Normal and structured matrices under unitary structure-preserving transformations

Erna Begović Kovač

University of Zagreb ebegovic@fkit.hr

Joint work with Heike Faßbender and Philip Saltenberger (TU Braunschweig)

KTH, 14 March 2019

This work has been supported in part by Croatian Science Foundation under the project 3670.

OUTLINE

- Introduction
- Structured matrices and structure-preserving transformations
- Jacobi-type algorithm for the reduction to the canonical form
- Convergence
- Finding the closest normal matrix with a given structure
- Numerical examples

E. Begović Kovač, H. Faßbender, P. Saltenberger: On normal and structured matrices under unitary structure-preserving transformations. arXiv:1810.03369 [math.NA]

INTRODUCTION

- Set of normal matrices: $\mathcal{N} = \{X : XX^H = X^HX\}$
- X is normal if and only if there is unitary U such that

$$U^{H}XU = \left[\begin{array}{c} \searrow \end{array} \right].$$

• A. Ruhe: *Closest normal matrix finally found!* BIT 27 (4) (1987) 585–598.

Does NOT preserve given matrix structure.

INTRODUCTION

- Set of normal matrices: $\mathcal{N} = \{X : XX^H = X^HX\}$
- X is normal if and only if there is unitary U such that

$$U^{H}XU = \left[\begin{array}{c} \searrow \end{array} \right].$$

 A. Ruhe: Closest normal matrix finally found! BIT 27 (4) (1987) 585–598.
Does NOT preserve given matrix structure.

Suppose that A has a structure S, $A \in S$.

Minimization problem:

$$\min\left\{\|A-X\|_F^2 : X \in \mathcal{N} \cap \mathcal{S}\right\}$$

MAXIMIZATION PROBLEM

Theorem (Causey 1964, Gabriel 1979)

Let $A \in \mathbb{C}^{n \times n}$ and let $X = ZDZ^{H}$, where Z is unitary and D is diagonal. Then X is a nearest normal matrix to A in the Frobenius norm if and only if (a) $\|\text{diag}(Z^{H}AZ)\|_{F} = \max_{QQ^{H}=I} \|\text{diag}(Q^{H}AQ)\|_{F}$, and

(b) $D = \operatorname{diag}(Z^H A Z)$.

 \rightarrow Finding the closest normal matrix is equivalent to finding an unitary transformation that maximizes Frobenius norm of the diagonal.

 \rightarrow This theorem has to be modified to fulfill structure-preserving requirements.

• N. J. Higham: *Matrix nearness problem and applications*. In Applications of Matrix theory 22 (1989) 1–27.

Erna Begović Kovač

Structured matrices and structure preserving transformations

STRUCTURED MATRICES

We study the following structures:

- Hamiltonian (*J*-Hermitian)
- Skew-Hamiltonian (J-skew-Hermitian)
- **Per-Hermitian** (*R*-Hermitian)
- Perskew-Hermitian (R-skew-Hermitian)

where
$$J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$$
 and $R = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ \vdots & \ddots & 0 \\ 0 & \ddots & & \vdots \\ 1 & 0 & \cdots & 0 \end{bmatrix}$

٠

STRUCTURED MATRICES

We study the following structures:

- Hamiltonian $\rightarrow (JA)^H = JA$
- Skew-Hamiltonian $\rightarrow (JA)^H = -JA$
- **Per-Hermitian** $\rightarrow (RA)^H = RA$
- **Perskew-Hermitian** $\rightarrow (RA)^H = -RA$

where
$$J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$$
 and $R = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ \vdots & \ddots & 0 \\ 0 & \ddots & & \vdots \\ 1 & 0 & \cdots & 0 \end{bmatrix}$

٠

STRUCTURE-PRESERVING TRANSFORMATIONS

• For Hamiltonian and skew-Hamiltonian

 \rightarrow *J*-unitary

• For per-Hermitian and perskew-Hermitian

 \rightarrow *R*-unitary

STRUCTURE-PRESERVING TRANSFORMATIONS

• For Hamiltonian and skew-Hamiltonian

M is **symplectic** if $M^H J M = J$.

• For per-Hermitian and perskew-Hermitian

M is **perplectic** if $M^H R M = R$.

STRUCTURE-PRESERVING TRANSFORMATIONS

• For Hamiltonian and skew-Hamiltonian

M is **symplectic** if $M^H J M = J$.

• For per-Hermitian and perskew-Hermitian

M is **perplectic** if $M^H R M = R$.

manifold	tangent subspace at I	orthogonal subspace at <i>I</i>
symplectic	Hamiltonian	skew-Hamiltonian
perplectic	perskew-Hermitian	per-Hermitian
Lie group	Lie algebra	Jordan algebra

Table: Geometric and algebraic setting for the structured matrices

HAMILTONIAN AND SKEW-HAMILTONIAN

• **Hamiltonian** *A* (*J*-Hermitian):

$$(JA)^{H} = JA$$
, that is $A^{H} = JAJ$, where $J = \begin{bmatrix} 0 & l \\ -l & 0 \end{bmatrix}$.

We can write it as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & -A_{11}^H \end{bmatrix}, \qquad A_{12}^H = A_{12}, \ A_{21}^H = A_{21}.$$

HAMILTONIAN AND SKEW-HAMILTONIAN

• Hamiltonian A (J-Hermitian):

$$(JA)^{H} = JA$$
, that is $A^{H} = JAJ$, where $J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$

We can write it as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & -A_{11}^H \end{bmatrix}, \qquad A_{12}^H = A_{12}, \ A_{21}^H = A_{21}.$$

• **Skew-Hamiltonian** *A* (*J*-skew-Hermitian):

$$(JA)^H = -JA$$
, that is $A^H = -JAJ$.

We can write it as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{11}^H \end{bmatrix}, \qquad A_{12}^H = -A_{12}, \ A_{21}^H = -A_{21}.$$

• For every skew-Hamiltonian W there is Hamiltonian H (and viceversa) such that W = iH.

Erna Begović Kovač

CANONICAL FORM — HAMILTONIAN

Theorem (BK, Faßbender, Saltenberger)

For every normal Hamiltonian $A \in \mathbb{C}^{2n \times 2n}$ there is unitary symplectic U such that

$$U^{H}AU = \begin{bmatrix} D_{1} & 0 & 0 & 0\\ 0 & D_{2} & 0 & D_{3}\\ 0 & 0 & -D_{1}^{H} & 0\\ 0 & -D_{3} & 0 & D_{2} \end{bmatrix},$$

where D_j , j = 1, 2, 3 diagonal matrices, $D_1 \in \mathbb{C}^{n_1 \times n_1}$, $D_2 \in i \mathbb{R}^{n_2 \times n_2}$, $D_3 \in \mathbb{R}^{n_2 \times n_2}$, $n_1 + n_2 = n$.

$$U^{H}AU = \begin{bmatrix} \Lambda_{1} & \Lambda_{2} \\ -\Lambda_{2} & -\Lambda_{1}^{H} \end{bmatrix} = \begin{bmatrix} \ddots & \ddots \\ \ddots & \ddots \end{bmatrix} =: \Lambda_{\mathcal{H}}$$

PER-HERMITIAN AND PERSKEW-HERMITIAN

• **Per-Hermitian** *A* (*F*-Hermitian):

$$(FA)^{H} = FA$$
, that is $A^{H} = FAF$,
where $F = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ \vdots & \ddots & 0 \\ 0 & \ddots & & \vdots \\ 1 & 0 & \cdots & 0 \end{bmatrix}$.

 \rightarrow Hermitian about its anti-diagonal

• **Perskew-Hermitian** *A* (*F*-skew-Hermitian):

$$(FA)^H = -FA$$
, that is $A^H = -FAF$.

 \rightarrow Skew-Hermitian about its anti-diagonal

• For every perskew-Hermitian K there is per-Hermitian M (and viceversa) such that K = iM.

Erna Begović Kovač

CANONICAL FORM — PER-HERMITIAN

Theorem (BK, Faßbender, Saltenberger)

For every normal per-Hermitian $A \in \mathbb{C}^{2n \times 2n}$ there is unitary perplectic U such that

$$U^{H}AU = \begin{bmatrix} D_{1} & 0 & 0 & 0 \\ 0 & D_{2} & D_{3} & 0 \\ 0 & FD_{3}F & FD_{2}F & 0 \\ 0 & 0 & 0 & FD_{1}F \end{bmatrix},$$

where D_1 i D_2 are diagonal, and D_3 is antidiagonal matrix, $D_1 \in \mathbb{C}^{n_1 \times n_1}$, $D_2 \in \mathbb{R}^{n_2 \times n_2}$, $D_3 \in \mathbb{R}^{n_2 \times n_2}$, $n_1 + n_2 = n$.

$$U^{H}AU = \begin{bmatrix} \Lambda_{1} & \Lambda_{2}F \\ F\Lambda_{2} & F\Lambda_{1}^{H}F \end{bmatrix} = \begin{bmatrix} \checkmark & \checkmark \\ \checkmark & \checkmark \end{bmatrix} =: \Lambda_{\mathcal{P}}$$

Jacobi-type algorithm for the reduction to the canonical form

MAXIMIZATION ALGORITHM

$$\max_{ZZ^{H}=I, Z \in Sp_{2n}(\mathbb{C})} \left\{ f_{\mathcal{H}}(Z) := \| \operatorname{diag}(Z^{H}AZ) \|_{F}^{2} + \| \operatorname{diag}(JZ^{H}AZ) \|_{F}^{2} \right\}$$

• Iterative algorithm of the form

$$A^{(k+1)} = R_k^H A^{(k)} R_k, \quad k \ge 0.$$

 Transformations R_k are structure-preserving rotations obtained by embedding two Jacobi rotations

$$\begin{bmatrix} c & -s \\ s & c \end{bmatrix} := \begin{bmatrix} \cos \phi & -e^{i\alpha} \sin \phi \\ e^{-i\alpha} \sin \phi & \cos \phi \end{bmatrix} \quad \text{in } I_{2n}.$$

They are chosen to maximize

$$\|\text{diag}(A^{(k+1)})\|_{F}^{2} + \|\text{diag}(JA^{(k+1)})\|_{F}^{2}$$

 D. S. Mackey, N. Mackey, F. Tisseur: Structured tools for structured matrices. Electron. J. Linear Al. 10 (2003) 106–145.

Erna Begović Kovač

MAXIMIZATION ALGORITHM

$$\max_{ZZ^{H}=I, Z \in Pp_{2n}(\mathbb{C})} \left\{ f_{\mathcal{P}}(Z) := \| \operatorname{diag}(Z^{H}AZ) \|_{F}^{2} + \| \operatorname{diag}(FZ^{H}AZ) \|_{F}^{2} \right\}$$

• Iterative algorithm of the form

$$A^{(k+1)} = R_k^H A^{(k)} R_k, \quad k \ge 0.$$

 Transformations R_k are structure-preserving rotations obtained by embedding two Jacobi rotations

$$\begin{bmatrix} c & -s \\ s & c \end{bmatrix} := \begin{bmatrix} \cos \phi & -e^{i\alpha} \sin \phi \\ e^{-i\alpha} \sin \phi & \cos \phi \end{bmatrix} \quad \text{in } I_{2n}.$$

They are chosen to maximize

$$\|\text{diag}(A^{(k+1)})\|_F^2 + \|\text{diag}(FA^{(k+1)})\|_F^2.$$

 D. S. Mackey, N. Mackey, F. Tisseur: Structured tools for structured matrices. Electron. J. Linear Al. 10 (2003) 106–145.

Erna Begović Kovač

SYMPLECTIC ROTATIONS

PIVOT POSITIONS (SYMPLECTIC)

PIVOT POSITIONS (SYMPLECTIC)

PERPLECTIC ROTATIONS

PIVOT POSITIONS (PERPLECTIC)

PIVOT POSITIONS (PERPLECTIC)

- Pivot position $(i, j) \rightarrow$ cyclic pivot strategy
- Convergence condition:

 $|\langle \operatorname{grad} f(Z), Z\dot{R}(i_k, j_k, 0, \alpha_k)\rangle| \geq \eta \|\operatorname{grad} f(Z)\|_F,$

where $\dot{R}(i, j, \phi, \alpha) = \frac{\partial}{\partial \phi} R(i, j, \phi, \alpha)$ and $f = f_{\mathcal{H}}$ or $f = f_{\mathcal{P}}$.

ROTATION ANGLES

• In step k we take ϕ_k and α_k such that $R_k = R(i_k, j_k, \phi_k, \alpha_k)$ maximizes

```
\|\text{diag}(A^{(k+1)})\|_{F} + \|P\text{diag}(PA^{(k+1)})\|_{F},
```

for P = J or P = F.

ROTATION ANGLES

• In step k we take ϕ_k and α_k such that $R_k = R(i_k, j_k, \phi_k, \alpha_k)$ maximizes

$$\|\text{diag}(A^{(k+1)})\|_{F} + \|P\text{diag}(PA^{(k+1)})\|_{F},$$

for P = J or P = F.

- Denote $A^{(k+1)} = A'$, $A^{(k)} = A$, $\phi_k = \phi$, $\alpha_k = \alpha$.
- For example, if A is Hamiltonian and we have symplectic rotation of the first type, we consider submatrix

$$A_{ij} = \begin{bmatrix} a_{ii} & a_{ij} & a_{i,n+i} & a_{i,n+j} \\ a_{ji} & a_{jj} & a_{j,n+i} & a_{j,n+j} \\ a_{n+i,i} & a_{n+i,j} & a_{n+i,n+i} & a_{n+i,n+j} \\ a_{n+j,i} & a_{n+j,j} & a_{n+j,n+i} & a_{n+j,n+j} \end{bmatrix}$$

We have

$$A'_{ij} = \begin{bmatrix} \cos\phi & -e^{i\alpha}\sin\phi & 0 & 0\\ e^{-i\alpha}\sin\phi & \cos\phi & 0 & 0\\ 0 & 0 & \cos\phi & -e^{i\alpha}\sin\phi\\ 0 & 0 & e^{-i\alpha}\sin\phi & \cos\phi \end{bmatrix}^{H} A_{ij} \begin{bmatrix} \cos\phi & -e^{i\alpha}\sin\phi & 0 & 0\\ e^{-i\alpha}\sin\phi & \cos\phi & 0 & 0\\ 0 & 0 & \cos\phi & -e^{i\alpha}\sin\phi\\ 0 & 0 & e^{-i\alpha}\sin\phi & \cos\phi \end{bmatrix}$$

Erna Begović Kovač

ROTATION ANGLES-cont.

• We need

$$\begin{split} |a_{ii}'|^2 + |a_{jj}'|^2 + |a_{n+i,n+i}'|^2 + |a_{n+j,n+j}'|^2 + \\ &+ |a_{i,n+i}'|^2 + |a_{j,n+j}'|^2 + |a_{n+i,i}'|^2 + |a_{n+j,j}'|^2 \to \max. \end{split}$$

ROTATION ANGLES-cont.

• We need

$$\begin{split} |a_{ii}'|^2 + |a_{jj}'|^2 + |a_{n+i,n+i}'|^2 + |a_{n+j,n+j}'|^2 + \\ &+ |a_{i,n+i}'|^2 + |a_{j,n+j}'|^2 + |a_{n+i,i}'|^2 + |a_{n+j,j}'|^2 \to \max. \end{split}$$

 Set a_{rs} = x_{rs} + y_{rs} i and use the properties of a Hamiltonian matrix. We define function

$$g_{\mathcal{H}}(\phi, \alpha) = 2|x'_{ii}|^2 + 2|y'_{ii}|^2 + 2|x'_{jj}|^2 + 2|y'_{jj}|^2 + |x'_{i,n+i}|^2 + |y'_{i,n+i}|^2 + |x'_{j,n+j}|^2 + |y'_{j,n+j}|^2 + |x'_{n+i,i}|^2 + |y'_{n+i,i}|^2 + |x'_{n+j,j}|^2 + |y'_{n+j,j}|^2$$

• We take rotation angles ϕ and α that maximize $g_{\mathcal{H}}(\phi, \alpha)$.

Erna Begović Kovač

REDUCTION TO CANONICAL FORM

Jacobi-type algorithm 1

Input: $A \in \mathbb{C}^{2n \times 2n} \in S$, $Z_0 = I$ Output: structure-preserving unitary ZREPEAT Select (i_k, j_k) . Find ϕ_k and α_k for $R(i_k, j_k, \phi_k, \alpha_k)$. $A^{(k+1)} = R_k^H A^{(k)} R_k$ $Z_{k+1} = Z_k R_k$

 UNTIL convergence

CONVERGENCE

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian (or skew-Hamiltonian) and let $(Z_k)_k$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm. Every accumulation point of $(Z_k)_k$ is a stationary point of function $f_{\mathcal{H}}$.

Theorem (BK, Faßbender, Saltenberger)

Let A be per-Hermitian (or perskew-Hermitian) and let $(Z_k)_k$ be a sequence of unitary perplectic matrices generated by the Jacobi algorithm. Every accumulation point of $(Z_k)_k$ is a stationary point of function $f_{\mathcal{P}}$.

CONVERGENCE

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian (or skew-Hamiltonian) and let $(Z_k)_k$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm. Every accumulation point of $(Z_k)_k$ is a stationary point of function $f_{\mathcal{H}}$.

Theorem (BK, Faßbender, Saltenberger)

Let A be per-Hermitian (or perskew-Hermitian) and let $(Z_k)_k$ be a sequence of unitary perplectic matrices generated by the Jacobi algorithm. Every accumulation point of $(Z_k)_k$ is a stationary point of function $f_{\mathcal{P}}$.

- M. Ishteva, P.-A. Absil, P. Van Dooren: Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors.
 SIAM J. Matrix Anal. Appl. 34(2) (2013) 651–672.
- E. Begović Kovač, D. Kressner: Structure-preserving low multilinear rank approximation of antisymmetric tensors.
 SIAM. J. Matrix Anal. Appl. 38(3) (2017) 967–983.

Erna Begović Kovač

THREE LEMMAS FOR $f_{\mathcal{H}}$

Lemma (BK, Faßbender, Saltenberger)

We have $\operatorname{grad} f_{\mathcal{H}}(Z) = ZX$, where $\operatorname{diag}(X) = 0$, $\operatorname{diag}(JX) = 0$, and X is skew-Hermitian Hamiltonian.

Lemma (BK, Faßbender, Saltenberger)

For every unitary symplectic $Z \in \mathbb{C}^{2n \times 2n}$ there is symplectic rotation $R(i, j, \phi, \alpha)$ such that

$$|\langle \mathsf{grad} f_{\mathcal{H}}(Z), Z\dot{R}(i, j, 0, \alpha)\rangle| \geq \eta \|\mathsf{grad} f_{\mathcal{H}}(Z)\|_{F}, \quad \eta = \frac{4}{\sqrt{4n^{2} - 4n}}.$$

Lemma (BK, Faßbender, Saltenberger)

Let $\hat{Z} \in \mathbb{C}^{2n \times 2n}$ be symplectic. Let $f = f_{\mathcal{H}}$ and $(Z_k, k \ge 0)$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm. If $\operatorname{grad} f(\hat{Z}) \neq 0$, there exist $\epsilon > 0$ and $\delta > 0$ such that $\|Z_k - \hat{Z}\|_F < \epsilon \implies f(Z_{k+1}) - f(Z_k) \ge \delta$.

Erna Begović Kovač

Finding the closest normal matrix with a given structure

THE CLOSEST NORMAL MATRIX

- Let A be Hamiltonian. Analogy with unstructured case:
 - (i) Find Z that maximizes $f_{\mathcal{H}}(Z) = \|\text{diag}(Z^H A Z)\|_F^2 + \|\text{diag}(J Z^H A Z)\|_F^2$
 - (ii) Extract the canonical form,

 \rightarrow But this can produce a matrix that is not normal!

THE CLOSEST NORMAL MATRIX

- Let A be Hamiltonian. Analogy with unstructured case:
 - (i) Find Z that maximizes $f_{\mathcal{H}}(Z) = \|\text{diag}(Z^H A Z)\|_F^2 + \|\text{diag}(J Z^H A Z)\|_F^2$
 - (ii) Extract the canonical form,

 \rightarrow But this can produce a matrix that is not normal!

• We set

$$f_{\mathcal{D}}(Z) = \|\mathsf{diag}(Z^H A Z)\|_F^2.$$

- (i) Find Z that maximizes $f_{\mathcal{D}}$.
- (ii) Extract the diagonal.

(iii) Solution is given by
$$X = Z \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} Z^{H}$$
.

Erna Begović Kovač

 \rightarrow To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

• Symplectic rotations

$$R(i, n+i, \phi, 0) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}^{i} n+i$$

 \rightarrow To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

• Symplectic rotations

 $\sim \rightarrow$

 \rightarrow To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

• Symplectic rotations

$$R(i, n+i, \phi, 0) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}^{i} n+i$$

• Perplectic rotations

$$R(i,2n-i+1,\phi,-\frac{\pi}{2}) = \begin{bmatrix} \cos\phi & i\sin\phi \\ i\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} i \\ 2n-i+1 \end{bmatrix}$$

 \rightarrow To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

• Symplectic rotations

$$R(i, n+i, \phi, 0) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}^{i} n+i$$

• Perplectic rotations

~

 \rightarrow To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

• Symplectic rotations

$$R(i, n+i, \phi, 0) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}^{i} n+i$$

• Perplectic rotations

$$R(i,2n-i+1,\phi,-\frac{\pi}{2}) = \begin{bmatrix} \cos\phi & i\sin\phi \\ i\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} i \\ 2n-i+1 \end{bmatrix}$$

DIAGONALIZATION ALGORITHM Jacobi-type algorithm 2

Input: $A \in \mathbb{C}^{2n \times 2n} \in S$, $Z_0 = I$ **Output:** structure-preserving unitary Z REPEAT Select (i_k, j_k) . (additional pivot positions are included) Find ϕ_k and α_k for $R(i_k, j_k, \phi_k, \alpha_k)$. $A^{(k+1)} = R_k^H A^{(k)} R_k$ $Z_{k+1} = Z_k R_k$ UNTIL convergence

DIAGONALIZATION ALGORITHM Jacobi-type algorithm 2

Input: $A \in \mathbb{C}^{2n \times 2n} \in S$, $Z_0 = I$ **Output:** structure-preserving unitary Z REPEAT Select (i_k, j_k) . (additional pivot positions are included) Find ϕ_k and α_k for $R(i_k, j_k, \phi_k, \alpha_k)$. $A^{(k+1)} = R_k^H A^{(k)} R_k$ $Z_{k+1} = Z_k R_k$ UNTIL convergence

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian and let $(Z_k)_k$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm with additional rotations. Every accumulation point of $(Z_k)_k$ is a stationary point of function f_D .

Erna Begović Kovač

Numerical examples

NUMERICAL EXAMPLES — Canonical form

NUMERICAL EXAMPLES — Canonical form

Reduction to the canonical form (Algorithm 1) after 10 cycles.

NUMERICAL EXAMPLES — Diagonalization

NUMERICAL EXAMPLES — Diagonalization

NUMERICAL EXAMPLES — Distance from normal matrix

We take normal Hamiltonian X and set H = X + E, such that H is Hamiltonian, but not normal.

Algorithm 2 on H gives its closest normal Y.

NUMERICAL EXAMPLES — Departure from normality

For any matrix A its Schur form

$$U^{H}AU = T = D + N$$

exists, where U is unitary, D = diag(T) and N is strictly upper triangular. The quantity $\Delta(A) = ||N||_F$ is referred to as A's departure from normality.

We compare $\Delta(H)$ and off $(H^{(20)})$ where $H^{(20)}$ is obtained by 20 iterations of Algorithm 2 and off $(A) = ||A - \text{diag}(A)||_F^2$.

Example <i>i</i>	Size of H_i	$\Delta(H_i)$	$off(H_i^{(20)})$
1	10	$7.1\cdot10^{+0}$	$6.4\cdot10^{+0}$
2	10	$4.0 \cdot 10^{-3}$	$3.1 \cdot 10^{-3}$
3	20	$3.5 \cdot 10^{-5}$	$3.1\cdot10^{-5}$
4	20	$5.3\cdot10^{+2}$	$4.4 \cdot 10^{+2}$
5	30	$7.7\cdot10^{+0}$	$6.7\cdot10^{+0}$
6	30	$1.0\cdot10^{-1}$	$9.0\cdot10^{-2}$
7	40	$7.9 \cdot 10^{-7}$	$6.6 \cdot 10^{-7}$
8	40	$3.1\cdot10^{+3}$	$2.7\cdot10^{+3}$
9	50	$1.1\cdot10^{-2}$	$9.5 \cdot 10^{-3}$
10	100	$7.8 \cdot 10^{-7}$	$6.8\cdot10^{-7}$

NUMERICAL EXAMPLES — Convergence of Algorithm 1

 $\Gamma(A) := ||\operatorname{diag}(Z^H A Z)||_F^2 + ||\operatorname{diag}(J Z^H A Z)||_F^2$

QUESTIONS???

