On Jacobi Methods for the Positive Definite Generalized Eigenvalue Problem

Vjeran Hari
Department of Mathematics, Faculty of Science, University of Zagreb hari@math.hr

Department of Mathematics and Statistics, University of Missouri at Kansas City, USA

OUTLINE

OUTLINE

- GEP and PGEP
- GEP and PGEP
- Derivation of the algorithms

This work has been fully supported by Croatian Science Foundation under the project IP-09-2014-3670.

OUTLINE

- GEP and PGEP
- Derivation of the algorithms
- Convergence, global and asymptotic

This work has been fully supported by Croatian Science Foundation under the project IP-09-2014-3670.

OUTLINE

- GEP and PGEP
- Derivation of the algorithms
- Convergence, global and asymptotic
- Stability and relative accuracy

This work has been fully supported by Croatian Science Foundation under the project IP-09-2014-3670.

OUTLINE

- GEP and PGEP
- Derivation of the algorithms
- Convergence, global and asymptotic
- Stability and relative accuracy
- Block algorithms

This work has been fully supported by Croatian Science Foundation under the project IP-09-2014-3670.

OUTLINE

- GEP and PGEP
- Derivation of the algorithms
- Convergence, global and asymptotic
- Stability and relative accuracy
- Block algorithms
- Global convergence of block algorithms

This work has been fully supported by Croatian Science Foundation under the project IP-09-2014-3670.

OUTLINE

- GEP and PGEP
- Derivation of the algorithms
- Convergence, global and asymptotic
- Stability and relative accuracy
- Block algorithms
- Global convergence of block algorithms
- We are considering element-wise, two-sided Jacobi-type methods for PGEP which can be used as kernel algorithms for the block methods.

This work has been fully supported by Croatian Science Foundation under the project IP-09-2014-3670.

GEP and PGEP

Let $A=A^{T}, \quad B=B^{T}$.

GEP and PGEP

Let $A=A^{T}, \quad B=B^{T}$.
We consider the Generalized Eigenvalue Problem (GEP)

$$
A x=\lambda B x, \quad x \neq 0 .
$$

If $B \succ O$, GEP is usually called Positive definite GEP or shorter PGEP.

GEP and PGEP

Let $A=A^{T}, \quad B=B^{T}$.
We consider the Generalized Eigenvalue Problem (GEP)

$$
A x=\lambda B x, \quad x \neq 0 .
$$

If $B \succ O$, GEP is usually called Positive definite GEP or shorter PGEP.
For such a pair there is a nonsingular matrix F such that

$$
F^{T} A F=\Lambda_{A}, \quad F^{T} B F=\Lambda_{B},
$$

$\Lambda_{A}=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right), \quad \Lambda_{B}=\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{n}\right) \succ 0$.

GEP and PGEP

Let $A=A^{T}, \quad B=B^{T}$.
We consider the Generalized Eigenvalue Problem (GEP)

$$
A x=\lambda B x, \quad x \neq 0
$$

If $B \succ O$, GEP is usually called Positive definite GEP or shorter PGEP.
For such a pair there is a nonsingular matrix F such that

$$
F^{\top} A F=\Lambda_{A}, \quad F^{\top} B F=\Lambda_{B}
$$

$\Lambda_{A}=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right), \quad \Lambda_{B}=\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{n}\right) \succ O$.
The eigenpairs of (A, B) are: $\left(\alpha_{i} / \beta_{i}, F e_{i}\right), 1 \leq i \leq n ; \quad I_{n}=\left[e_{1}, \ldots, e_{n}\right]$.

Little Proof

$$
\begin{aligned}
& F^{T} A F=\Lambda_{A} \quad \Rightarrow \quad A F=F^{-T} \Lambda_{A}, \\
& F^{\top} B F=\Lambda_{B} \quad \Rightarrow \quad B F=F^{-T} \Lambda_{B} .
\end{aligned}
$$

Little Proof

$$
\begin{gathered}
F^{T} A F=\Lambda_{A} \quad \Rightarrow \quad A F=F^{-T} \Lambda_{A} \\
F^{T} B F=\Lambda_{B} \quad \Rightarrow \quad B F=F^{-T} \Lambda_{B} \\
F^{-T} \Lambda_{A}=F^{-T} \Lambda_{B}\left(\Lambda_{A} \Lambda_{B}^{-1}\right)=B F\left(\Lambda_{A} \Lambda_{B}^{-1}\right)
\end{gathered}
$$

Little Proof

$$
\begin{gathered}
F^{T} A F=\Lambda_{A} \Rightarrow A F=F^{-T} \Lambda_{A} \\
F^{T} B F=\Lambda_{B} \Rightarrow B F=F^{-T} \Lambda_{B} \\
F^{-T} \Lambda_{A}=F^{-T} \Lambda_{B}\left(\Lambda_{A} \Lambda_{B}^{-1}\right)=B F\left(\Lambda_{A} \Lambda_{B}^{-1}\right), \\
A F=F^{-T} \Lambda_{A}=B F\left(\Lambda_{A} \Lambda_{B}^{-1}\right)=B F \operatorname{diag}\left(\alpha_{1} / \beta_{1}, \ldots, \alpha_{n} / \beta_{n}\right),
\end{gathered}
$$

Little Proof

$$
\begin{gathered}
F^{T} A F=\Lambda_{A} \Rightarrow A F=F^{-T} \Lambda_{A} \\
F^{T} B F=\Lambda_{B} \Rightarrow B F=F^{-T} \Lambda_{B} \\
F^{-T} \Lambda_{A}=F^{-T} \Lambda_{B}\left(\Lambda_{A} \Lambda_{B}^{-1}\right)=B F\left(\Lambda_{A} \Lambda_{B}^{-1}\right), \\
A F=F^{-T} \Lambda_{A}=B F\left(\Lambda_{A} \Lambda_{B}^{-1}\right)=B F \operatorname{diag}\left(\alpha_{1} / \beta_{1}, \ldots, \alpha_{n} / \beta_{n}\right),
\end{gathered}
$$

$A F e_{i}=B F \operatorname{diag}\left(\alpha_{1} / \beta_{1}, \ldots, \alpha_{n} / \beta_{n}\right) e_{i}=\left(\alpha_{i} / \beta_{i}\right) B F e_{i}, \quad 1 \leq i \leq n$.

How to Solve PGEP?

One can try with the transformation $(A, B) \mapsto\left(L^{-1} A L^{-T}, I\right), B=L L^{T}$ and reduce PGEP to the standard EP for one symmetric matrix.
If B has very high condition, then L will have high condition

How to Solve PGEP?

One can try with the transformation $(A, B) \mapsto\left(L^{-1} A L^{-T}, I\right), B=L L^{T}$ and reduce PGEP to the standard EP for one symmetric matrix. If B has very high condition, then L will have high condition

$$
\left(\text { recall: } \kappa_{2}(L)=\sqrt{\kappa_{2}(B)}\right)
$$

How to Solve PGEP?

One can try with the transformation $(A, B) \mapsto\left(L^{-1} A L^{-T}, I\right), B=L L^{T}$ and reduce PGEP to the standard EP for one symmetric matrix.
If B has very high condition, then L will have high condition

$$
\left(\text { recall: } \kappa_{2}(L)=\sqrt{\kappa_{2}(B)}\right)
$$

then the computed matrix $L^{-1} A L^{-T}$ will have very high condition, so inaccuracy in L plus high condition of L will imply that the eigenvalues of $L^{-1} A L^{-T}$ are corrupt.

How to Solve PGEP?

One can try with the transformation $(A, B) \mapsto\left(L^{-1} A L^{-T}, I\right), B=L L^{T}$ and reduce PGEP to the standard EP for one symmetric matrix.
If B has very high condition, then L will have high condition

$$
\left(\text { recall: } \kappa_{2}(L)=\sqrt{\kappa_{2}(B)}\right)
$$

then the computed matrix $L^{-1} A L^{-T}$ will have very high condition, so inaccuracy in L plus high condition of L will imply that the eigenvalues of $L^{-1} A L^{-T}$ are corrupt.

Then one can try to maximize the minimum eigenvalue of B by rotating the pair

$$
(A, B) \mapsto\left(A_{\varphi}, B_{\varphi}\right)=(A \cos \varphi+B \sin \varphi,-A \sin \varphi+B \cos \varphi),
$$

or derive a method which works with the initial pair (A, B).

How to Solve PGEP?

One can try with the transformation $(A, B) \mapsto\left(L^{-1} A L^{-T}, I\right), B=L L^{T}$ and reduce PGEP to the standard EP for one symmetric matrix.
If B has very high condition, then L will have high condition

$$
\left(\text { recall: } \kappa_{2}(L)=\sqrt{\kappa_{2}(B)}\right)
$$

then the computed matrix $L^{-1} A L^{-T}$ will have very high condition, so inaccuracy in L plus high condition of L will imply that the eigenvalues of $L^{-1} A L^{-T}$ are corrupt.

Then one can try to maximize the minimum eigenvalue of B by rotating the pair

$$
(A, B) \mapsto\left(A_{\varphi}, B_{\varphi}\right)=(A \cos \varphi+B \sin \varphi,-A \sin \varphi+B \cos \varphi),
$$

or derive a method which works with the initial pair (A, B).
We follow the second path.

Jacobi methods for PGEP

We have two diagonalization methods for PGEP

Jacobi methods for PGEP

We have two diagonalization methods for PGEP

- Falk-Langemeyer method (shorter: FL method)
(Elektronische Datenverarbeitung, 1960)

Jacobi methods for PGEP

We have two diagonalization methods for PGEP

- Falk-Langemeyer method (shorter: FL method)
(Elektronische Datenverarbeitung, 1960)
- Hari-Zimmermann variant of the FL method (shorter: HZ method) (Hari Ph.D. 1984)

Jacobi methods for PGEP

We have two diagonalization methods for PGEP

- Falk-Langemeyer method (shorter: FL method)
(Elektronische Datenverarbeitung, 1960)
- Hari-Zimmermann variant of the FL method (shorter: HZ method) (Hari Ph.D. 1984)

The two methods are connected: the FL method can be viewed as the HZ method with "fast scaled" transformations. So, the FL method seems to be somewhat faster and the HZ method seems to be more robust.

Jacobi methods for PGEP

However, numerical tests on large matrices, on parallel machines, have confirmed the advantage of the HZ approach. In the paper

V. Novaković, S. Singer, S. Singer (Parallel Comput., 2015)

Jacobi methods for PGEP

However, numerical tests on large matrices, on parallel machines, have confirmed the advantage of the HZ approach. In the paper

V. Novaković, S. Singer, S. Singer (Parallel Comput., 2015)

it has been shown/written:

Jacobi methods for PGEP

However, numerical tests on large matrices, on parallel machines, have confirmed the advantage of the HZ approach. In the paper
V. Novaković, S. Singer, S. Singer (Parallel Comput., 2015)
it has been shown/written:
When implemented as one-sided block algorithm for the GSVD, it is almost perfectly parallelizable, so parallel shared memory versions of the algorithm are highly scalable, and their speedup almost solely depends on the number of cores used.

Jacobi methods for PGEP

However, numerical tests on large matrices, on parallel machines, have confirmed the advantage of the HZ approach. In the paper
V. Novaković, S. Singer, S. Singer (Parallel Comput., 2015)
it has been shown/written:
When implemented as one-sided block algorithm for the GSVD, it is almost perfectly parallelizable, so parallel shared memory versions of the algorithm are highly scalable, and their speedup almost solely depends on the number of cores used.
(In this paper the method was first time referred to as the HZ method!)

Derivation of the HZ Method

Preliminary transformation:

$$
A^{(0)}=D_{0} A D_{0}, B^{(0)}=D_{0} B D_{0}
$$

Derivation of the HZ Method

Preliminary transformation:
$D_{0}=[\operatorname{diag}(B)]^{-\frac{1}{2}}, \quad$ so that

$$
A^{(0)}=D_{0} A D_{0}, B^{(0)}=D_{0} B D_{0}
$$

$$
b_{11}^{(0)}=b_{22}^{(0)}=\cdots=b_{n n}^{(0)}=1 .
$$

Derivation of the HZ Method

Preliminary transformation:

$$
A^{(0)}=D_{0} A D_{0}, B^{(0)}=D_{0} B D_{0}
$$

$D_{0}=[\operatorname{diag}(B)]^{-\frac{1}{2}}, \quad$ so that $\quad b_{11}^{(0)}=b_{22}^{(0)}=\cdots=b_{n n}^{(0)}=1$.
This property of $B^{(0)}$ is maintained during the iteration process:

$$
A^{(k+1)}=Z_{k}^{T} A^{(k)} Z_{k}, \quad B^{(k+1)}=Z_{k}^{T} B^{(k)} Z_{k}, \quad k \geq 0
$$

Derivation of the HZ Method

Preliminary transformation:

$$
A^{(0)}=D_{0} A D_{0}, B^{(0)}=D_{0} B D_{0}
$$

$D_{0}=[\operatorname{diag}(B)]^{-\frac{1}{2}}, \quad$ so that $\quad b_{11}^{(0)}=b_{22}^{(0)}=\cdots=b_{n n}^{(0)}=1$.
This property of $B^{(0)}$ is maintained during the iteration process:

$$
A^{(k+1)}=Z_{k}^{T} A^{(k)} Z_{k}, \quad B^{(k+1)}=Z_{k}^{T} B^{(k)} Z_{k}, \quad k \geq 0
$$

Each Z_{k} is a nonsingular elementary plane matrix

Derivation of the HZ Method

Preliminary transformation:

$$
A^{(0)}=D_{0} A D_{0}, B^{(0)}=D_{0} B D_{0}
$$

$D_{0}=[\operatorname{diag}(B)]^{-\frac{1}{2}}, \quad$ so that $\quad b_{11}^{(0)}=b_{22}^{(0)}=\cdots=b_{n n}^{(0)}=1$.
This property of $B^{(0)}$ is maintained during the iteration process:

$$
A^{(k+1)}=Z_{k}^{T} A^{(k)} Z_{k}, \quad B^{(k+1)}=Z_{k}^{T} B^{(k)} Z_{k}, \quad k \geq 0
$$

Each Z_{k} is a nonsingular elementary plane matrix

$$
\begin{aligned}
Z_{k} & =\left[\begin{array}{ccccc}
l & & & & \\
& c_{k} & & -s_{k} & \\
& \tilde{s}_{k} & & \tilde{c}_{k} & \\
& & & \\
c_{k}^{2}+s_{k}^{2} & =\tilde{c}_{k}^{2}+\tilde{s}_{k}^{2}=1 /(k) \\
j(k)
\end{array}, \quad i(k)<j(k) \text { are pivot indices at step } k,\right. \\
1-b_{i(k) j(k)}^{2} & \text { (Gose 1979). }
\end{aligned}
$$

Derivation of the HZ Method

Preliminary transformation:

$$
A^{(0)}=D_{0} A D_{0}, B^{(0)}=D_{0} B D_{0}
$$

$D_{0}=[\operatorname{diag}(B)]^{-\frac{1}{2}}, \quad$ so that $\quad b_{11}^{(0)}=b_{22}^{(0)}=\cdots=b_{n n}^{(0)}=1$.
This property of $B^{(0)}$ is maintained during the iteration process:

$$
A^{(k+1)}=Z_{k}^{T} A^{(k)} Z_{k}, \quad B^{(k+1)}=Z_{k}^{T} B^{(k)} Z_{k}, \quad k \geq 0
$$

Each Z_{k} is a nonsingular elementary plane matrix

$$
Z_{k}=\left[\begin{array}{ccccc}
I & & & & \\
& c_{k} & & -s_{k} & \\
& \tilde{s}_{k} & & \tilde{c}_{k} & \\
& & & & I
\end{array}\right] \begin{gathered}
i(k) \\
j(k)
\end{gathered}, \quad i(k)<j(k) \text { are pivot indices at step } k,
$$

$$
c_{k}^{2}+s_{k}^{2}=\tilde{c}_{k}^{2}+\tilde{s}_{k}^{2}=1 / \sqrt{1-b_{i(k) j(k)}^{2}} \quad(\text { Gose 1979). }
$$

The selection of pivot pairs $(i(k), j(k))$ defines pivot strategy.

Derivation of the HZ Method

To describe step k, we assume:

$$
\begin{gathered}
A=A^{(k)}, \quad A^{\prime}=A^{(k+1)}, \quad Z_{k}=Z \\
\hat{Z}=\left[\begin{array}{cc}
c & -s \\
\tilde{s} & \tilde{c}
\end{array}\right] \quad \text { the pivot submatrix of } Z .
\end{gathered}
$$

Derivation of the HZ Method

To describe step k, we assume:

$$
\begin{gathered}
A=A^{(k)}, \quad A^{\prime}=A^{(k+1)}, \quad Z_{k}=Z \\
\hat{Z}=\left[\begin{array}{cc}
c & -s \\
\tilde{s} & \tilde{c}
\end{array}\right] \quad \text { the pivot submatrix of } Z .
\end{gathered}
$$

We have

$$
A^{\prime}=Z^{T} A Z, \quad B^{\prime}=Z^{T} B Z \quad\left(\hat{A}^{\prime}=\hat{Z}^{T} \hat{A} \hat{Z}, \quad \hat{B}^{\prime}=\hat{Z}^{T} \hat{B} \hat{Z}\right)
$$

Derivation of the HZ Method

To describe step k, we assume:

$$
\begin{gathered}
A=A^{(k)}, \quad A^{\prime}=A^{(k+1)}, \quad Z_{k}=Z \\
\hat{Z}=\left[\begin{array}{cc}
c & -s \\
\tilde{s} & \tilde{c}
\end{array}\right] \quad \text { the pivot submatrix of } Z .
\end{gathered}
$$

We have

$$
A^{\prime}=Z^{T} A Z, \quad B^{\prime}=Z^{T} B Z \quad\left(\hat{A}^{\prime}=\hat{Z}^{T} \hat{A} \hat{Z}, \quad \hat{B}^{\prime}=\hat{Z}^{T} \hat{B} \hat{Z}\right)
$$

Z is chosen/constructed to annihilate the pivot elements $a_{i j}$ and $b_{i j}$.

Derivation of the HZ Method

To describe step k, we assume:

$$
\begin{gathered}
A=A^{(k)}, \quad A^{\prime}=A^{(k+1)}, \quad Z_{k}=Z \\
\hat{Z}=\left[\begin{array}{cc}
c & -s \\
\tilde{s} & \tilde{c}
\end{array}\right] \quad \text { the pivot submatrix of } Z .
\end{gathered}
$$

We have

$$
A^{\prime}=Z^{T} A Z, \quad B^{\prime}=Z^{T} B Z \quad\left(\hat{A}^{\prime}=\hat{Z}^{T} \hat{A} \hat{Z}, \quad \hat{B}^{\prime}=\hat{Z}^{T} \hat{B} \hat{Z}\right)
$$

Z is chosen/constructed to annihilate the pivot elements $a_{i j}$ and $b_{i j}$. \hat{Z} is sought in the form of a product of two Jacobi rotations and one diagonal matrix. We have two possibilities:

\hat{Z} is sought in the form:

(a) $\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{1+b_{j}}} & 0 \\ 0 & \frac{1}{\sqrt{1-b_{j}}}\end{array}\right]\left[\begin{array}{cc}\cos \left(\theta-\frac{\pi}{4}\right) & -\sin \left(\theta-\frac{\pi}{4}\right) \\ \sin \left(\theta-\frac{\pi}{4}\right) & \cos \left(\theta-\frac{\pi}{4}\right)\end{array}\right]$
(b) $\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{1-b}} & 0 \\ 0 & \frac{1}{\sqrt{1+b_{j}}}\end{array}\right]\left[\begin{array}{cc}\cos \left(\theta+\frac{\pi}{4}\right) & -\sin \left(\theta+\frac{\pi}{4}\right) \\ \sin \left(\theta+\frac{\pi}{4}\right) & \cos \left(\theta+\frac{\pi}{4}\right)\end{array}\right]$
$\hat{B} \rightarrow$ diag
$\hat{B} \rightarrow I_{2}$
$\hat{A} \rightarrow$ diag

\hat{Z} is sought in the form:

(a) $\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{1+b}} & 0 \\ 0 & \frac{1}{\sqrt{1-b_{j i}}}\end{array}\right]\left[\begin{array}{cc}\cos \left(\theta-\frac{\pi}{4}\right) & -\sin \left(\theta-\frac{\pi}{4}\right) \\ \sin \left(\theta-\frac{\pi}{4}\right) & \cos \left(\theta-\frac{\pi}{4}\right)\end{array}\right]$
(b) $\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{1-b_{i j}}} & 0 \\ 0 & \frac{1}{\sqrt{1+b_{j}}}\end{array}\right]\left[\begin{array}{ll}\cos \left(\theta+\frac{\pi}{4}\right) & -\sin \left(\theta+\frac{\pi}{4}\right) \\ \sin \left(\theta+\frac{\pi}{4}\right) & \cos \left(\theta+\frac{\pi}{4}\right)\end{array}\right]$

$$
\hat{B} \rightarrow \operatorname{diag} \quad \hat{B} \rightarrow I_{2} \quad \hat{A} \rightarrow \text { diag }
$$

The both possibilities yield the same algorithm.

Essential Part of the Algorithm

$$
\xi=\frac{b_{i j}}{\sqrt{1+b_{i j}}+\sqrt{1-b_{i j}}}, \quad \rho=\xi+\sqrt{1-b_{i j}}, \quad \xi^{2}+\rho^{2}=1
$$

Essential Part of the Algorithm

$$
\begin{gathered}
\xi=\frac{b_{i j}}{\sqrt{1+b_{i j}}+\sqrt{1-b_{i j}}}, \quad \rho=\xi+\sqrt{1-b_{i j}}, \quad \xi^{2}+\rho^{2}=1, \\
\tan (2 \theta)=\frac{2 a_{i j}-\left(a_{i i}+a_{j j}\right) b_{i j}}{\sqrt{1-\left(b_{i j}\right)^{2}}\left(a_{i i}-a_{j j}\right)}, \quad-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4},
\end{gathered}
$$

Essential Part of the Algorithm

$$
\begin{gathered}
\xi=\frac{b_{i j}}{\sqrt{1+b_{i j}}+\sqrt{1-b_{i j}}}, \quad \rho=\xi+\sqrt{1-b_{i j}}, \quad \xi^{2}+\rho^{2}=1, \\
\tan (2 \theta)=\frac{2 a_{i j}-\left(a_{i i}+a_{j j}\right) b_{i j}}{\sqrt{1-\left(b_{i j}\right)^{2}}\left(a_{i i}-a_{j j}\right)}, \quad-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4},
\end{gathered}
$$

$$
\begin{aligned}
\cos \phi & =\rho \cos \theta-\xi \sin \theta \\
\sin \phi & =\rho \sin \theta+\xi \cos \theta \\
\cos \psi & =\rho \cos \theta+\xi \sin \theta \\
\sin \psi & =\rho \sin \theta-\xi \cos \theta
\end{aligned}
$$

Essential Part of the Algorithm

$$
\begin{gathered}
\xi=\frac{b_{i j}}{\sqrt{1+b_{i j}}+\sqrt{1-b_{i j}}}, \quad \rho=\xi+\sqrt{1-b_{i j}}, \quad \xi^{2}+\rho^{2}=1, \\
\tan (2 \theta)=\frac{2 a_{i j}-\left(a_{i i}+a_{j j}\right) b_{i j}}{\sqrt{1-\left(b_{i j}\right)^{2}}\left(a_{i i}-a_{j j}\right)}, \quad-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4},
\end{gathered}
$$

$$
\begin{aligned}
\cos \phi & =\rho \cos \theta-\xi \sin \theta \\
\sin \phi & =\rho \sin \theta+\xi \cos \theta \\
\cos \psi & =\rho \cos \theta+\xi \sin \theta \\
\sin \psi & =\rho \sin \theta-\xi \cos \theta
\end{aligned}
$$

$$
\hat{Z}=\frac{1}{\sqrt{1-b_{i j}^{2}}}\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\cos \psi & \sin \psi
\end{array}\right]
$$

Essential Part of the Algorithm

$$
\begin{gathered}
\xi=\frac{b_{i j}}{\sqrt{1+b_{i j}}+\sqrt{1-b_{i j}}}, \quad \rho=\xi+\sqrt{1-b_{i j}}, \quad \xi^{2}+\rho^{2}=1, \\
\tan (2 \theta)=\frac{2 a_{i j}-\left(a_{i j}+a_{j j}\right) b_{i j}}{\sqrt{1-\left(b_{i j}\right)^{2}}\left(a_{i i}-a_{j j}\right)}, \quad-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4},
\end{gathered}
$$

$$
\begin{aligned}
\cos \phi & =\rho \cos \theta-\xi \sin \theta \\
\sin \phi & =\rho \sin \theta+\xi \cos \theta \\
\cos \psi & =\rho \cos \theta+\xi \sin \theta \\
\sin \psi & =\rho \sin \theta-\xi \cos \theta
\end{aligned}
$$

$$
\hat{Z}=\frac{1}{\sqrt{1-b_{i j}^{2}}}\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\cos \psi & \sin \psi
\end{array}\right]
$$

$$
a_{i i}^{\prime}=a_{i i}+\frac{1}{1-b_{i j}^{2}}\left[\left(b_{i j}^{2}-\sin ^{2} \phi\right) a_{i i}+2 \cos \phi \sin \psi a_{i j}+\sin ^{2} \psi a_{j j}\right]
$$

$$
a_{j j}^{\prime}=a_{j j}-\frac{1}{1-b_{i j}^{2}}\left[\left(\sin ^{2} \psi-b_{i j}^{2}\right) a_{j j}+2 \cos \psi \sin \phi a_{i j}+\sin ^{2} \phi a_{i i}\right]
$$

There are more formulas!

$$
\rho=\frac{1}{2}\left(\sqrt{1+b_{i j}}+\sqrt{1-b_{i j}}\right), \quad 2 \rho \xi=b_{i j} .
$$

It is easy to show the following relations: $\quad|\xi| \leq \sqrt{2} / 2, \sqrt{2} / 2 \leq \rho \leq 1$.

$$
\begin{aligned}
\cos \phi \sin \psi & =\cos \theta \sin \theta-\rho \xi=0.5\left(\sin 2 \theta-b_{i j}\right) \\
\cos \psi \sin \phi & =\cos \theta \sin \theta+\rho \xi=0.5\left(\sin 2 \theta+b_{i j}\right) \\
\cos \phi \cos \psi & =\rho^{2} \cos ^{2} \theta-\xi^{2} \sin ^{2} \theta \\
\sin \phi \sin \psi & =\rho^{2} \sin ^{2} \theta-\xi^{2} \cos ^{2} \theta
\end{aligned}
$$

$\min \{\cos \phi, \cos \psi\} \geq \rho \cos \theta-\frac{\left|b_{i j}\right|}{2 \rho}|\sin \theta| \geq\left(\rho-\frac{\left|b_{i j}\right|}{2 \rho}\right) \cos \theta>0$,
$\max \{\cos \phi, \cos \psi\}=\rho \cos \theta+|\xi \sin \theta| \geq \cos (\theta) \geq \frac{\sqrt{2}}{2}$.

There are more formulas!

Let $\sin \gamma=b_{i j}, \cos \gamma=\sqrt{1-b_{i j}^{2}}$. Then
$\frac{1}{\cos \gamma}\left[\begin{array}{ll}a_{i i} & a_{i j} \\ a_{i j} & a_{j j}\end{array}\right]\left[\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \psi & \cos \psi\end{array}\right]=\left[\begin{array}{cc}\cos \psi & -\sin \psi \\ \sin \phi & \cos \phi\end{array}\right]\left[\begin{array}{ll}a_{i i}^{\prime} & \\ & a_{j j}^{\prime}\end{array}\right]$,
$\frac{1}{\cos \gamma}\left[\begin{array}{cc}1 & b_{i j} \\ b_{i j} & 1\end{array}\right]\left[\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \psi & \cos \psi\end{array}\right]=\left[\begin{array}{cc}\cos \psi & -\sin \psi \\ \sin \phi & \cos \phi\end{array}\right]$,

$$
\cos \gamma=\frac{\cos \phi}{\cos \psi}+b_{i j} \tan \psi=\frac{\cos \psi}{\cos \phi}-b_{i j} \tan \phi
$$

$$
2 \cos (\phi+\psi) a_{i j}=a_{i i} \sin (2 \phi)-a_{j j} \sin (2 \psi)
$$

There are more formulas!

$$
\begin{aligned}
a_{i i}^{\prime} & =\frac{1}{\cos \gamma}\left(a_{i i} \frac{\cos \phi}{\cos \psi}+a_{i j} \tan \psi\right)=\frac{a_{i i}+a_{i j} \frac{\sin \psi}{\cos \phi}}{1+b_{i j} \frac{\sin \psi}{\cos \phi}} \\
a_{j j}^{\prime} & =\frac{1}{\cos \gamma}\left(a_{j j} \frac{\cos \psi}{\cos \phi}-a_{i j} \tan \phi\right)=\frac{a_{j j}-a_{i j} \frac{\sin \phi}{\cos \psi}}{1-b_{i j} \frac{\sin \phi}{\cos \psi}}
\end{aligned}
$$

We also have

$$
\phi+\psi=2 \theta, \quad \text { hence } \quad \begin{aligned}
& \phi=\theta+\gamma / 2 \\
& \psi=\theta-\gamma / 2 .
\end{aligned}
$$

All these relations are used in the global convergence proof and in the proof of high relative accracy of the method.

Digression: Complex Matrices

If $A=A^{*}$ and $B=B^{*}$ are complex, with $B \succ O$ and $\operatorname{diag}(B)=I_{n}$, then one step of the HZ method uses the transformation

Digression: Complex Matrices

If $A=A^{*}$ and $B=B^{*}$ are complex, with $B \succ O$ and $\operatorname{diag}(B)=I_{n}$, then one step of the HZ method uses the transformation

$$
A^{\prime}=Z^{*} A Z, \quad B^{\prime}=Z^{*} B Z,
$$

Z is chosen to annihilate the pivot elements $a_{i j}$ and $b_{i j}$.

Digression: Complex Matrices

If $A=A^{*}$ and $B=B^{*}$ are complex, with $B \succ O$ and $\operatorname{diag}(B)=I_{n}$, then one step of the HZ method uses the transformation

$$
A^{\prime}=Z^{*} A Z, \quad B^{\prime}=Z^{*} B Z,
$$

Z is chosen to annihilate the pivot elements $a_{i j}$ and $b_{i j}$.
It is proved that that pivot submatrix of Z has form

$$
\hat{Z}=\left[\begin{array}{cc}
c & \bar{s} \\
-\tilde{s} & \tilde{c}
\end{array}\right]
$$

Digression: Complex Matrices

If $A=A^{*}$ and $B=B^{*}$ are complex, with $B \succ O$ and $\operatorname{diag}(B)=I_{n}$, then one step of the HZ method uses the transformation

$$
A^{\prime}=Z^{*} A Z, \quad B^{\prime}=Z^{*} B Z,
$$

Z is chosen to annihilate the pivot elements $a_{i j}$ and $b_{i j}$.
It is proved that that pivot submatrix of Z has form

$$
\hat{Z}=\left[\begin{array}{cc}
c & \bar{s} \\
-\tilde{s} & \tilde{c}
\end{array}\right] .
$$

We obtain $\quad \hat{A}^{\prime}=\hat{Z}^{*} \hat{A} \hat{Z}, \quad \hat{B}^{\prime}=\hat{Z}^{*} \hat{B} \hat{Z}$.

Digression: Complex Matrices

If $A=A^{*}$ and $B=B^{*}$ are complex, with $B \succ O$ and $\operatorname{diag}(B)=I_{n}$, then one step of the HZ method uses the transformation

$$
A^{\prime}=Z^{*} A Z, \quad B^{\prime}=Z^{*} B Z,
$$

Z is chosen to annihilate the pivot elements $a_{i j}$ and $b_{i j}$.
It is proved that that pivot submatrix of Z has form

$$
\hat{Z}=\left[\begin{array}{cc}
c & \bar{s} \\
-\tilde{s} & \tilde{c}
\end{array}\right] .
$$

We obtain $\quad \hat{A}^{\prime}=\hat{Z}^{*} \hat{A} \hat{Z}, \quad \hat{B}^{\prime}=\hat{Z}^{*} \hat{B} \hat{Z} . \quad \hat{Z}$ is sought as product of two complex Jacobi rotations and two diagonal matrices.

\hat{Z} is sought in the form:

$$
\begin{gathered}
\hat{B} \rightarrow \operatorname{diag} \\
\uparrow \\
\hat{Z}=\left[\begin{array}{c}
\hat{B} \rightarrow I_{2} \\
\uparrow \\
\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} e^{-\imath \arg \left(b_{i j}\right)} \\
-\frac{\sqrt{2}}{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
\frac{1}{\sqrt{1+\left|b_{i j}\right|}} & 0 \\
0 & \frac{1}{\sqrt{1-\left|b_{i j}\right|}}
\end{array}\right] \\
\cdot\left[\begin{array}{cc}
\cos \left(\theta+\frac{\pi}{4}\right) & e^{\imath \alpha} \sin \left(\theta+\frac{\pi}{4}\right) \\
-e^{-\imath \alpha} \sin \left(\theta+\frac{\pi}{4}\right) & \cos \left(\theta+\frac{\pi}{4}\right)
\end{array}\right] \cdot\left[\begin{array}{cc}
e^{\imath \omega_{i}} & 0 \\
0 & e^{\imath \omega_{j}}
\end{array}\right] \\
\downarrow \\
\hat{A} \rightarrow \operatorname{diag} \\
\downarrow \\
\end{gathered}
$$

Essential Part of the Algorithm

Let

$$
b=\left|b_{i j}\right|, \quad t=\sqrt{1-b^{2}}, \quad e=a_{j j}-a_{i i}, \quad \epsilon=\left\{\begin{array}{rl}
1, & e \geq 0 \\
-1, & e<0
\end{array},\right.
$$

Essential Part of the Algorithm

Let

$$
\begin{aligned}
b=\left|b_{i j}\right|, \quad t & =\sqrt{1-b^{2}}, \quad e=a_{j j}-a_{i i}, \quad \epsilon=\left\{\begin{array}{rl}
1, & e \geq 0 \\
-1, & e<0
\end{array},\right. \\
u+\imath v & =e^{-\imath \arg \left(b_{i j}\right)} a_{i j}, \quad \tan \gamma=2 \frac{v}{\mid e}, \quad-\frac{\pi}{2}<\gamma \leq \frac{\pi}{2} \\
\tan 2 \theta & =\epsilon \frac{2 u-\left(a_{i i}+a_{j j}\right) b}{t \sqrt{e^{2}+4 v^{2}}}, \quad-\frac{\pi}{4}<\theta \leq \frac{\pi}{4} \\
2 \cos ^{2} \phi & =1+b \sin 2 \theta+t \cos 2 \theta \cos \gamma, \quad 0 \leq \phi \leq \frac{\pi}{2} \\
2 \cos ^{2} \psi & =1-b \sin 2 \theta+t \cos 2 \theta \cos \gamma, \quad 0 \leq \psi \leq \frac{\pi}{2} \\
e^{\imath \alpha} \sin \phi & =\frac{e^{2 \arg \left(b_{i j}\right)}}{2 \cos \psi}[\sin 2 \theta-b-\imath t \cos 2 \theta \sin \gamma] \\
e^{-\imath \beta} \sin \psi & =\frac{e^{-\imath \arg \left(b_{i j}\right)}}{2 \cos \phi}[\sin 2 \theta+b+\imath t \cos 2 \theta \sin \gamma] .
\end{aligned}
$$

Essential Part of the Algorithm

Let

$$
\begin{aligned}
b=\left|b_{i j}\right|, \quad t & =\sqrt{1-b^{2}}, \quad e=a_{j j}-a_{i i}, \quad \epsilon=\left\{\begin{array}{rl}
1, & e \geq 0 \\
-1, & e<0
\end{array},\right. \\
u+\imath v & =e^{-\imath \arg \left(b_{i j}\right)} a_{i j}, \quad \tan \gamma=2 \frac{v}{|e|}, \quad-\frac{\pi}{2}<\gamma \leq \frac{\pi}{2} \\
\tan 2 \theta & =\epsilon \frac{2 u-\left(a_{i i}+a_{j j}\right) b}{t \sqrt{e^{2}+4 v^{2}}}, \quad-\frac{\pi}{4}<\theta \leq \frac{\pi}{4} \\
2 \cos ^{2} \phi & =1+b \sin 2 \theta+t \cos 2 \theta \cos \gamma, \quad 0 \leq \phi \leq \frac{\pi}{2} \\
2 \cos ^{2} \psi & =1-b \sin 2 \theta+t \cos 2 \theta \cos \gamma, \quad 0 \leq \psi \leq \frac{\pi}{2} \\
e^{\imath \alpha} \sin \phi & =\frac{e^{2 \arg \left(b_{i j}\right)}}{2 \cos \psi}[\sin 2 \theta-b-\imath t \cos 2 \theta \sin \gamma] \\
e^{-\imath \beta} \sin \psi & =\frac{e^{-\imath \arg \left(b_{i j}\right)}}{2 \cos \phi}[\sin 2 \theta+b+\imath t \cos 2 \theta \sin \gamma] .
\end{aligned}
$$

Then

$$
\hat{Z}=\frac{1}{\sqrt{1-b^{2}}}\left[\begin{array}{cc}
\cos \phi & e^{\imath \alpha} \sin \phi \\
-e^{\imath \beta} \sin \psi & \cos \psi
\end{array}\right]
$$

New Algorithms: Based on $L L^{T}$ and $R R^{T}$ Factorizations

Consider the Cholesky foctorization of \hat{B} :

$$
\left[\begin{array}{cc}
1 & b_{i j} \\
b_{i j} & 1
\end{array}\right]=\hat{B}=\hat{L} \hat{L}^{T}=\left[\begin{array}{ll}
1 & 0 \\
a & c
\end{array}\right]\left[\begin{array}{ll}
1 & a \\
0 & c
\end{array}\right]=\left[\begin{array}{cc}
1 & a \\
a & a^{2}+c^{2}
\end{array}\right] .
$$

New Algorithms: Based on $L L^{T}$ and $R R^{T}$ Factorizations

Consider the Cholesky foctorization of \hat{B} :

$$
\left[\begin{array}{cc}
1 & b_{i j} \\
b_{i j} & 1
\end{array}\right]=\hat{B}=\hat{L} \hat{L}^{T}=\left[\begin{array}{ll}
1 & 0 \\
a & c
\end{array}\right]\left[\begin{array}{ll}
1 & a \\
0 & c
\end{array}\right]=\left[\begin{array}{cc}
1 & a \\
a & a^{2}+c^{2}
\end{array}\right]
$$

Assuming $c>0$, one obtains $a=b_{i j}, c=\sqrt{1-b_{i j}^{2}}$, hence

New Algorithms: Based on $L L^{T}$ and $R R^{T}$ Factorizations

Consider the Cholesky foctorization of \hat{B} :

$$
\left[\begin{array}{cc}
1 & b_{i j} \\
b_{i j} & 1
\end{array}\right]=\hat{B}=\hat{L} \hat{L}^{T}=\left[\begin{array}{ll}
1 & 0 \\
a & c
\end{array}\right]\left[\begin{array}{ll}
1 & a \\
0 & c
\end{array}\right]=\left[\begin{array}{cc}
1 & a \\
a & a^{2}+c^{2}
\end{array}\right]
$$

Assuming $c>0$, one obtains $a=b_{i j}, c=\sqrt{1-b_{i j}^{2}}$, hence

$$
\hat{L}=\left[\begin{array}{cc}
1 & 0 \\
b_{i j} & \sqrt{1-b_{i j}^{2}}
\end{array}\right], \quad \hat{L}^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-\frac{b_{i j}}{\sqrt{1-b_{i j}^{2}}} & \frac{1}{\sqrt{1-b_{i j}^{2}}}
\end{array}\right] .
$$

New Algorithms: Based on $L L^{T}$ and $R R^{T}$ Factorizations

Consider the Cholesky foctorization of \hat{B} :

$$
\left[\begin{array}{cc}
1 & b_{i j} \\
b_{i j} & 1
\end{array}\right]=\hat{B}=\hat{L} \hat{L}^{T}=\left[\begin{array}{ll}
1 & 0 \\
a & c
\end{array}\right]\left[\begin{array}{ll}
1 & a \\
0 & c
\end{array}\right]=\left[\begin{array}{cc}
1 & a \\
a & a^{2}+c^{2}
\end{array}\right]
$$

Assuming $c>0$, one obtains $a=b_{i j}, c=\sqrt{1-b_{i j}^{2}}$, hence

$$
\hat{L}=\left[\begin{array}{cc}
1 & 0 \\
b_{i j} & \sqrt{1-b_{i j}^{2}}
\end{array}\right], \quad \hat{L}^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-\frac{b_{i j}}{\sqrt{1-b_{i j}^{2}}} & \frac{1}{\sqrt{1-b_{i j}^{2}}}
\end{array}\right] .
$$

If we write $\hat{F}_{1}=\hat{L}^{-T}$, then $\hat{F}_{1}^{T} \hat{B} \hat{F}_{1}=I_{2}$ and

The Algorithm Based on $L L^{T}$ Factorization

$$
\begin{align*}
\hat{F}_{1}^{T} \hat{A} \hat{F}_{1} & =\left[\begin{array}{cc}
1 & 0 \\
f_{i j} & f_{j j}
\end{array}\right]\left[\begin{array}{cc}
a_{i i} & a_{i j} \\
a_{i j} & a_{j j}
\end{array}\right]\left[\begin{array}{cc}
1 & f_{i j} \\
0 & f_{j j}
\end{array}\right] \\
& =\left[\begin{array}{cc}
a_{i j} & f_{i j} a_{i j}+f_{j j} a_{i j} \\
f_{i j} a_{i i}+f_{j j} a_{i j} & f_{i j}^{2} a_{i i}+2 f_{i j} f_{j j} a_{i j}+f_{j j}^{2} a_{j j}
\end{array}\right] \\
& =\left[\begin{array}{cc}
a_{i i} & \frac{a_{i j}-b_{i j} a_{i i}}{\sqrt{1-b_{i j}^{2}}} \\
\frac{a_{i j}-b_{i j} a_{i j}}{\sqrt{1-b_{i j}^{2}}} & a_{j j}-\frac{2 a_{i j}-\left(a_{i j}+a_{j j}\right) b_{i j}}{1-b_{i j}^{2}} b_{i j}
\end{array}\right] \tag{1}
\end{align*}
$$

where we have used $f_{i j}=-b_{i j} / \sqrt{1-b_{i j}^{2}}, \quad f_{j j}=1 / \sqrt{1-b_{i j}^{2}}$.

The Algorithm Based on $L L^{T}$ Factorization

$$
\begin{align*}
\hat{F}_{1}^{T} \hat{A} \hat{F}_{1} & =\left[\begin{array}{cc}
1 & 0 \\
f_{i j} & f_{j j}
\end{array}\right]\left[\begin{array}{cc}
a_{i i} & a_{i j} \\
a_{i j} & a_{j j}
\end{array}\right]\left[\begin{array}{cc}
1 & f_{i j} \\
0 & f_{j j}
\end{array}\right] \\
& =\left[\begin{array}{cc}
a_{i j} & f_{i j} a_{i i}+f_{j j} a_{i j} \\
f_{i j} a_{i i}+f_{j j} a_{i j} & f_{i j}^{2} a_{i j}+2 f_{i j} f_{j j} a_{i j}+f_{j j}^{2} a_{j j}
\end{array}\right] \\
& =\left[\begin{array}{cc}
a_{i i} & \frac{a_{i j}-b_{i j} a_{i j}}{\sqrt{1-b_{i j}^{2}}} \\
\frac{a_{i j}-b_{i j} a_{i j}}{\sqrt{1-b_{i j}^{2}}} & a_{j j}-\frac{2 a_{i j}-\left(a_{i j}+a_{j j}\right) b_{i j}}{1-b_{i j}^{2}} b_{i j}
\end{array}\right] \tag{1}
\end{align*}
$$

where we have used $f_{i j}=-b_{i j} / \sqrt{1-b_{i j}^{2}}, \quad f_{j j}=1 / \sqrt{1-b_{i j}^{2}}$.
The final \hat{F} has the form $\hat{F}=\hat{F}_{1} \hat{R}$, where \hat{R} is the Jacobi transformation which diagonalizes $\hat{F}_{1}^{T} \hat{A} \hat{F}_{1}$. Its angle ϑ is determined by the formula

The Algorithm Based on $L L^{T}$ Factorization

$$
\tan (2 \vartheta)=\frac{2\left(a_{i j}-b_{i j} a_{i i}\right) \sqrt{1-b_{i j}^{2}}}{a_{i i}-a_{j j}+2\left(a_{i j}-b_{i j} a_{i i}\right) b_{i j}}, \quad-\frac{\pi}{4} \leq \vartheta \leq \frac{\pi}{4} .
$$

The Algorithm Based on $L L^{T}$ Factorization

$$
\tan (2 \vartheta)=\frac{2\left(a_{i j}-b_{i j} a_{i i}\right) \sqrt{1-b_{i j}^{2}}}{a_{i i}-a_{j j}+2\left(a_{i j}-b_{i j} a_{i i}\right) b_{i j}}, \quad-\frac{\pi}{4} \leq \vartheta \leq \frac{\pi}{4} .
$$

The transformation formulas for the diagonal elements of A read

$$
\begin{align*}
a_{i i}^{\prime} & =a_{i i}+\tan \vartheta \cdot \frac{a_{i j}-a_{i i} b_{i j}}{\sqrt{1-b_{i j}^{2}}} \tag{2}\\
a_{j j}^{\prime} & =a_{j j}-\frac{2 a_{i j} b_{i j}-b_{i j}^{2}\left(a_{i i}+a_{j j}\right)}{1-b_{i j}^{2}}-\tan \vartheta \cdot \frac{a_{i j}-a_{i i} b_{i j}}{\sqrt{1-b_{i j}^{2}}} \tag{3}
\end{align*}
$$

The Algorithm Based on $L L^{T}$ Factorization

$$
\tan (2 \vartheta)=\frac{2\left(a_{i j}-b_{i j} a_{i i}\right) \sqrt{1-b_{i j}^{2}}}{a_{i i}-a_{j j}+2\left(a_{i j}-b_{i j} a_{i i}\right) b_{i j}}, \quad-\frac{\pi}{4} \leq \vartheta \leq \frac{\pi}{4} .
$$

The transformation formulas for the diagonal elements of A read

$$
\begin{align*}
a_{i i}^{\prime} & =a_{i i}+\tan \vartheta \cdot \frac{a_{i j}-a_{i i} b_{i j}}{\sqrt{1-b_{i j}^{2}}} \tag{2}\\
a_{j j}^{\prime} & =a_{j j}-\frac{2 a_{i j} b_{i j}-b_{i j}^{2}\left(a_{i i}+a_{j j}\right)}{1-b_{i j}^{2}}-\tan \vartheta \cdot \frac{a_{i j}-a_{i i} b_{i j}}{\sqrt{1-b_{i j}^{2}}} \tag{3}
\end{align*}
$$

If $a_{i i}=a_{j j}, a_{i j}=a_{i i} b_{i j}$ then ϑ is determined from expression $0 / 0$, so we choose $\vartheta=0$. In this case $a_{i i}^{\prime}$ and $a_{j j}^{\prime}$ reduce to $a_{i i}$ and $a_{j j}$, respectively.

The Algorithm Based on $L L^{T}$ Factorization

This leads to a simpler matrix

$$
\begin{aligned}
\hat{Z} & =\frac{1}{\sqrt{1-b_{i j}^{2}}}\left[\begin{array}{cc}
\sqrt{1-b_{i j}^{2}} & -b_{i j} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
c_{\vartheta} & -s_{\vartheta} \\
s_{\vartheta} & c_{\vartheta}
\end{array}\right] \\
& =\frac{1}{\sqrt{1-b_{i j}^{2}}}\left[\begin{array}{cc}
c_{\tilde{\vartheta}} & -s_{\tilde{\vartheta}} \\
s_{\vartheta} & c_{\vartheta}
\end{array}\right],
\end{aligned} \begin{aligned}
& c_{\tilde{\vartheta}}=c_{\vartheta} \sqrt{1-b_{i j}^{2}}-s_{\vartheta} b_{i j}, \\
& s_{\tilde{\vartheta}}=c_{\vartheta} b_{i j}+s_{\vartheta} \sqrt{1-b_{i j}^{2}} .
\end{aligned}
$$

It is easy to check that $c_{\tilde{\vartheta}}^{2}+s_{\tilde{\vartheta}}^{2}=1$.

The Algorithm Based on $R R^{T}$ Factorizations

Consider the $R R^{T}$ factorization of \hat{B} :

$$
\left[\begin{array}{cc}
1 & b_{i j} \\
b_{i j} & 1
\end{array}\right]=\hat{B}=\hat{R} \hat{R}^{T}=\left[\begin{array}{ll}
c & a \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
c & 0 \\
a & 1
\end{array}\right]=\left[\begin{array}{cc}
a^{2}+c^{2} & a \\
a & 1
\end{array}\right] .
$$

Assuming positive c, one obtains $a=b_{i j}, c=\sqrt{1-b_{i j}^{2}}$, hence

$$
\hat{R}=\left[\begin{array}{cc}
\sqrt{1-b_{i j}^{2}} & b_{i j} \\
0 & 1
\end{array}\right] \quad \text { and } \quad \hat{R}^{-1}=\left[\begin{array}{cc}
\frac{1}{\sqrt{1-b_{i j}^{2}}} & -\frac{b_{i j}}{\sqrt{1-b_{i j}^{2}}} \\
0 & 1
\end{array}\right] .
$$

The Algorithm Based on $R R^{T}$ Factorizations

Consider the $R R^{T}$ factorization of \hat{B} :

$$
\left[\begin{array}{cc}
1 & b_{i j} \\
b_{i j} & 1
\end{array}\right]=\hat{B}=\hat{R} \hat{R}^{T}=\left[\begin{array}{ll}
c & a \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
c & 0 \\
a & 1
\end{array}\right]=\left[\begin{array}{cc}
a^{2}+c^{2} & a \\
a & 1
\end{array}\right] .
$$

Assuming positive c, one obtains $a=b_{i j}, c=\sqrt{1-b_{i j}^{2}}$, hence

$$
\hat{R}=\left[\begin{array}{cc}
\sqrt{1-b_{i j}^{2}} & b_{i j} \\
0 & 1
\end{array}\right] \quad \text { and } \quad \hat{R}^{-1}=\left[\begin{array}{cc}
\frac{1}{\sqrt{1-b_{i j}^{2}}} & -\frac{b_{i j}}{\sqrt{1-b_{i j}^{2}}} \\
0 & 1
\end{array}\right] .
$$

If we write $\hat{F}_{2}=\hat{R}^{-T}$, then $\hat{F}_{2}^{\top} \hat{B} \hat{F}_{2}=I_{2}$ and

The Algorithm Based on $R R^{T}$ Factorization

$$
\begin{align*}
\hat{F}_{2}^{T} \hat{A} \hat{F}_{2} & =\left[\begin{array}{cc}
f_{i i} & f_{j i} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
a_{i i} & a_{i j} \\
a_{i j} & a_{j j}
\end{array}\right]\left[\begin{array}{cc}
f_{i j} & 0 \\
f_{j i} & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
f_{i i}^{2} a_{i i}+2 f_{i j} f_{j i} a_{i j}+f_{j i}^{2} a_{j j} & f_{i j} a_{i j}+f_{j i} a_{j j} \\
f_{i i} a_{i j}+f_{j i} a_{j j} & a_{j j}
\end{array}\right] \\
& =\left[\begin{array}{cc}
a_{i i}-\frac{2 a_{i j}-\left(a_{i j}+a_{j j} b_{i j}\right.}{1-b_{i j}^{2}} b_{i j} & \frac{a_{i j}-b_{i j} a_{j j}}{\sqrt{1-b_{i j}^{2}}} \\
\frac{a_{i j}-b_{i j} a_{j j}}{\sqrt{1-b_{i j}^{2}}} & a_{j j}
\end{array}\right], \tag{4}
\end{align*}
$$

where we have used $\quad f_{i i}=1 / \sqrt{1-b_{i j}^{2}}, \quad f_{j i}=-b_{i j} / \sqrt{1-b_{i j}^{2}}$.

The Algorithm Based on $R R^{T}$ Factorization

$$
\begin{align*}
\hat{F}_{2}^{T} \hat{A} \hat{F}_{2} & =\left[\begin{array}{cc}
f_{i i} & f_{j i} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
a_{i i} & a_{i j} \\
a_{i j} & a_{j j}
\end{array}\right]\left[\begin{array}{cc}
f_{i j} & 0 \\
f_{j i} & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
f_{i i}^{2} a_{i i}+2 f_{i j} f_{j i} a_{i j}+f_{j i}^{2} a_{j j} & f_{i j} a_{i j}+f_{j i} a_{j j} \\
f_{i i} a_{i j}+f_{j i} a_{j j} & a_{j j}
\end{array}\right] \\
& =\left[\begin{array}{cc}
a_{i i}-\frac{2 a_{i j}-\left(a_{i j}+a_{j j} b_{i j}\right.}{1-b_{i j}^{2}} b_{i j} & \frac{a_{i j}-b_{i j} a_{j j}}{\sqrt{1-b_{i j}^{2}}} \\
\frac{a_{i j}-b_{i j} a_{j j}}{\sqrt{1-b_{i j}^{2}}} & a_{j j}
\end{array}\right] \tag{4}
\end{align*}
$$

where we have used $\quad f_{i i}=1 / \sqrt{1-b_{i j}^{2}}, \quad f_{j i}=-b_{i j} / \sqrt{1-b_{i j}^{2}}$.
The final \hat{F} has the form $\hat{F}=\hat{F}_{2} \hat{J}$, where \hat{J} is the Jacobi transformation which diagonalizes $\hat{F}_{2}^{T} \hat{A} \hat{F}_{2}$. Its angle ϑ is determined by the formula

The Algorithm Based on $R R^{T}$ Factorization

$$
\tan (2 \vartheta)=\frac{2\left(a_{i j}-b_{i j} a_{j j}\right) \sqrt{1-b_{i j}^{2}}}{a_{i i}-a_{j j}-2\left(a_{i j}-b_{i j} a_{j j}\right) b_{i j}}, \quad-\frac{\pi}{4} \leq \vartheta \leq \frac{\pi}{4} .
$$

The Algorithm Based on $R R^{T}$ Factorization

$$
\tan (2 \vartheta)=\frac{2\left(a_{i j}-b_{i j} a_{j j}\right) \sqrt{1-b_{i j}^{2}}}{a_{i i}-a_{j j}-2\left(a_{i j}-b_{i j} a_{j j}\right) b_{i j}}, \quad-\frac{\pi}{4} \leq \vartheta \leq \frac{\pi}{4}
$$

The transformation formulas for the diagonal elements of A read

$$
\begin{aligned}
a_{i i}^{\prime} & =a_{i i}-\frac{2 a_{i j}-\left(a_{i j}+a_{j j}\right) b_{i j}}{1-b_{i j}^{2}} b_{i j}+\tan \vartheta \cdot \frac{a_{i j}-a_{j j} b_{i j}}{\sqrt{1-b_{i j}^{2}}} \\
a_{j j}^{\prime} & =a_{j j}-\tan \vartheta \cdot \frac{a_{i j}-a_{j j} b_{i j}}{\sqrt{1-b_{i j}^{2}}}
\end{aligned}
$$

The Algorithm Based on $R R^{T}$ Factorization

$$
\tan (2 \vartheta)=\frac{2\left(a_{i j}-b_{i j} a_{j j}\right) \sqrt{1-b_{i j}^{2}}}{a_{i i}-a_{j j}-2\left(a_{i j}-b_{i j} a_{j j}\right) b_{i j}}, \quad-\frac{\pi}{4} \leq \vartheta \leq \frac{\pi}{4} .
$$

The transformation formulas for the diagonal elements of A read

$$
\begin{aligned}
a_{i i}^{\prime} & =a_{i i}-\frac{2 a_{i j}-\left(a_{i i}+a_{j j}\right) b_{i j}}{1-b_{i j}^{2}} b_{i j}+\tan \vartheta \cdot \frac{a_{i j}-a_{j j} b_{i j}}{\sqrt{1-b_{i j}^{2}}} \\
a_{j j}^{\prime} & =a_{j j}-\tan \vartheta \cdot \frac{a_{i j}-a_{j j} b_{i j}}{\sqrt{1-b_{i j}^{2}}}
\end{aligned}
$$

If $a_{i i}=a_{j j}, a_{i j}=a_{j j} b_{i j}$ then ϑ is determined from expression $0 / 0$, so we choose $\vartheta=0$. In this case $a_{i i}^{\prime}$ and $a_{j j}^{\prime}$ reduce to $a_{i i}$ and $a_{j j}$, respectively.

The Algorithm Based on $R R^{T}$ Factorization

This leads to a simpler matrix

$$
\begin{aligned}
\hat{Z} & =\frac{1}{\sqrt{1-b_{i j}^{2}}}\left[\begin{array}{cc}
1 & 0 \\
-b_{i j} & \sqrt{1-b_{i j}^{2}}
\end{array}\right]\left[\begin{array}{cc}
c_{\vartheta} & -s_{\vartheta} \\
s_{\vartheta} & c_{\vartheta}
\end{array}\right] \\
& =\frac{1}{\sqrt{1-b_{i j}^{2}}}\left[\begin{array}{cc}
c_{\vartheta} & -s_{\vartheta} \\
s_{\tilde{\vartheta}} & c_{\tilde{\vartheta}}
\end{array}\right],
\end{aligned} \begin{gathered}
c_{\tilde{\vartheta}}=c_{\vartheta} \sqrt{1-b_{i j}^{2}}+s_{\vartheta} b_{i j}, \\
s_{\tilde{\vartheta}}=s_{\vartheta} \sqrt{1-b_{i j}^{2}}-c_{\vartheta} b_{i j} .
\end{gathered}
$$

It is easy to check that $c_{\tilde{\vartheta}}^{2}+s_{\tilde{\vartheta}}^{2}=1$.
The algorithms based on $L L^{T}$ and $R R^{T}$ factorizations can be generalized to work with complex matrices

Definition of a Hybrid and a General Method

Definition

Let \mathcal{H} denote a collection of Jacobi methods for the positive definite generalized eigenvalue problem $A x=\lambda B x$ which satisfy the following two rules:
(1) at step k the pivot submatrix $\hat{A}^{(k)}$ is diagonalized and $\hat{B}^{(k)}$ is transformed to I_{2},
(2) at least one of the two diagonal elements of the pivot submatrix \hat{F}_{k} is not smaller than $\sqrt{2} / 2$.
An element of \mathcal{H} is called a general PGEP Jacobi method. A hybrid Jacobi method is any method from \mathcal{H} that uses at each step either the $\mathrm{HZ}, L L^{\top} J$ or $R R^{T} J$ algorithm.

Definition of a Hybrid and a General Method

Definition

Let \mathcal{H} denote a collection of Jacobi methods for the positive definite generalized eigenvalue problem $A x=\lambda B x$ which satisfy the following two rules:
(1) at step k the pivot submatrix $\hat{A}^{(k)}$ is diagonalized and $\hat{B}^{(k)}$ is transformed to I_{2},
(2) at least one of the two diagonal elements of the pivot submatrix \hat{F}_{k} is not smaller than $\sqrt{2} / 2$.
An element of \mathcal{H} is called a general PGEP Jacobi method. A hybrid Jacobi method is any method from \mathcal{H} that uses at each step either the $\mathrm{HZ}, L L^{T} J$ or $R R^{T} J$ algorithm.

In this definition the pivot strategy is not specified, hence any can be used. If a Jacobi method uses only the $\mathrm{HZ}\left(L L^{T} J, R R^{T} J\right)$ algorithm, it will be called the $\mathrm{HZ}\left(L L^{T} J, R R^{T} J\right)$ method.

Some Remarks

- It is easy to show that $\mathrm{HZ}, L L^{T} J$ and $R R^{T} J$ methods belong to the class \mathcal{H}.

Some Remarks

- It is easy to show that $\mathrm{HZ}, L L^{T} J$ and $R R^{T} J$ methods belong to the class \mathcal{H}.
- Algorithms based on $L L^{T}$ and $R R^{T}$ factorizations have got their names $L L^{T} J$ and $R R^{T} J$ algorithm, because $L L^{T}$ and $R R^{T}$ factorizations are followed by one step of the Jacobi method for the symmetric matrix.

Some Remarks

- It is easy to show that $\mathrm{HZ}, L L^{T} J$ and $R R^{T} J$ methods belong to the class \mathcal{H}.
- Algorithms based on $L L^{T}$ and $R R^{T}$ factorizations have got their names $L L^{T} J$ and $R R^{T} J$ algorithm, because $L L^{T}$ and $R R^{T}$ factorizations are followed by one step of the Jacobi method for the symmetric matrix.
- The general (PGEP) Jacobi method can use at each step any conceivable algorithm which satisfies the above two rules. For example, it can use the FL method combined with normalization of the elements of B.

Some Remarks

- All real algorithms have the form

$$
\hat{Z}=\frac{1}{\sqrt{1-b_{i j}^{2}}}\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\cos \psi & \sin \psi
\end{array}\right]
$$

This follows from a result of Gose (ZAMM 59, 1979), who found the general form of a matrix \hat{Z} which diagonalizes a positive definite symmetric matrix \hat{B} of order 2 via the congruence transformation $\hat{B} \mapsto \hat{Z}^{\top} \hat{B} \hat{Z}$.

Some Remarks

- All real algorithms have the form

$$
\hat{Z}=\frac{1}{\sqrt{1-b_{i j}^{2}}}\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\cos \psi & \sin \psi
\end{array}\right]
$$

This follows from a result of Gose (ZAMM 59, 1979), who found the general form of a matrix \hat{Z} which diagonalizes a positive definite symmetric matrix \hat{B} of order 2 via the congruence transformation $\hat{B} \mapsto \hat{Z}^{\top} \hat{B} \hat{Z}$.

If we assume $b_{11}=\cdots=b_{n n}$ and the same condition for $\hat{Z}^{T} \hat{B} \hat{Z}$, then this form of \hat{Z} is just the Gose's theorem.

Some Remarks

- All real algorithms have the form

$$
\hat{Z}=\frac{1}{\sqrt{1-b_{i j}^{2}}}\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\cos \psi & \sin \psi
\end{array}\right]
$$

This follows from a result of Gose (ZAMM 59, 1979), who found the general form of a matrix \hat{Z} which diagonalizes a positive definite symmetric matrix \hat{B} of order 2 via the congruence transformation $\hat{B} \mapsto \hat{Z}^{\top} \hat{B} \hat{Z}$.

If we assume $b_{11}=\cdots=b_{n n}$ and the same condition for $\hat{Z}^{T} \hat{B} \hat{Z}$, then this form of \hat{Z} is just the Gose's theorem.

Later Hari generalized that result to complex matrices.

Global Convergence (Real and Complex Algorithm)

We have used the following measure in the convergence analysis:

$$
S^{2}(A)=\|A-\operatorname{diag}(A)\|_{F}^{2}, \quad S(A, B)=\left[S^{2}(A)+S^{2}(B)\right]^{1 / 2}
$$

The HZ method converges globally if

$$
A^{(k)} \rightarrow \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \quad B^{(k)} \rightarrow I_{n} \quad \text { as } \quad k \rightarrow \infty
$$

holds for any initial pair of symmetric matrices (A, B) with $B \succ O$.

Global Convergence (Real and Complex Algorithm)

We have used the following measure in the convergence analysis:

$$
S^{2}(A)=\|A-\operatorname{diag}(A)\|_{F}^{2}, \quad S(A, B)=\left[S^{2}(A)+S^{2}(B)\right]^{1 / 2}
$$

The HZ method converges globally if

$$
A^{(k)} \rightarrow \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \quad B^{(k)} \rightarrow I_{n} \quad \text { as } \quad k \rightarrow \infty
$$

holds for any initial pair of symmetric matrices (A, B) with $B \succ O$. Actually, it is sufficient to show that $S(A, B) \rightarrow 0$ as $k \rightarrow \infty$.

Global Convergence (Real and Complex Algorithm)

We have used the following measure in the convergence analysis:

$$
S^{2}(A)=\|A-\operatorname{diag}(A)\|_{F}^{2}, \quad S(A, B)=\left[S^{2}(A)+S^{2}(B)\right]^{1 / 2}
$$

The HZ method converges globally if

$$
A^{(k)} \rightarrow \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \quad B^{(k)} \rightarrow I_{n} \quad \text { as } \quad k \rightarrow \infty
$$

holds for any initial pair of symmetric matrices (A, B) with $B \succ O$.
Actually, it is sufficient to show that $S(A, B) \rightarrow 0$ as $k \rightarrow \infty$.
We have first proved the global convergence for the serial pivot strategies.

Global Convergence (Real and Complex Algorithm)

We have used the following measure in the convergence analysis:

$$
S^{2}(A)=\|A-\operatorname{diag}(A)\|_{F}^{2}, \quad S(A, B)=\left[S^{2}(A)+S^{2}(B)\right]^{1 / 2}
$$

The HZ method converges globally if

$$
A^{(k)} \rightarrow \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \quad B^{(k)} \rightarrow I_{n} \quad \text { as } \quad k \rightarrow \infty
$$

holds for any initial pair of symmetric matrices (A, B) with $B \succ O$.
Actually, it is sufficient to show that $S(A, B) \rightarrow 0$ as $k \rightarrow \infty$.
We have first proved the global convergence for the serial pivot strategies. Then we have proved the global convergence for a new much larger class of generalized serial strategies which includes the class of weak wavefront strategies.

Asymptotic Convergence (Real and Complex Algorithm)

Let (A, B) have simple eigenvalues:

$$
\begin{gathered}
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{n}, \quad \mu=\max \left\{\left|\lambda_{1}\right|,\left|\lambda_{n}\right|\right\}, \\
3 \delta_{i}=\min _{\substack{1 \leq i \leq n \\
j \neq i}}\left|\lambda_{i}-\lambda_{j}\right|, \quad 1 \leq i \leq n ; \quad \delta=\min _{1 \leq i \leq n} \delta_{i} .
\end{gathered}
$$

Asymptotic Convergence (Real and Complex Algorithm)

Let (A, B) have simple eigenvalues:

$$
\begin{gathered}
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{n}, \quad \mu=\max \left\{\left|\lambda_{1}\right|,\left|\lambda_{n}\right|\right\}, \\
3 \delta_{i}=\min _{\substack{1 \leq i \leq n \\
j \neq i}}\left|\lambda_{i}-\lambda_{j}\right|, \quad 1 \leq i \leq n ; \quad \delta=\min _{1 \leq i \leq n} \delta_{i} .
\end{gathered}
$$

Theorem

If $S\left(B^{(0)}\right)<\frac{1}{n(n-1)} \quad$ and $\quad S\left(A^{(0)}, B^{(0)}\right)<\frac{\delta}{2 \sqrt{1+\mu^{2}}}$,
then for the general cyclic and for the serial strategies it holds, respectively:

$$
\begin{aligned}
& S\left(A^{(N)}, B^{(N)}\right) \leq \sqrt{N\left(1+\mu^{2}\right)} \frac{S^{2}\left(A^{(0)}, B^{(0)}\right)}{\delta}, \quad N=n(n-1) / 2 \\
& S\left(A^{(N)}, B^{(N)}\right) \leq \sqrt{1+\mu^{2}} \frac{S^{2}\left(A^{(0)}, B^{(0)}\right)}{\delta} .
\end{aligned}
$$

In the case of multiple eigenvalues, the method is not quadratically convergent, but can be modified to be such.

Multiple Eigenvalues

The situation complicates because the positive definite pair (A, B) with multiple eigenvalues, and with nearly diagonal matrices, has special structure.

Multiple Eigenvalues

The situation complicates because the positive definite pair (A, B) with multiple eigenvalues, and with nearly diagonal matrices, has special structure.

Let $\quad A=A^{*}$ with $a_{11} \geq a_{22} \geq \cdots \geq a_{n n}$,

$$
B=B^{*} \text { with } B \succ O, \operatorname{diag}(B)=I_{n} .
$$

Multiple Eigenvalues

The situation complicates because the positive definite pair (A, B) with multiple eigenvalues, and with nearly diagonal matrices, has special structure.

Let $\quad A=A^{*}$ with $a_{11} \geq a_{22} \geq \cdots \geq a_{n n}$,
$B=B^{*}$ with $B \succ O, \operatorname{diag}(B)=I_{n}$.
Let

$$
\lambda_{1}=\cdots=\lambda_{s_{1}}>\lambda_{s_{1}+1}=\cdots=\lambda_{s_{2}}>\cdots>\lambda_{s_{p-1}+1}=\cdots=\lambda_{s_{p}}
$$

where $s_{p}=n$.

Multiple Eigenvalues

The situation complicates because the positive definite pair (A, B) with multiple eigenvalues, and with nearly diagonal matrices, has special structure.

Let $\quad A=A^{*}$ with $a_{11} \geq a_{22} \geq \cdots \geq a_{n n}$,

$$
B=B^{*} \text { with } B \succ O, \operatorname{diag}(B)=I_{n} .
$$

Let

$$
\lambda_{1}=\cdots=\lambda_{s_{1}}>\lambda_{s_{1}+1}=\cdots=\lambda_{s_{2}}>\cdots>\lambda_{s_{p-1}+1}=\cdots=\lambda_{s_{p}}
$$

where $s_{p}=n$. Then

$$
n_{i}=s_{i}-s_{i-1}, \quad 1 \leq i \leq p \quad\left(s_{0}=0\right)
$$

n_{i} is the multiplicity of $\lambda_{s_{i}}$. Again, let $\mu=\max \left\{\left|\lambda_{s_{1}}\right|,\left|\lambda_{s_{p}}\right|\right\}$.

Multiple Eigenvalues

The minimum distance between two distinct eigenvalues plays special role in the analysis. Let δ_{r} be the absolute gap (separation) of $\lambda_{s_{r}}$ from other eigenvalues,

$$
3 \delta_{r}=\min _{\substack{1 \leq t \leq p \\ t \neq r}}\left|\lambda_{s_{r}}-\lambda_{s_{t}}\right|, \quad 1 \leq r \leq p
$$

Multiple Eigenvalues

The minimum distance between two distinct eigenvalues plays special role in the analysis. Let δ_{r} be the absolute gap (separation) of $\lambda_{s_{r}}$ from other eigenvalues,

$$
3 \delta_{r}=\min _{\substack{1 \leq t \leq p \\ t \neq r}}\left|\lambda_{s_{r}}-\lambda_{s_{t}}\right|, \quad 1 \leq r \leq p
$$

Then

$$
\delta=\min _{1 \leq r \leq p} \delta_{r}
$$

is the minimum absolute gap.

Multiple Eigenvalues

Next we consider the following matrix block-partition

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 p} \\
\vdots & \ddots & \vdots \\
A_{p 1} & \cdots & A_{p p}
\end{array}\right], \quad B=\left[\begin{array}{ccc}
B_{11} & \cdots & B_{1 p} \\
\vdots & \ddots & \vdots \\
B_{p 1} & \cdots & B_{p p}
\end{array}\right]
$$

$A_{r t}, B_{r t}$ are $n_{r} \times n_{t}$ blocks, i.e. $A_{11}, \ldots, A_{p p}$ have orders n_{1}, \ldots, n_{p}, resp.. For a square matrix $X=\left(X_{r t}\right)$ partitioned according to n_{1}, \ldots, n_{p}, let

$$
\tau(X)=\left\|X-\operatorname{diag}\left(X_{11}, \ldots, X_{p p}\right)\right\|_{F}
$$

For our positive definite pair (A, B), let

$$
\tau(A, B)=\left[\tau^{2}(A)+\tau^{2}(B)\right]^{1 / 2}
$$

Multiple Eigenvalues

Theorem (Hari 91)

Let $\quad D_{r}+E_{r}=A-\lambda_{s_{r}} B, \operatorname{diag}\left(E_{r}\right)=0,1 \leq r \leq p$. If

$$
\left\|E_{r}\right\|_{2}<\delta_{r}, \quad 1 \leq r \leq p
$$

then

$$
\left\|A_{r r}-\lambda_{s_{r}} B_{r r}\right\|_{F} \leq \frac{1}{\delta_{r}} \sum_{\substack{t=1 \\ t \neq r}}^{p}\left\|A_{r t}-\lambda_{s_{r}} B_{r t}\right\|_{F}^{2}, \quad 1 \leq r \leq p
$$

and

$$
\sum_{s=1}^{n}\left|\frac{a_{s s}}{b_{s s}}-\lambda_{s}\right|^{2} \leq \sum_{r=1}^{p}\left\|A_{r r}-\lambda_{s_{r}} B_{r r}\right\|_{F}^{2} \leq\left[\frac{\left(1+\mu^{2}\right) \tau^{2}(A, B)}{\delta}\right]^{2}
$$

Multiple Eigenvalues

Let us return to the HZ method.

Multiple Eigenvalues

Let us return to the HZ method. Let (A, B) be obtained at step k.

Multiple Eigenvalues

Let us return to the HZ method. Let (A, B) be obtained at step k. Suppose that k is large enough, so that the last theorem holds for (A, B).

Multiple Eigenvalues

Let us return to the HZ method. Let (A, B) be obtained at step k. Suppose that k is large enough, so that the last theorem holds for (A, B). Let $\tau=\tau(A, B), \epsilon=S(A, B)$.

Multiple Eigenvalues

Let us return to the HZ method. Let (A, B) be obtained at step k. Suppose that k is large enough, so that the last theorem holds for (A, B). Let $\tau=\tau(A, B), \epsilon=S(A, B)$. Note that $\tau \leq \epsilon$.

Multiple Eigenvalues

Let us return to the HZ method. Let (A, B) be obtained at step k. Suppose that k is large enough, so that the last theorem holds for (A, B). Let $\tau=\tau(A, B), \epsilon=S(A, B)$. Note that $\tau \leq \epsilon$.
Then the theorem implies

$$
A_{r r}=\lambda_{s r} B_{r r}+F_{r r}, \quad\left\|F_{r}\right\|_{F}=\mathcal{O}\left(\tau^{2}\right), \quad 1 \leq r \leq p
$$

Multiple Eigenvalues

Let us return to the HZ method. Let (A, B) be obtained at step k. Suppose that k is large enough, so that the last theorem holds for (A, B). Let $\tau=\tau(A, B), \epsilon=S(A, B)$. Note that $\tau \leq \epsilon$.
Then the theorem implies

$$
A_{r r}=\lambda_{s r} B_{r r}+F_{r r}, \quad\left\|F_{r}\right\|_{F}=\mathcal{O}\left(\tau^{2}\right), \quad 1 \leq r \leq p
$$

If the pivot element $a_{i j}\left(b_{i j}\right)$ lies within the diagonal block $A_{r r}\left(B_{r r}\right)$, then we shall have:

Multiple Eigenvalues

Let us return to the HZ method. Let (A, B) be obtained at step k. Suppose that k is large enough, so that the last theorem holds for (A, B). Let $\tau=\tau(A, B), \epsilon=S(A, B)$. Note that $\tau \leq \epsilon$.
Then the theorem implies

$$
A_{r r}=\lambda_{s_{r}} B_{r r}+F_{r r}, \quad\left\|F_{r}\right\|_{F}=\mathcal{O}\left(\tau^{2}\right), \quad 1 \leq r \leq p .
$$

If the pivot element $a_{i j}\left(b_{i j}\right)$ lies within the diagonal block $A_{r r}\left(B_{r r}\right)$, then we shall have:

- Huge cancelations in the numerator and denominator when computing

$$
\tan (2 \theta)=\frac{2 a_{i j}-\left(a_{i i}+a_{j j}\right) b_{i j}}{\sqrt{1-\left(b_{i j}\right)^{2}}\left(a_{i i}-a_{j j}\right)}=\frac{\mathcal{O}\left(\tau^{2}\right)}{\mathcal{O}\left(\tau^{2}\right)}
$$

Multiple Eigenvalues

Let us return to the HZ method. Let (A, B) be obtained at step k. Suppose that k is large enough, so that the last theorem holds for (A, B). Let $\tau=\tau(A, B), \epsilon=S(A, B)$. Note that $\tau \leq \epsilon$.
Then the theorem implies

$$
A_{r r}=\lambda_{s_{r}} B_{r r}+F_{r r}, \quad\left\|F_{r}\right\|_{F}=\mathcal{O}\left(\tau^{2}\right), \quad 1 \leq r \leq p .
$$

If the pivot element $a_{i j}\left(b_{i j}\right)$ lies within the diagonal block $A_{r r}\left(B_{r r}\right)$, then we shall have:

- Huge cancelations in the numerator and denominator when computing

$$
\tan (2 \theta)=\frac{2 a_{i j}-\left(a_{i i}+a_{j j}\right) b_{i j}}{\sqrt{1-\left(b_{i j}\right)^{2}}\left(a_{i i}-a_{j j}\right)}=\frac{\mathcal{O}\left(\tau^{2}\right)}{\mathcal{O}\left(\tau^{2}\right)}
$$

- Possibly large θ when ϵ and τ are tiny.

Multiple Eigenvalues

Let us return to the HZ method. Let (A, B) be obtained at step k. Suppose that k is large enough, so that the last theorem holds for (A, B). Let $\tau=\tau(A, B), \epsilon=S(A, B)$. Note that $\tau \leq \epsilon$.
Then the theorem implies

$$
A_{r r}=\lambda_{s_{r}} B_{r r}+F_{r r}, \quad\left\|F_{r}\right\|_{F}=\mathcal{O}\left(\tau^{2}\right), \quad 1 \leq r \leq p
$$

If the pivot element $a_{i j}\left(b_{i j}\right)$ lies within the diagonal block $A_{r r}\left(B_{r r}\right)$, then we shall have:

- Huge cancelations in the numerator and denominator when computing

$$
\tan (2 \theta)=\frac{2 a_{i j}-\left(a_{i i}+a_{j j}\right) b_{i j}}{\sqrt{1-\left(b_{i j}\right)^{2}}\left(a_{i i}-a_{j j}\right)}=\frac{\mathcal{O}\left(\tau^{2}\right)}{\mathcal{O}\left(\tau^{2}\right)}
$$

- Possibly large θ when ϵ and τ are tiny.

This impacts asymptotic convergence and accuracy of the algorithm.

Multiple Eigenvalues

$$
N=\frac{n(n-1)}{2}, \quad M=N-\sum_{r=1}^{p} \frac{n_{r}\left(n_{r}-1\right)}{2}, \quad n_{\max }=\max _{1 \leq r \leq p} n_{r}
$$

Let ϵ_{N} and τ_{N} denote ϵ and τ for the pair obtained after applying one sweep of the column-cyclic HZ method. If (A, B) satisfies $n \geq 3, p \geq 2$,

$$
S(B)<\frac{1}{n(n-1)}, \quad \sqrt{1+\mu^{2}} \epsilon<\min \left\{\frac{1}{2}, \sqrt{\frac{\delta}{\mu+1}}\right\} \delta
$$

then

- $\quad \tau_{N} \leq \frac{3}{2} \sqrt{2.31^{M} \cdot n_{\max }\left(1+\mu^{2}\right)} \frac{\epsilon}{\delta} \tau$
- $\tau_{N} \leq \frac{3}{2} \sqrt{n_{\max }\left(1+\mu^{2}\right)} \frac{\epsilon^{2}}{\delta}$
- if $n_{\max }=2$ then $\epsilon_{N} \leq \frac{18}{17} \sqrt{1+\mu^{2}} \frac{\epsilon^{2}}{\delta}$.

Stability and High Relative Accuracy

- We are interested in how accurate are the methods: $\mathrm{HZ}, L L^{\top} J$ and $R R^{T} J$.

Stability and High Relative Accuracy

- We are interested in how accurate are the methods: $\mathrm{HZ}, L L^{T} J$ and $R R^{T} J$.
- For that we need a detailed error analysis. J. Matejaš and V. Hari have made one although the paper is not yet completed.

Stability and High Relative Accuracy

- We are interested in how accurate are the methods: $\mathrm{HZ}, L L^{T} J$ and $R R^{T} J$.
- For that we need a detailed error analysis. J. Matejaš and V. Hari have made one although the paper is not yet completed.
- For such an analysis we would need another seminar like this one, so here we shall present just the results of numerical tests on the accuracy of those methods.

Stability and High Relative Accuracy

- We are interested in how accurate are the methods: $\mathrm{HZ}, L L^{T} J$ and $R R^{T} J$.
- For that we need a detailed error analysis. J. Matejaš and V. Hari have made one although the paper is not yet completed.
- For such an analysis we would need another seminar like this one, so here we shall present just the results of numerical tests on the accuracy of those methods.
- Hence we first present the algorithms, then theoretical background for the tests and then the results.

Stability and High Relative Accuracy

- We are interested in how accurate are the methods: $\mathrm{HZ}, L L^{T} J$ and $R R^{T} J$.
- For that we need a detailed error analysis. J. Matejaš and V. Hari have made one although the paper is not yet completed.
- For such an analysis we would need another seminar like this one, so here we shall present just the results of numerical tests on the accuracy of those methods.
- Hence we first present the algorithms, then theoretical background for the tests and then the results.
- One can hope for high relative accuracy of the methods only for well-behaved initial pairs (A, B).

Stability and High Relative Accuracy

- We are interested in how accurate are the methods: $\mathrm{HZ}, L L^{T} J$ and $R R^{T} J$.
- For that we need a detailed error analysis. J. Matejaš and V. Hari have made one although the paper is not yet completed.
- For such an analysis we would need another seminar like this one, so here we shall present just the results of numerical tests on the accuracy of those methods.
- Hence we first present the algorithms, then theoretical background for the tests and then the results.
- One can hope for high relative accuracy of the methods only for well-behaved initial pairs (A, B).
- An example of such pairs are the pairs of positive definite symmetric matrices which can be well symmetrically scaled. These are the pairs for which the conditions $\kappa_{2}\left(\Delta_{A} A \Delta_{A}\right)$ and $\kappa_{2}\left(\Delta_{B} B \Delta_{B}\right)$ are small for some diagonal matrices Δ_{A} and Δ_{B}.

Algorithm HZ

select the pivot pair (i, j)
if $a_{i j} \neq 0$ or $b_{i j} \neq 0$ then

$$
\begin{aligned}
& \rho=0.5\left(\sqrt{1+b_{i j}}+\sqrt{1-b_{i j}}\right) ; \quad \xi=b_{i j} /(2 \rho) ; \\
& \tau=\sqrt{\left(1+b_{i j}\right)\left(1-b_{i j}\right) ; \quad t 2=2 a_{i j}-\left(a_{i i}+a_{i j}\right) b_{i j} ;} \\
& \text { if } t 2=0 \text { then } \quad t=0 ; \\
& \text { else } \\
& \quad c t 2=\tau\left(a_{i j}-a_{j j}\right) / t 2 ; \\
& \quad t=\operatorname{sign}(c t 2) /\left(\operatorname{abs}(c t 2)+\left(1+\sqrt{1+c t 2^{2}}\right) ;\right. \\
& \text { end } \\
& c s=1 / \sqrt{1+t^{2}} ; \quad s n=t / \sqrt{1+t^{2}} ; \\
& c 1=(\rho \cdot c s-\xi \cdot s n) / \tau ; \quad s 1=(\rho \cdot s n+\xi \cdot c s) / \tau ; \\
& c 2=(\rho \cdot c s+\xi \cdot s n) / \tau ; \quad s 2=(\rho \cdot s n-\xi \cdot c s) / \tau ; \\
& \delta_{i}=\left(b_{i j} / \tau-s 1\right)\left(b_{i j} / \tau+s 1\right) a_{i i}+\left(2 c 1 a_{i j}+s 2 a_{j j}\right) s 2 ; \\
& \delta_{j}=\left(s 2-b_{i j} / \tau\right)\left(s 2+b_{i j} / \tau\right) a_{j j}+\left(2 c 2 a_{i j}-s 1 a_{i i}\right) s 1 ; \\
& a_{i j}^{\prime}=(c 1 c 2-s 1 s 2) a_{i j}+\left(c 2 s 2 a_{j j}-c 1 s 1 a_{i i}\right) ; \quad a_{j i}^{\prime}=a_{i j}^{\prime} ; \\
& b_{i j}^{\prime}=0 ; \quad b_{j i}^{\prime}=b_{i j}^{\prime} ; \quad a_{i i j}^{\prime}=a_{i i}+\delta_{i} ; \quad a_{i j}^{\prime}=a_{j j}-\delta_{j} ; \\
& \text { for } k=1, \ldots, n, k \neq i, j \quad \text { do } \\
& \quad a_{k i}^{\prime}=c 1 \cdot a_{k i}+s 2 \cdot a_{k j} ; \quad b_{k i}^{\prime}=c 1 \cdot b_{k i}+s 2 \cdot b_{k j} ; \quad a_{i k}^{\prime}=a_{k i}^{\prime} ; \quad b_{i k}^{\prime}=b_{k j}^{\prime} ; \\
& a_{k j}^{\prime}=c 2 \cdot a_{k j}-s 1 \cdot a_{k i} ; \quad b_{k j}^{\prime}=c 2 \cdot b_{k j}-s 1 \cdot b_{k i} ; \quad a_{j k}^{\prime}=a_{k j}^{\prime} ; \quad b_{j k}^{\prime}=b_{k j}^{\prime} ; \\
& \text { endfor }
\end{aligned}
$$

endif

Algorithm $L L^{T} J$

```
select the pivot pair \((i, j)\)
if \(a_{i j} \neq 0\) or \(b_{i j} \neq 0\) then
    \(\beta=b_{i j}, \quad \tau=\operatorname{sqrt}((1+\beta)(1-\beta)) ; \quad \alpha=a_{i j}-\beta a_{i i} ;\)
    if \(\alpha=0 \quad\) then \(t=0\);
    else \(c t 2=\left(0.5\left(a_{i i}-a_{j j}\right)+\alpha \beta\right) /(\alpha \tau)\);
        \(t=\operatorname{sign}(c t 2) /\left(\operatorname{abs}(c t 2)+\operatorname{sqrt}\left(1+c t 2^{2}\right)\right) ;\)
    endif
    \(c s=1 / \operatorname{sqrt}\left(1+t^{2}\right) ; \quad s n=t / \operatorname{sqrt}\left(1+t^{2}\right) ;\)
    \(c 1=c s-s n \beta / \tau ; \quad s 1=s n+c s \beta / \tau ; \quad c 2=c s / \tau ; \quad s 2=s n / \tau ;\)
    \(\delta_{i}=t \alpha / \tau ; \quad \delta_{j}=\left(t \alpha+(\beta / \tau) \cdot\left(2 a_{i j}-\left(a_{i i}+a_{j j}\right) \beta\right)\right) / \tau ;\)
    \(a_{i j}^{\prime}=(c 1 c 2-s 1 s 2) a_{i j}+\left(c 2 s 2 a_{j j}-c 1 s 1 a_{i i}\right) ; \quad a_{j i}^{\prime}=a_{i j}^{\prime}\);
    \(b_{i j}^{\prime}=(c 1 c 2-s 1 s 2) \beta+(c 2 s 2-c 1 s 1) ; \quad b_{j i}^{\prime}=b_{i j}^{\prime} ;\)
    \(a_{i i}^{\prime}=a_{i i}+\delta_{i} ; \quad a_{j}^{\prime}=a_{j j}-\delta_{j}\);
    for \(k=1, \ldots, n, k \neq i, j\) do
        \(a_{k i}^{\prime}=c 1 \cdot a_{k i}+s 2 \cdot a_{k j} ; \quad b_{k i}^{\prime}=c 1 \cdot b_{k i}+s 2 \cdot b_{k j} ; \quad a_{i k}^{\prime}=a_{k i}^{\prime} ; \quad b_{i k}^{\prime}=b_{k i}^{\prime}\)
        \(a_{k j}^{\prime}=c 2 \cdot a_{k j}-s 1 \cdot a_{k i} ; \quad b_{k j}^{\prime}=c 2 \cdot b_{k j}-s 1 \cdot b_{k i} ; \quad a_{j k}^{\prime}=a_{k j}^{\prime} ; \quad b_{j k}^{\prime}=b_{k j}^{\prime} ;\)
    endfor
endif
```


Algorithm $R R^{T} J$

select the pivot pair (i, j)
if $a_{i j} \neq 0$ or $b_{i j} \neq 0$ then

$$
\begin{aligned}
& \beta=b_{i j}, \tau=\operatorname{sqrt}((1+\beta)(1-\beta)) ; \quad \alpha=a_{i j}-\beta a_{i j} ; \\
& \text { if } \alpha=0 \quad \text { then } \quad t=0 ; \\
& \text { else } \quad c t 2=\left(0.5\left(a_{i i}-a_{j j}\right)-\alpha \beta\right) /(\alpha \tau) ; \\
& \quad t=\operatorname{sign}(c t 2) /\left(\operatorname{abs}(c t 2)+\operatorname{sqrt}\left(1+c t 2^{2}\right)\right) ;
\end{aligned}
$$

endif

$$
\begin{aligned}
& c s=1 / \text { sqrt }\left(1+t^{2}\right) ; \quad \text { sn }=t / \text { sqrt }\left(1+t^{2}\right) ; \\
& c 1=c s / \tau ; \quad s 1=s n / \tau ; \quad c 2=c s+s n \beta / \tau ; \quad s 2=s n-c s \beta / \tau ; \\
& \delta_{j}=t \alpha / \tau ; \quad \delta_{i}=\left(t \alpha-(\beta / \tau) \cdot\left(2 a_{i j}-\left(a_{i i}+a_{j j}\right) \beta\right)\right) / \tau ; \\
& a_{i j}^{\prime}=(c 1 c 2-s 1 s 2) a_{i j}+\left(c 2 s 2 a_{j j}-c 1 s 1 a_{i j}\right) ; a_{j i}^{\prime}=a_{i j}^{\prime} ; \\
& b_{i j}^{\prime}=(c 1 c 2-s 1 s 2) \beta+(c 2 s 2-c 1 s 1) ; \quad b_{j i}^{\prime}=b_{i j}^{\prime} ; \\
& a_{i i j}^{\prime}=a_{i i}+\delta_{i j} ; \quad a_{j}^{\prime}=a_{j j}-\delta_{j} ; \\
& \text { for } k=1, \ldots, n, k \neq i, j \quad \text { do } \\
& \quad a_{k i}^{\prime}=c 1 \cdot a_{k i}+s 2 \cdot a_{k j} ; \quad b_{k i}^{\prime}=c 1 \cdot b_{k i}+s 2 \cdot b_{k j} ; \quad a_{i k}^{\prime}=a_{k k}^{\prime} ; \quad b_{i k}^{\prime}=b_{k i}^{\prime} \\
& a_{k j}^{\prime}=c 2 \cdot a_{k j}-s 1 \cdot a_{k i} ; \quad b_{k j}^{\prime}=c 2 \cdot b_{k j}-s 1 \cdot b_{k i} ; \quad a_{j k}^{\prime}=a_{k j}^{\prime} ; \quad b_{j k}^{\prime}=b_{k j}^{\prime} ;
\end{aligned}
$$

endfor
endif

Theorem (Theorem 3.2, Drmač 1998)

Let $A=A^{T} \succ O, B=B^{T} \succ O$ and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of the pair (A, B).
Let $A_{S}=D_{A}^{-1 / 2} A D_{A}^{-1 / 2}, B_{S}=D_{B}^{-1 / 2} B D_{B}^{-1 / 2}, D_{A}=\operatorname{diag}(A), D_{B}=\operatorname{diag}(B)$.
Let δA and δB be symmetric perturbations such that

$$
\left\|(\delta A)_{S}\right\|_{2}\left\|A_{S}^{-1}\right\|_{2}<1 \quad \text { and } \quad\left\|(\delta B)_{S}\right\|_{2}\left\|B_{S}^{-1}\right\|_{2}<1
$$

where $(\underset{\sim}{\tilde{\sim}} A)_{S}=D_{A}^{-1 / 2} \delta A D_{A}^{-1 / 2},(\delta B)_{S}=D_{B}^{-1 / 2} \delta B D_{B}^{-1 / 2}$. If $\tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \cdots \geq \tilde{\lambda}_{n}$ are th eigenvalues of $(A+\delta A, B+\delta B)$, then
$\max _{1 \leq i \leq n} \frac{\left|\tilde{\lambda}_{i}-\lambda_{i}\right|}{\lambda_{i}} \leq \frac{\left\|(\delta A)_{S}\right\|_{2}\left\|A_{S}^{-1}\right\|_{2}+\left\|(\delta B)_{S}\right\|_{2}\left\|B_{S}^{-1}\right\|_{2}}{1-\left\|(\delta B)_{S}\right\|_{2}\left\|B_{S}^{-1}\right\|_{2}}=\frac{\varepsilon_{A_{S}} \kappa_{2}\left(A_{S}\right)+\varepsilon_{B_{S}} \kappa_{2}\left(B_{S}\right)}{1-\varepsilon_{B_{S}} \kappa_{2}\left(B_{S}\right)}$,
where $\varepsilon_{A_{S}}=\left\|(\delta A)_{S}\right\|_{2} /\left\|A_{S}\right\|_{2}, \varepsilon_{B_{S}}=\left\|(\delta B)_{S}\right\|_{2} /\left\|B_{S}\right\|_{2}$, and $\kappa_{2}(X)$ is the spectral condition number of X.

Theoretical Background

- For all considered methods the starting matrix $B^{(0)}$ is just B_{S}. Therefore

$$
\max _{1 \leq i \leq n} \frac{\left|\tilde{\lambda}_{i}-\lambda_{i}\right|}{\lambda_{i}} \leq \frac{\varepsilon_{A_{S}} \kappa_{2}\left(A_{S}\right)+\varepsilon_{B^{(0)}} \kappa_{2}\left(B_{S}\right)}{1-\varepsilon_{B_{S}} \kappa_{2}\left(B^{(0)}\right)}
$$

Theoretical Background

- For all considered methods the starting matrix $B^{(0)}$ is just B_{S}. Therefore

$$
\max _{1 \leq i \leq n} \frac{\left|\tilde{\lambda}_{i}-\lambda_{i}\right|}{\lambda_{i}} \leq \frac{\varepsilon_{A_{S}} \kappa_{2}\left(A_{S}\right)+\varepsilon_{B^{(0)}} \kappa_{2}\left(B_{S}\right)}{1-\varepsilon_{B_{S}} \kappa_{2}\left(B^{(0)}\right)}
$$

- The initial normalization $B \mapsto B_{S}=B^{(0)}$, simplifies the algorithm. Moreover, it has a stabilizing effect on the iterative process, because it almost optimally reduces the condition of B and all $B^{(k)}, k \geq 1$ will have almost best possible conditions. Van der Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math. 14 (1), 14-23 (1969)

Theoretical Background

- For all considered methods the starting matrix $B^{(0)}$ is just B_{S}. Therefore

$$
\max _{1 \leq i \leq n} \frac{\left|\tilde{\lambda}_{i}-\lambda_{i}\right|}{\lambda_{i}} \leq \frac{\varepsilon_{A_{S}} \kappa_{2}\left(A_{S}\right)+\varepsilon_{B^{(0)}} \kappa_{2}\left(B_{S}\right)}{1-\varepsilon_{B_{S}} \kappa_{2}\left(B^{(0)}\right)}
$$

- The initial normalization $B \mapsto B_{S}=B^{(0)}$, simplifies the algorithm. Moreover, it has a stabilizing effect on the iterative process, because it almost optimally reduces the condition of B and all $B^{(k)}, k \geq 1$ will have almost best possible conditions. Van der Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math. 14 (1), 14-23 (1969)
- For these well-behaved pairs we have to find out the methods which generate at every step only tiny relative errors $\varepsilon_{A_{s}^{(k)}}, \varepsilon_{B_{S}^{(k)}}$ and in the same time matrices with small or modest condition numbers $\kappa_{2}\left(A_{S}^{(k)}\right)$ and $\kappa_{2}\left(B^{(k)}\right)$.

Theoretical Background

- For all considered methods the starting matrix $B^{(0)}$ is just B_{S}. Therefore

$$
\max _{1 \leq i \leq n} \frac{\left|\tilde{\lambda}_{i}-\lambda_{i}\right|}{\lambda_{i}} \leq \frac{\varepsilon_{A_{S}} \kappa_{2}\left(A_{S}\right)+\varepsilon_{B^{(0)}} \kappa_{2}\left(B_{S}\right)}{1-\varepsilon_{B_{S}} \kappa_{2}\left(B^{(0)}\right)}
$$

- The initial normalization $B \mapsto B_{S}=B^{(0)}$, simplifies the algorithm. Moreover, it has a stabilizing effect on the iterative process, because it almost optimally reduces the condition of B and all $B^{(k)}, k \geq 1$ will have almost best possible conditions. Van der Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math. 14 (1), 14-23 (1969)
- For these well-behaved pairs we have to find out the methods which generate at every step only tiny relative errors $\varepsilon_{A_{s}^{(k)}}, \varepsilon_{B_{S}^{(k)}}$ and in the same time matrices with small or modest condition numbers $\kappa_{2}\left(A_{S}^{(k)}\right)$ and $\kappa_{2}\left(B^{(k)}\right)$.

Nonetheless, this is a demanding task, so we shall go for a shortcut.

How to detect the high relative accuracy of a method?

How to detect the high relative accuracy of a method?

We can check numerically whether the inequality

$$
\begin{equation*}
\varrho_{(A, B)}=\max _{1 \leq i \leq n} \frac{\left|\tilde{\lambda}_{i}-\lambda_{i}\right|}{\lambda_{i}} / \sqrt{\kappa_{2}^{2}\left(A_{S}^{(0)}\right)+\kappa_{2}^{2}\left(B^{(0)}\right)} \leq f(n) \mathbf{u} \tag{5}
\end{equation*}
$$

holds for a larger sample Υ of the initial well-behaved pairs (A, B) !

How to detect the high relative accuracy of a method?

We can check numerically whether the inequality

$$
\begin{equation*}
\varrho_{(A, B)}=\max _{1 \leq i \leq n} \frac{\left|\tilde{\lambda}_{i}-\lambda_{i}\right|}{\lambda_{i}} / \sqrt{\kappa_{2}^{2}\left(A_{S}^{(0)}\right)+\kappa_{2}^{2}\left(B^{(0)}\right)} \leq f(n) \mathbf{u} \tag{5}
\end{equation*}
$$

holds for a larger sample Υ of the initial well-behaved pairs (A, B) ! Here

- $\tilde{\lambda}_{i}, 1 \leq i \leq n$ are the eigenvalues of the starting pair $\left(A^{(0)}, B^{(0)}\right)$

How to detect the high relative accuracy of a method?

We can check numerically whether the inequality

$$
\begin{equation*}
\varrho_{(A, B)}=\max _{1 \leq i \leq n} \frac{\left|\tilde{\lambda}_{i}-\lambda_{i}\right|}{\lambda_{i}} / \sqrt{\kappa_{2}^{2}\left(A_{S}^{(0)}\right)+\kappa_{2}^{2}\left(B^{(0)}\right)} \leq f(n) \mathbf{u} \tag{5}
\end{equation*}
$$

holds for a larger sample Υ of the initial well-behaved pairs (A, B) ! Here

- $\tilde{\lambda}_{i}, 1 \leq i \leq n$ are the eigenvalues of the starting pair $\left(A^{(0)}, B^{(0)}\right)$
- $f(n)$ is a slowly growing function of n

How to detect the high relative accuracy of a method?

We can check numerically whether the inequality

$$
\begin{equation*}
\varrho_{(A, B)}=\max _{1 \leq i \leq n} \frac{\left|\tilde{\lambda}_{i}-\lambda_{i}\right|}{\lambda_{i}} / \sqrt{\kappa_{2}^{2}\left(A_{S}^{(0)}\right)+\kappa_{2}^{2}\left(B^{(0)}\right)} \leq f(n) \mathbf{u} \tag{5}
\end{equation*}
$$

holds for a larger sample Υ of the initial well-behaved pairs (A, B) ! Here

- $\tilde{\lambda}_{i}, 1 \leq i \leq n$ are the eigenvalues of the starting pair $\left(A^{(0)}, B^{(0)}\right)$
- $f(n)$ is a slowly growing function of n
- \mathbf{u} is the round off unit

How to detect the high relative accuracy of a method?

We can check numerically whether the inequality

$$
\begin{equation*}
\varrho_{(A, B)}=\max _{1 \leq i \leq n} \frac{\left|\tilde{\lambda}_{i}-\lambda_{i}\right|}{\lambda_{i}} / \sqrt{\kappa_{2}^{2}\left(A_{S}^{(0)}\right)+\kappa_{2}^{2}\left(B^{(0)}\right)} \leq f(n) \mathbf{u} \tag{5}
\end{equation*}
$$

holds for a larger sample Υ of the initial well-behaved pairs (A, B) ! Here

- $\tilde{\lambda}_{i}, 1 \leq i \leq n$ are the eigenvalues of the starting pair $\left(A^{(0)}, B^{(0)}\right)$
- $f(n)$ is a slowly growing function of n
- \mathbf{u} is the round off unit
- The relation (5) should hold irrespectively of how large is the condition $\kappa_{2}\left(A^{(0)}\right)$. Therefore, we are interested in how $\varrho_{(A, B)}$ behaves with respect to $\chi_{(A, B)}$,

$$
\chi_{(A, B)}:=\kappa_{2}\left(A^{(0)}, B^{(0)}\right)=\sqrt{\kappa_{2}^{2}\left(A^{(0)}\right)+\kappa_{2}^{2}\left(B^{(0)}\right)}
$$

- For the given sample of well behaved pairs Υ, and for each method, we shall make its graph of relative errors: \mathcal{E},

$$
\mathcal{E}=\left\{\left(\chi_{(A, B)}, \varrho_{(A, B)}\right):(A, B) \in \Upsilon\right\}
$$

- For the given sample of well behaved pairs Υ, and for each method, we shall make its graph of relative errors: \mathcal{E},

$$
\mathcal{E}=\left\{\left(\chi_{(A, B)}, \varrho_{(A, B)}\right):(A, B) \in \Upsilon\right\}
$$

- Then we shall depict that graph \mathcal{E} by the M-function scatter ($\mathrm{x}, \mathrm{y}, 3$).

How to detect whether a method has high relative accuracy?

- For the given sample of well behaved pairs Υ, and for each method, we shall make its graph of relative errors: \mathcal{E},

$$
\mathcal{E}=\left\{\left(\chi_{(A, B)}, \varrho_{(A, B)}\right):(A, B) \in \Upsilon\right\} .
$$

- Then we shall depict that graph \mathcal{E} by the M-function scatter ($\mathrm{x}, \mathrm{y}, 3$).
- The method will be considered to be high relative accurate if the ordinates of the points on the graph are of order $\mathcal{O}(\mathbf{u})$ where $\mathbf{u} \approx 2.2 \cdot 10^{-16}$.

How to generate matrix pairs?

The starting pair $\left(A^{(0)}, B^{(0)}\right)$ is generated by

- 4 the diagonal matrices: $\Delta_{A}, \Delta_{B}, \Sigma, \Delta$ and

How to generate matrix pairs?

The starting pair $\left(A^{(0)}, B^{(0)}\right)$ is generated by

- 4 the diagonal matrices: $\Delta_{A}, \Delta_{B}, \Sigma, \Delta$ and
- 2 orthogonal matrices U, V of order n.

How to generate matrix pairs?

The starting pair $\left(A^{(0)}, B^{(0)}\right)$ is generated by

- 4 the diagonal matrices : $\Delta_{A}, \Delta_{B}, \Sigma, \Delta$ and
- 2 orthogonal matrices U, V of order n.

It is done in two steps:

$$
\text { 1: } \quad F=U \Sigma V^{T}, \quad A=F^{T} \Delta_{A} F, \quad B=F^{T} \Delta_{B} F
$$

How to generate matrix pairs?

The starting pair $\left(A^{(0)}, B^{(0)}\right)$ is generated by

- 4 the diagonal matrices: $\Delta_{A}, \Delta_{B}, \Sigma, \Delta$ and
- 2 orthogonal matrices U, V of order n.

It is done in two steps:

$$
\begin{array}{ll}
1: & F=U \Sigma V^{T}, \quad A=F^{T} \Delta_{A} F, \quad B=F^{T} \Delta_{B} F \\
2: & B^{(0)}=B_{S}=D_{B}^{-1 / 2} B D_{B}^{-1 / 2}, \quad A^{(0)}=\Delta A_{S} \Delta, A_{S}=D_{A}^{-1 / 2} A D_{A}^{-1 / 2}
\end{array}
$$

How to generate matrix pairs?

The starting pair $\left(A^{(0)}, B^{(0)}\right)$ is generated by

- 4 the diagonal matrices: $\Delta_{A}, \Delta_{B}, \Sigma, \Delta$ and
- 2 orthogonal matrices U, V of order n.

It is done in two steps:

$$
\begin{array}{ll}
\text { 1: } & F=U \Sigma V^{T}, \quad A=F^{T} \Delta_{A} F, \quad B=F^{T} \Delta_{B} F \\
2: & B^{(0)}=B_{S}=D_{B}^{-1 / 2} B D_{B}^{-1 / 2}, \quad A^{(0)}=\Delta A_{S} \Delta, A_{S}=D_{A}^{-1 / 2} A D_{A}^{-1 / 2}
\end{array}
$$

where D_{A} and D_{B} are the diagonal parts of A and B.

How to generate matrix pairs?

The starting pair $\left(A^{(0)}, B^{(0)}\right)$ is generated by

- 4 the diagonal matrices : $\Delta_{A}, \Delta_{B}, \Sigma, \Delta$ and
- 2 orthogonal matrices U, V of order n.

It is done in two steps:

$$
\begin{array}{ll}
1: & F=U \Sigma V^{T}, \quad A=F^{T} \Delta_{A} F, \quad B=F^{T} \Delta_{B} F \\
2: & B^{(0)}=B_{S}=D_{B}^{-1 / 2} B D_{B}^{-1 / 2}, \quad A^{(0)}=\Delta A_{S} \Delta, A_{S}=D_{A}^{-1 / 2} A D_{A}^{-1 / 2}
\end{array}
$$

where D_{A} and D_{B} are the diagonal parts of A and B. Then $\kappa_{2}\left(A_{S}^{(0)}\right)$ and $\kappa_{2}\left(B^{(0)}\right)$ can be controlled by the diagonal elements of $\Delta_{A}, \Delta_{B}, \Sigma$,

How to generate matrix pairs?

The starting pair $\left(A^{(0)}, B^{(0)}\right)$ is generated by

- 4 the diagonal matrices : $\Delta_{A}, \Delta_{B}, \Sigma, \Delta$ and
- 2 orthogonal matrices U, V of order n.

It is done in two steps:

$$
\begin{array}{ll}
\text { 1: } & F=U \Sigma V^{T}, \quad A=F^{T} \Delta_{A} F, \quad B=F^{T} \Delta_{B} F \\
\text { 2: } & B^{(0)}=B_{S}=D_{B}^{-1 / 2} B D_{B}^{-1 / 2}, \quad A^{(0)}=\Delta A_{S} \Delta, A_{S}=D_{A}^{-1 / 2} A D_{A}^{-1 / 2}
\end{array}
$$

where D_{A} and D_{B} are the diagonal parts of A and B. Then $\kappa_{2}\left(A_{S}^{(0)}\right)$ and $\kappa_{2}\left(B^{(0)}\right)$ can be controlled by the diagonal elements of $\Delta_{A}, \Delta_{B}, \Sigma$, since

$$
\kappa_{2}\left(A_{S}^{(0)}\right) \leq n \kappa_{2}^{2}(\Sigma) \kappa_{2}\left(\Delta_{A}\right) \quad \text { and } \quad \kappa_{2}\left(B^{(0)}\right) \leq n \kappa_{2}^{2}(\Sigma) \kappa_{2}\left(\Delta_{B}\right)
$$

although most often $\kappa_{2}\left(A_{S}^{(0)}\right)$ and $\kappa_{2}\left(B^{(0)}\right)$ are much smaller than these bounds.

How to generate matrix pairs?

To simplify the construction we set $\Delta_{B}=I_{n}$.
If the method is high relative accurate, then $\varrho_{(A, B)}$ from the relation (5) should not depend on $\kappa_{2}(\Delta)$.

How to generate matrix pairs?

To simplify the construction we set $\Delta_{B}=I_{n}$.
If the method is high relative accurate, then $\varrho_{(A, B)}$ from the relation (5) should not depend on $\kappa_{2}(\Delta)$.

Note that

$$
\kappa_{2}\left(A^{(0)}\right) \leq \kappa_{2}\left(A_{S}^{(0)}\right) \kappa_{2}^{2}(\Delta)
$$

How to generate matrix pairs?

To simplify the construction we set $\Delta_{B}=I_{n}$.
If the method is high relative accurate, then $\varrho_{(A, B)}$ from the relation (5) should not depend on $\kappa_{2}(\Delta)$.

Note that

$$
\kappa_{2}\left(A^{(0)}\right) \leq \kappa_{2}\left(A_{S}^{(0)}\right) \kappa_{2}^{2}(\Delta)
$$

If we set $\Delta=I_{n} \mathrm{i}\left(A^{(0)}, B^{(0)}\right)=\left(D_{B}^{-1 / 2} A D_{B}^{-1 / 2}, B_{S}\right)$, then we know in advance the eigenvalues of $\left(A^{(0)}, B^{(0)}\right)$ These are the quotients

$$
\left(\Delta_{A}\right)_{j j} /\left(\Delta_{B}\right)_{j j}, \quad 1 \leq j \leq n .
$$

This way can be used when considering behavior of the methods on pairs with multiple eigenvalues.

More Details

- Diagonal matrices are constructed by help of the M-function diag(d)

More Details

- Diagonal matrices are constructed by help of the M-function diag(d)
- d is a vector, and vectors are constructed by the M-function logspace ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{n}$). We use it for the diagonal matrices Σ and Δ_{A}.

More Details

- Diagonal matrices are constructed by help of the M-function diag(d)
- d is a vector, and vectors are constructed by the M-function logspace ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{n}$). We use it for the diagonal matrices Σ and Δ_{A}.
- For the construction of Δ we use our m-function
scalvec (k1,k2,k3,n,k)

More Details

- Diagonal matrices are constructed by help of the M-function diag(d)
- d is a vector, and vectors are constructed by the M-function logspace ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{n}$). We use it for the diagonal matrices Σ and Δ_{A}.
- For the construction of Δ we use our m-function
scalvec (k1,k2, k3,n,k)
which generates vector of length $n, d=\left[10^{\mathrm{k} 1}, \ldots, 10^{\mathrm{k} 2}, \ldots, 10^{\mathrm{k} 3}\right]$ where k determines the position of $10^{\mathrm{k} 2}$ within the components of d.

More Details

- Diagonal matrices are constructed by help of the M-function diag(d)
- d is a vector, and vectors are constructed by the M-function logspace ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{n}$). We use it for the diagonal matrices Σ and Δ_{A}.
- For the construction of Δ we use our m-function
scalvec (k1,k2, k3,n,k)
which generates vector of length $n, d=\left[10^{\mathrm{k} 1}, \ldots, 10^{\mathrm{k} 2}, \ldots, 10^{\mathrm{k} 3}\right]$ where k determines the position of $10^{\mathrm{k} 2}$ within the components of d.
- To compute Δ, the function scalvec is used within triple loop controlled by the indices $\mathrm{k} 1, \mathrm{k} 2$ and k 3

More Details

- Diagonal matrices are constructed by help of the M-function diag(d)
- d is a vector, and vectors are constructed by the M-function logspace ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{n}$). We use it for the diagonal matrices Σ and Δ_{A}.
- For the construction of Δ we use our m-function
scalvec (k1,k2, k3,n,k)
which generates vector of length $n, d=\left[10^{\mathrm{k} 1}, \ldots, 10^{\mathrm{k} 2}, \ldots, 10^{\mathrm{k} 3}\right]$ where k determines the position of $10^{\mathrm{k} 2}$ within the components of d.
- To compute Δ, the function scalvec is used within triple loop controlled by the indices $\mathrm{k} 1, \mathrm{k} 2$ and k 3
- Orthogonal matrices U and V are computed by the command

$$
[\mathrm{Q}, \sim]=\operatorname{qr}(\operatorname{rand}(\mathrm{n}))
$$

More Details

- Diagonal matrices are constructed by help of the M-function diag (d)
- d is a vector, and vectors are constructed by the M-function logspace ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{n}$). We use it for the diagonal matrices Σ and Δ_{A}.
- For the construction of Δ we use our m-function
scalvec (k1,k2, k3,n,k)
which generates vector of length $n, d=\left[10^{\mathrm{k} 1}, \ldots, 10^{\mathrm{k} 2}, \ldots, 10^{\mathrm{k} 3}\right]$ where k determines the position of $10^{\mathrm{k} 2}$ within the components of d.
- To compute Δ, the function scalvec is used within triple loop controlled by the indices $\mathrm{k} 1, \mathrm{k} 2$ and k 3
- Orthogonal matrices U and V are computed by the command

$$
[Q, \sim]=\operatorname{qr}(\operatorname{rand}(n))
$$

- We have generated the sample Υ of 18900 pairs of matrices of order 10 . As "exact eigenvalues" we have used the eigenvalues computed by the M-function eig (A, B) in variable precision arithmetic (VPA) using 80 decimal digits.

Matrix conditions

Matrix conditions

Conditions of matrices A, B

Relative errors: MATLAB eig function

Relative errors, MATLAB eig(A,B)

Relative errors: HZ method

Relative errors: HZD method

Relative errors, HZD method, m-file dssyhzd

Relative errors: HZA method

Relative errors, HZA method, m-file dsyhza

Relative errors: $L L^{\top} J$ method

Relative errors: Descending $L L^{\top} J$ method

Relative errors: Ascending $L L^{T} J$ method

Relative errors: $R R^{T} J$ method

Relative errors, $R^{\top} \boldsymbol{J}$ method, m-function dsyrrt

Relative errors: Descending $R R^{\top} J$ method

Relative errors: Ascending $R R^{T} J$ method

How to define an accurate hybrid method?

We see that just one variant of $L L^{T} J$ method $\left(L L^{T} J A\right)$ and just one variant of $R R^{T} J$ method $\left(R R^{T} J D\right)$ is indicated as relatively accurate.

How to define an accurate hybrid method?

We see that just one variant of $L L^{T} J$ method $\left(L L^{T} J A\right)$ and just one variant of $R R^{\top} J$ method ($R R^{\top} J D$) is indicated as relatively accurate.
This indicates how to a define highly accurate hybrid method, call it Cholesky-Jacobi method or shorter CJ method:

How to define an accurate hybrid method?

We see that just one variant of $L L^{T} J$ method $\left(L L^{T} J A\right)$ and just one variant of $R R^{T} J$ method ($R R^{T} J D$) is indicated as relatively accurate.

This indicates how to a define highly accurate hybrid method, call it Cholesky-Jacobi method or shorter CJ method:
\%\%\% Algorithm CJ
choose the pivot pair (i, j)
if $a_{i i} \geq a_{j j}$ then select $L L^{T} J$ algorithm
else select $R R^{T} J$ algorithm
endif

How to define an accurate hybrid method?

We see that just one variant of $L L^{T} J$ method $\left(L L^{T} J A\right)$ and just one variant of $R R^{T} J$ method ($R R^{T} J D$) is indicated as relatively accurate.

This indicates how to a define highly accurate hybrid method, call it Cholesky-Jacobi method or shorter CJ method:
\%\%\% Algorithm CJ
choose the pivot pair (i, j)
if $a_{i i} \geq a_{j j}$ then select $L L^{T} J$ algorithm
else select $R R^{T} J$ algorithm
endif
Its global convergence has been proved in an earlier theorem.

How to define an accurate hybrid method?

We see that just one variant of $L L^{T} J$ method ($L L^{T} J A$) and just one variant of $R R^{T} J$ method ($R R^{T} J D$) is indicated as relatively accurate.

This indicates how to a define highly accurate hybrid method, call it Cholesky-Jacobi method or shorter CJ method:
\%\%\% Algorithm CJ
choose the pivot pair (i, j)
if $a_{i i} \geq a_{j j}$ then select $L L^{T} J$ algorithm
else select $R R^{T} J$ algorithm
endif
Its global convergence has been proved in an earlier theorem.
We complete our presentation with the graph associated with the CJ method.

Relative errors: CJ method

