = S(A,B). Note that τ ≤ ε.
Then the theorem implies

Arr = λsrBrr + Frr , ‖Fr‖F = O(τ2), 1 ≤ r ≤ p.

If the pivot element aij (bij) lies within the diagonal block Arr (Brr ), then
we shall have:

• Huge cancelations in the numerator and denominator when computing

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

=
O(τ2)

O(τ2)

• Possibly large θ when ε and τ are tiny.

This impacts asymptotic convergence and accuracy of the algorithm.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 35 / 61



Multiple Eigenvalues

Let us return to the HZ method. Let (A,B) be obtained at step k .
Suppose that k is large enough, so that the last theorem holds for (A,B).
Let τ = τ(A,B), ε = S(A,B). Note that τ ≤ ε.
Then the theorem implies

Arr = λsrBrr + Frr , ‖Fr‖F = O(τ2), 1 ≤ r ≤ p.

If the pivot element aij (bij) lies within the diagonal block Arr (Brr ), then
we shall have:

• Huge cancelations in the numerator and denominator when computing

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

=
O(τ2)

O(τ2)

• Possibly large θ when ε and τ are tiny.

This impacts asymptotic convergence and accuracy of the algorithm.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 35 / 61



Multiple Eigenvalues

N =
n(n − 1)

2
, M = N −

p∑
r=1

nr (nr − 1)

2
, nmax = max

1≤r≤p
nr

Let εN and τN denote ε and τ for the pair obtained after applying one
sweep of the column-cyclic HZ method. If (A,B) satisfies n ≥ 3, p ≥ 2,

S(B) <
1

n(n − 1)
,
√

1 + µ2ε < min

{
1

2
,

√
δ

µ+ 1

}
δ,

then

• τN ≤
3

2

√
2.31M · nmax(1 + µ2)

ε

δ
τ

• τN ≤
3

2

√
nmax(1 + µ2)

ε2

δ

• if nmax = 2 then εN ≤
18

17

√
1 + µ2

ε2

δ
.
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Stability and High Relative Accuracy

• We are interested in how accurate are the methods: HZ, LLT J and
RRT J.

• For that we need a detailed error analysis. J. Matejaš and V. Hari
have made one although the paper is not yet completed.

• For such an analysis we would need another seminar like this one, so
here we shall present just the results of numerical tests on the
accuracy of those methods.

• Hence we first present the algorithms, then theoretical background for
the tests and then the results.

• One can hope for high relative accuracy of the methods only for
well-behaved initial pairs (A,B).

• An example of such pairs are the pairs of positive definite symmetric
matrices which can be well symmetrically scaled. These are the pairs
for which the conditions κ2(∆AA∆A) and κ2(∆BB∆B) are small for
some diagonal matrices ∆A and ∆B .
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Algorithm HZ

select the pivot pair (i , j)

if aij 6= 0 or bij 6= 0 then

ρ = 0.5 (
√

1 + bij +
√

1− bij ); ξ = bij/(2ρ);

τ =
√

(1 + bij )(1− bij ); t2 = 2aij − (aii + ajj )bij;

if t2 = 0 then t = 0;

else

ct2 = τ (aii − ajj )/t2;

t = sign(ct2)/(abs(ct2) + (1 +
√
1 + ct22);

end

cs = 1/
√
1 + t2; sn = t/

√
1 + t2;

c1 = (ρ · cs − ξ · sn)/τ; s1 = (ρ · sn + ξ · cs)/τ;
c2 = (ρ · cs + ξ · sn)/τ; s2 = (ρ · sn − ξ · cs)/τ;
δi = (bij/τ − s1)(bij/τ + s1)aii + (2c1 aij + s2 ajj ) s2;

δj = (s2− bij/τ)(s2 + bij/τ) ajj + (2c2 aij − s1 aii ) s1;

a′ij = (c1 c2− s1 s2)aij + (c2 s2 ajj − c1 s1 aii ); a′ji = a′ij;

b′ij = 0; b′ji = b′ij; a′ii = aii + δi; a′jj = ajj − δj;
for k = 1, . . . , n, k 6= i , j do

a′ki = c1 · aki + s2 · akj ; b′ki = c1 · bki + s2 · bkj ; a′ik = a′ki ; b′ik = b′ki ;

a′kj = c2 · akj − s1 · aki ; b′kj = c2 · bkj − s1 · bki ; a′jk = a′kj ; b′jk = b′kj;

endfor

endif
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Algorithm LLTJ

select the pivot pair (i , j)
if aij 6= 0 or bij 6= 0 then

β = bij, τ = sqrt((1 + β)(1− β)); α = aij − βaii;
if α = 0 then t = 0;

else ct2 = (0.5 (aii − ajj ) + αβ)/(α τ);

t = sign(ct2)/(abs(ct2) + sqrt(1 + ct22));
endif

cs = 1/sqrt(1 + t2); sn = t/sqrt(1 + t2);

c1 = cs − sn β/τ; s1 = sn + cs β/τ; c2 = cs/τ; s2 = sn/τ;

δi = tα/τ; δj = ( tα+ (β/τ) · (2aij − (aii + ajj )β) )/τ;

a′ij = (c1 c2− s1 s2) aij + (c2 s2 ajj − c1 s1 aii ); a′ji = a′ij;

b′ij = (c1 c2− s1 s2)β + (c2 s2− c1 s1); b′ji = b′ij;

a′ii = aii + δi; a′j = ajj − δj;
for k = 1, . . . , n, k 6= i , j do

a′ki = c1 · aki + s2 · akj ; b′ki = c1 · bki + s2 · bkj ; a′ik = a′ki ; b′ik = b′ki
a′kj = c2 · akj − s1 · aki ; b′kj = c2 · bkj − s1 · bki ; a′jk = a′kj ; b′jk = b′kj;

endfor

endif
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Algorithm RRTJ

select the pivot pair (i , j)

if aij 6= 0 or bij 6= 0 then

β = bij, τ = sqrt((1 + β)(1− β)); α = aij − βajj;
if α = 0 then t = 0;
else ct2 = (0.5 (aii − ajj )− αβ)/(α τ);

t = sign(ct2)/(abs(ct2) + sqrt(1 + ct22));
endif

cs = 1/sqrt(1 + t2); sn = t/sqrt(1 + t2);
c1 = cs/τ; s1 = sn/τ; c2 = cs + sn β/τ; s2 = sn − cs β/τ;
δj = tα/τ; δi = ( tα− (β/τ) · (2aij − (aii + ajj )β) )/τ;
a′ij = (c1 c2− s1 s2) aij + (c2 s2 ajj − c1 s1 aii ); a′ji = a′ij;

b′ij = (c1 c2− s1 s2)β + (c2 s2− c1 s1); b′ji = b′ij;

a′ii = aii + δi; a′j = ajj − δj;
for k = 1, . . . , n, k 6= i , j do

a′ki = c1 · aki + s2 · akj ; b′ki = c1 · bki + s2 · bkj ; a′ik = a′ki ; b′ik = b′ki
a′kj = c2 · akj − s1 · aki ; b′kj = c2 · bkj − s1 · bki ; a′jk = a′kj ; b′jk = b′kj;

endfor

endif
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Theoretical Background: Drmač Z., A Tangent Algorithm . . .

SIAM J. Numer. Anal. 35 (5), 1804-1832 (1998)

Theorem (Theorem 3.2, Drmač 1998)

Let A = AT � O, B = BT � O and λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of
the pair (A,B).

Let AS = D
−1/2
A AD

−1/2
A , BS = D

−1/2
B BD

−1/2
B , DA = diag(A), DB = diag(B).

Let δA and δB be symmetric perturbations such that

‖(δA)S‖2‖A−1
S ‖2 < 1 and ‖(δB)S‖2‖B−1

S ‖2 < 1,

where (δA)S = D
−1/2
A δAD

−1/2
A , (δB)S = D

−1/2
B δBD

−1/2
B .

If λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n are th eigenvalues of (A + δA,B + δB), then

max
1≤i≤n

|λ̃i − λi |
λi

≤
‖(δA)S‖2‖A−1

S ‖2 + ‖(δB)S‖2‖B−1
S ‖2

1− ‖(δB)S‖2‖B−1
S ‖2

=
εAS

κ2(AS) + εBS
κ2(BS)

1− εBS
κ2(BS)

,

where εAS
= ‖(δA)S‖2/‖AS‖2, εBS

= ‖(δB)S‖2/‖BS‖2, and κ2(X ) is the spectral
condition number of X .

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 41 / 61



Theoretical Background

• For all considered methods the starting matrix B(0) is just BS .
Therefore

max
1≤i≤n

|λ̃i − λi |
λi

≤ εAS
κ2(AS) + εB(0)κ2(BS)

1− εBS
κ2(B(0))

,

• The initial normalization B 7→ BS = B(0), simplifies the algorithm.
Moreover, it has a stabilizing effect on the iterative process, because
it almost optimally reduces the condition of B and all B(k), k ≥ 1 will
have almost best possible conditions. Van der Sluis, A.: Condition numbers

and equilibration of matrices. Numer. Math. 14 (1), 14–23 (1969)

• For these well-behaved pairs we have to find out the methods which
generate at every step only tiny relative errors ε

A
(k)
S

, ε
B

(k)
S

and in the

same time matrices with small or modest condition numbers κ2(A
(k)
S )

and κ2(B(k)).

Nonetheless, this is a demanding task, so we shall go for a shortcut.
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How to detect the high relative accuracy of a method?

We can check numerically whether the inequality

%(A,B) = max
1≤i≤n

|λ̃i − λi |
λi

/

√
κ22(A

(0)
S ) + κ22(B(0)) ≤ f (n)u, (5)

holds for a larger sample Υ of the initial well-behaved pairs (A,B)! Here

• λ̃i , 1 ≤ i ≤ n are the eigenvalues of the starting pair (A(0),B(0))

• f (n) is a slowly growing function of n

• u is the round off unit

• The relation (5) should hold irrespectively of how large is the
condition κ2(A(0)). Therefore, we are interested in how %(A,B)

behaves with respect to χ(A,B),

χ(A,B) := κ2(A(0),B(0)) =
√
κ22(A(0)) + κ22(B(0)).

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 43 / 61



How to detect the high relative accuracy of a method?

We can check numerically whether the inequality

%(A,B) = max
1≤i≤n

|λ̃i − λi |
λi

/

√
κ22(A

(0)
S ) + κ22(B(0)) ≤ f (n)u, (5)

holds for a larger sample Υ of the initial well-behaved pairs (A,B)!

Here

• λ̃i , 1 ≤ i ≤ n are the eigenvalues of the starting pair (A(0),B(0))

• f (n) is a slowly growing function of n

• u is the round off unit

• The relation (5) should hold irrespectively of how large is the
condition κ2(A(0)). Therefore, we are interested in how %(A,B)

behaves with respect to χ(A,B),

χ(A,B) := κ2(A(0),B(0)) =
√
κ22(A(0)) + κ22(B(0)).

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 43 / 61



How to detect the high relative accuracy of a method?

We can check numerically whether the inequality

%(A,B) = max
1≤i≤n

|λ̃i − λi |
λi

/

√
κ22(A

(0)
S ) + κ22(B(0)) ≤ f (n)u, (5)

holds for a larger sample Υ of the initial well-behaved pairs (A,B)! Here

• λ̃i , 1 ≤ i ≤ n are the eigenvalues of the starting pair (A(0),B(0))

• f (n) is a slowly growing function of n

• u is the round off unit

• The relation (5) should hold irrespectively of how large is the
condition κ2(A(0)). Therefore, we are interested in how %(A,B)

behaves with respect to χ(A,B),

χ(A,B) := κ2(A(0),B(0)) =
√
κ22(A(0)) + κ22(B(0)).

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 43 / 61



How to detect the high relative accuracy of a method?

We can check numerically whether the inequality

%(A,B) = max
1≤i≤n

|λ̃i − λi |
λi

/

√
κ22(A

(0)
S ) + κ22(B(0)) ≤ f (n)u, (5)

holds for a larger sample Υ of the initial well-behaved pairs (A,B)! Here

• λ̃i , 1 ≤ i ≤ n are the eigenvalues of the starting pair (A(0),B(0))

• f (n) is a slowly growing function of n

• u is the round off unit

• The relation (5) should hold irrespectively of how large is the
condition κ2(A(0)). Therefore, we are interested in how %(A,B)

behaves with respect to χ(A,B),

χ(A,B) := κ2(A(0),B(0)) =
√
κ22(A(0)) + κ22(B(0)).

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 43 / 61



How to detect the high relative accuracy of a method?

We can check numerically whether the inequality

%(A,B) = max
1≤i≤n

|λ̃i − λi |
λi

/

√
κ22(A

(0)
S ) + κ22(B(0)) ≤ f (n)u, (5)

holds for a larger sample Υ of the initial well-behaved pairs (A,B)! Here

• λ̃i , 1 ≤ i ≤ n are the eigenvalues of the starting pair (A(0),B(0))

• f (n) is a slowly growing function of n

• u is the round off unit

• The relation (5) should hold irrespectively of how large is the
condition κ2(A(0)). Therefore, we are interested in how %(A,B)

behaves with respect to χ(A,B),

χ(A,B) := κ2(A(0),B(0)) =
√
κ22(A(0)) + κ22(B(0)).

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 43 / 61



How to detect the high relative accuracy of a method?

We can check numerically whether the inequality

%(A,B) = max
1≤i≤n

|λ̃i − λi |
λi

/

√
κ22(A

(0)
S ) + κ22(B(0)) ≤ f (n)u, (5)

holds for a larger sample Υ of the initial well-behaved pairs (A,B)! Here

• λ̃i , 1 ≤ i ≤ n are the eigenvalues of the starting pair (A(0),B(0))

• f (n) is a slowly growing function of n

• u is the round off unit

• The relation (5) should hold irrespectively of how large is the
condition κ2(A(0)). Therefore, we are interested in how %(A,B)

behaves with respect to χ(A,B),

χ(A,B) := κ2(A(0),B(0)) =
√
κ22(A(0)) + κ22(B(0)).

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 43 / 61



How to detect whether a method has high relative accuracy?

• For the given sample of well behaved pairs Υ, and for each
method, we shall make its graph of relative errors: E ,

E = {(χ(A,B) , %(A,B)) : (A,B) ∈ Υ}.

• Then we shall depict that graph E by the M-function
scatter(x,y,3).

• The method will be considered to be high relative accurate if the
ordinates of the points on the graph are of order O(u) where
u ≈ 2.2 · 10−16.
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How to generate matrix pairs?

The starting pair (A(0),B(0)) is generated by

• 4 the diagonal matrices : ∆A, ∆B , Σ, ∆ and

• 2 orthogonal matrices U, V of order n.

It is done in two steps:

1: F = UΣV T , A = FT∆AF , B = FT∆BF ,

2: B(0) = BS = D
−1/2
B BD

−1/2
B , A(0) = ∆AS∆, AS = D

−1/2
A AD

−1/2
A ,

where DA and DB are the diagonal parts of A and B. Then κ2(A
(0)
S ) and

κ2(B(0)) can be controlled by the diagonal elements of ∆A, ∆B , Σ, since

κ2(A
(0)
S ) ≤ nκ22(Σ)κ2(∆A) and κ2(B(0)) ≤ nκ22(Σ)κ2(∆B),

although most often κ2(A
(0)
S ) and κ2(B(0)) are much smaller than these

bounds.
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How to generate matrix pairs?

To simplify the construction we set ∆B = In.

If the method is high relative accurate, then %(A,B) from the relation (5)
should not depend on κ2(∆).

Note that
κ2(A(0)) ≤ κ2(A

(0)
S )κ22(∆).

If we set ∆ = In i (A(0),B(0)) = (D
−1/2
B AD

−1/2
B ,BS), then we know in

advance the eigenvalues of (A(0),B(0)) These are the quotients

(∆A)jj/(∆B)jj , 1 ≤ j ≤ n.

This way can be used when considering behavior of the methods on pairs
with multiple eigenvalues.
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More Details

• Diagonal matrices are constructed by help of the M-function diag(d)

• d is a vector, and vectors are constructed by the M-function
logspace(x1,x2,n). We use it for the diagonal matrices Σ and ∆A.

• For the construction of ∆ we use our m-function

scalvec(k1,k2,k3,n,k)

which generates vector of length n, d = [10k1, . . . , 10k2, . . . , 10k3] where k

determines the position of 10k2 within the components of d .

• To compute ∆, the function scalvec is used within triple loop controlled
by the indices k1, k2 and k3

• Orthogonal matrices U and V are computed by the command

[Q,∼]=qr(rand(n))

• We have generated the sample Υ of 18900 pairs of matrices of order 10.
As “exact eigenvalues” we have used the eigenvalues computed by the
M-function eig(A,B) in variable precision arithmetic (VPA) using 80
decimal digits.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 47 / 61



More Details

• Diagonal matrices are constructed by help of the M-function diag(d)

• d is a vector, and vectors are constructed by the M-function
logspace(x1,x2,n). We use it for the diagonal matrices Σ and ∆A.

• For the construction of ∆ we use our m-function

scalvec(k1,k2,k3,n,k)

which generates vector of length n, d = [10k1, . . . , 10k2, . . . , 10k3] where k

determines the position of 10k2 within the components of d .

• To compute ∆, the function scalvec is used within triple loop controlled
by the indices k1, k2 and k3

• Orthogonal matrices U and V are computed by the command

[Q,∼]=qr(rand(n))

• We have generated the sample Υ of 18900 pairs of matrices of order 10.
As “exact eigenvalues” we have used the eigenvalues computed by the
M-function eig(A,B) in variable precision arithmetic (VPA) using 80
decimal digits.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 47 / 61



More Details

• Diagonal matrices are constructed by help of the M-function diag(d)

• d is a vector, and vectors are constructed by the M-function
logspace(x1,x2,n). We use it for the diagonal matrices Σ and ∆A.

• For the construction of ∆ we use our m-function

scalvec(k1,k2,k3,n,k)

which generates vector of length n, d = [10k1, . . . , 10k2, . . . , 10k3] where k

determines the position of 10k2 within the components of d .

• To compute ∆, the function scalvec is used within triple loop controlled
by the indices k1, k2 and k3

• Orthogonal matrices U and V are computed by the command

[Q,∼]=qr(rand(n))

• We have generated the sample Υ of 18900 pairs of matrices of order 10.
As “exact eigenvalues” we have used the eigenvalues computed by the
M-function eig(A,B) in variable precision arithmetic (VPA) using 80
decimal digits.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 47 / 61



More Details

• Diagonal matrices are constructed by help of the M-function diag(d)

• d is a vector, and vectors are constructed by the M-function
logspace(x1,x2,n). We use it for the diagonal matrices Σ and ∆A.

• For the construction of ∆ we use our m-function

scalvec(k1,k2,k3,n,k)

which generates vector of length n, d = [10k1, . . . , 10k2, . . . , 10k3] where k

determines the position of 10k2 within the components of d .

• To compute ∆, the function scalvec is used within triple loop controlled
by the indices k1, k2 and k3

• Orthogonal matrices U and V are computed by the command

[Q,∼]=qr(rand(n))

• We have generated the sample Υ of 18900 pairs of matrices of order 10.
As “exact eigenvalues” we have used the eigenvalues computed by the
M-function eig(A,B) in variable precision arithmetic (VPA) using 80
decimal digits.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 47 / 61



More Details

• Diagonal matrices are constructed by help of the M-function diag(d)

• d is a vector, and vectors are constructed by the M-function
logspace(x1,x2,n). We use it for the diagonal matrices Σ and ∆A.

• For the construction of ∆ we use our m-function

scalvec(k1,k2,k3,n,k)

which generates vector of length n, d = [10k1, . . . , 10k2, . . . , 10k3] where k

determines the position of 10k2 within the components of d .

• To compute ∆, the function scalvec is used within triple loop controlled
by the indices k1, k2 and k3

• Orthogonal matrices U and V are computed by the command

[Q,∼]=qr(rand(n))

• We have generated the sample Υ of 18900 pairs of matrices of order 10.
As “exact eigenvalues” we have used the eigenvalues computed by the
M-function eig(A,B) in variable precision arithmetic (VPA) using 80
decimal digits.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 47 / 61



More Details

• Diagonal matrices are constructed by help of the M-function diag(d)

• d is a vector, and vectors are constructed by the M-function
logspace(x1,x2,n). We use it for the diagonal matrices Σ and ∆A.

• For the construction of ∆ we use our m-function

scalvec(k1,k2,k3,n,k)

which generates vector of length n, d = [10k1, . . . , 10k2, . . . , 10k3] where k

determines the position of 10k2 within the components of d .

• To compute ∆, the function scalvec is used within triple loop controlled
by the indices k1, k2 and k3

• Orthogonal matrices U and V are computed by the command

[Q,∼]=qr(rand(n))

• We have generated the sample Υ of 18900 pairs of matrices of order 10.
As “exact eigenvalues” we have used the eigenvalues computed by the
M-function eig(A,B) in variable precision arithmetic (VPA) using 80
decimal digits.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 47 / 61



More Details

• Diagonal matrices are constructed by help of the M-function diag(d)

• d is a vector, and vectors are constructed by the M-function
logspace(x1,x2,n). We use it for the diagonal matrices Σ and ∆A.

• For the construction of ∆ we use our m-function

scalvec(k1,k2,k3,n,k)

which generates vector of length n, d = [10k1, . . . , 10k2, . . . , 10k3] where k

determines the position of 10k2 within the components of d .

• To compute ∆, the function scalvec is used within triple loop controlled
by the indices k1, k2 and k3

• Orthogonal matrices U and V are computed by the command

[Q,∼]=qr(rand(n))

• We have generated the sample Υ of 18900 pairs of matrices of order 10.
As “exact eigenvalues” we have used the eigenvalues computed by the
M-function eig(A,B) in variable precision arithmetic (VPA) using 80
decimal digits.

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 47 / 61



Matrix conditions
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Relative errors: MATLAB eig function
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Relative errors: HZ method
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Relative errors: HZD method
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Relative errors: HZA method
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Relative errors: LLTJ method
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Relative errors: Descending LLTJ method
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Relative errors: Ascending LLTJ method
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Relative errors: RRTJ method
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Relative errors: Descending RRTJ method
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Relative errors: Ascending RRTJ method
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How to define an accurate hybrid method?

We see that just one variant of LLT J method (LLT JA) and just one
variant of RRT J method (RRT JD) is indicated as relatively accurate.

This indicates how to a define highly accurate hybrid method, call it
Cholesky-Jacobi method or shorter CJ method:

%%% Algorithm CJ

choose the pivot pair (i , j)

if aii ≥ ajj then select LLT J algorithm
else select RRT J algorithm

endif

Its global convergence has been proved in an earlier theorem.

We complete our presentation with the graph associated with the CJ
method.
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Relative errors: CJ method

105 1010 1015 1020 1025 1030
10-20

10-18

10-16

10-14

10-12
Relative errors, Hybrid method CJ

Hari (University of Zagreb) PGEP Jacobi Methods July 20-21, 2017 61 / 61


