Normal and structured matrices under unitary structure-preserving transformations

Erna Begović Kovač
University of Zagreb
ebegovic@fkit.hr
Joint work with Heike Faßbender and Philip Saltenberger
(TU Braunschweig)

KTH, 14 March 2019

OUTLINE

- Introduction
- Structured matrices and structure-preserving transformations
- Jacobi-type algorithm for the reduction to the canonical form
- Convergence
- Finding the closest normal matrix with a given structure
- Numerical examples
E. Begović Kovač, H. Faßbender, P. Saltenberger: On normal and structured matrices under unitary structure-preserving transformations. arXiv:1810.03369 [math.NA]

INTRODUCTION

- Set of normal matrices: $\mathcal{N}=\left\{X: X X^{H}=X^{H} X\right\}$
- X is normal if and only if there is unitary U such that

$$
U^{H} X U=[\searrow] .
$$

- A. Ruhe: Closest normal matrix finally found! BIT 27 (4) (1987) 585-598.

Does NOT preserve given matrix structure.

INTRODUCTION

- Set of normal matrices: $\mathcal{N}=\left\{X: X X^{H}=X^{H} X\right\}$
- X is normal if and only if there is unitary U such that

$$
U^{H} X U=[\searrow] .
$$

- A. Ruhe: Closest normal matrix finally found! BIT 27 (4) (1987) 585-598.

Does NOT preserve given matrix structure.

Suppose that A has a structure $\mathcal{S}, A \in \mathcal{S}$.
Minimization problem:

$$
\min \left\{\|A-X\|_{F}^{2}: X \in \mathcal{N} \cap \mathcal{S}\right\}
$$

MAXIMIZATION PROBLEM

Theorem (Causey 1964, Gabriel 1979)

Let $A \in \mathbb{C}^{n \times n}$ and let $X=Z D Z^{H}$, where Z is unitary and D is diagonal. Then X is a nearest normal matrix to A in the Frobenius norm if and only if

$$
\begin{aligned}
& \text { (a) }\left\|\operatorname{diag}\left(Z^{H} A Z\right)\right\|_{F}=\max _{Q Q^{H}=1}\left\|\operatorname{diag}\left(Q^{H} A Q\right)\right\|_{F} \text {, and } \\
& \text { (b) } D=\operatorname{diag}\left(Z^{H} A Z\right) \text {. }
\end{aligned}
$$

\rightarrow Finding the closest normal matrix is equivalent to finding an unitary transformation that maximizes Frobenius norm of the diagonal.
\rightarrow This theorem has to be modified to fulfill structure-preserving requirements.

- N. J. Higham: Matrix nearness problem and applications. In Applications of Matrix theory 22 (1989) 1-27.

Structured matrices and structure preserving transformations

STRUCTURED MATRICES

We study the following structures:

- Hamiltonian (J-Hermitian)
- Skew-Hamiltonian (J-skew-Hermitian)
- Per-Hermitian (R-Hermitian)
- Perskew-Hermitian (R-skew-Hermitian)
where $J=\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right]$ and $R=\left[\begin{array}{cccc}0 & \cdots & 0 & 1 \\ \vdots & & \because & 0 \\ 0 & \because & & \vdots \\ 1 & 0 & \cdots & 0\end{array}\right]$.

STRUCTURED MATRICES

We study the following structures:

- Hamiltonian $\rightarrow(J A)^{H}=J A$
- Skew-Hamiltonian $\rightarrow(J A)^{H}=-J A$
- Per-Hermitian $\rightarrow(R A)^{H}=R A$
- Perskew-Hermitian $\rightarrow(R A)^{H}=-R A$
where $J=\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right]$ and $R=\left[\begin{array}{cccc}0 & \cdots & 0 & 1 \\ \vdots & & \therefore & 0 \\ 0 & \therefore & & \vdots \\ 1 & 0 & \cdots & 0\end{array}\right]$.

STRUCTURE-PRESERVING TRANSFORMATIONS

- For Hamiltonian and skew-Hamiltonian

$$
\rightarrow J \text {-unitary }
$$

- For per-Hermitian and perskew-Hermitian

$$
\rightarrow R \text {-unitary }
$$

STRUCTURE-PRESERVING TRANSFORMATIONS

- For Hamiltonian and skew-Hamiltonian

$$
M \text { is symplectic if } M^{H} J M=J .
$$

- For per-Hermitian and perskew-Hermitian
M is perplectic if $M^{H} R M=R$.

STRUCTURE-PRESERVING TRANSFORMATIONS

- For Hamiltonian and skew-Hamiltonian

$$
M \text { is symplectic if } M^{H} J M=J .
$$

- For per-Hermitian and perskew-Hermitian
M is perplectic if $M^{H} R M=R$.

manifold	tangent subspace at I	orthogonal subspace at I
symplectic perplectic	Hamiltonian perskew-Hermitian	skew-Hamiltonian per-Hermitian
Lie group	Lie algebra	Jordan algebra

Table: Geometric and algebraic setting for the structured matrices

HAMILTONIAN AND SKEW-HAMILTONIAN

- Hamiltonian $A(J$-Hermitian):

$$
(J A)^{H}=J A, \quad \text { that is } A^{H}=J A J, \quad \text { where } \quad J=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

We can write it as

$$
A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & -A_{11}^{H}
\end{array}\right], \quad A_{12}^{H}=A_{12}, A_{21}^{H}=A_{21} .
$$

HAMILTONIAN AND SKEW-HAMILTONIAN

- Hamiltonian A (J-Hermitian):
$(J A)^{H}=J A, \quad$ that is $A^{H}=J A J, \quad$ where $J=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
We can write it as

$$
A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & -A_{11}^{H}
\end{array}\right], \quad A_{12}^{H}=A_{12}, A_{21}^{H}=A_{21} .
$$

- Skew-Hamiltonian A (J-skew-Hermitian):

$$
(J A)^{H}=-J A, \quad \text { that is } A^{H}=-J A J .
$$

We can write it as

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{11}^{H}
\end{array}\right], \quad A_{12}^{H}=-A_{12}, A_{21}^{H}=-A_{21} .
$$

- For every skew-Hamiltonian W there is Hamiltonian H (and viceversa) such that $W=\imath \mathrm{H}$.

CANONICAL FORM - HAMILTONIAN

Theorem (BK, Faßbender, Saltenberger)

For every normal Hamiltonian $A \in \mathbb{C}^{2 n \times 2 n}$ there is unitary symplectic U such that

$$
U^{H} A U=\left[\begin{array}{cccc}
D_{1} & 0 & 0 & 0 \\
0 & D_{2} & 0 & D_{3} \\
0 & 0 & -D_{1}^{H} & 0 \\
0 & -D_{3} & 0 & D_{2}
\end{array}\right]
$$

where $D_{j}, j=1,2,3$ diagonal matrices, $D_{1} \in \mathbb{C}^{n_{1} \times n_{1}}, D_{2} \in \imath \mathbb{R}^{n_{2} \times n_{2}}, D_{3} \in \mathbb{R}^{n_{2} \times n_{2}}, n_{1}+n_{2}=n$.

$$
U^{H} A U=\left[\begin{array}{cc}
\Lambda_{1} & \Lambda_{2} \\
-\Lambda_{2} & -\Lambda_{1}^{H}
\end{array}\right]=\left[\begin{array}{c}
\searrow \searrow \\
\searrow \\
\searrow
\end{array}\right]=: \Lambda_{\mathcal{H}}
$$

PER-HERMITIAN AND PERSKEW-HERMITIAN

- Per-Hermitian $A(F$-Hermitian):

$$
\begin{aligned}
& (F A)^{H}=F A, \quad \text { that is } A^{H}=F A F, \\
& \text { where } \quad F=\left[\begin{array}{cccc}
0 & \cdots & 0 & 1 \\
\vdots & & \ddots & 0 \\
0 & \ddots & & \vdots \\
1 & 0 & \cdots & 0
\end{array}\right] .
\end{aligned}
$$

\rightarrow Hermitian about its anti-diagonal

- Perskew-Hermitian A (F-skew-Hermitian):

$$
(F A)^{H}=-F A, \quad \text { that is } A^{H}=-F A F .
$$

\rightarrow Skew-Hermitian about its anti-diagonal

- For every perskew-Hermitian K there is per-Hermitian M (and viceversa) such that $K=\imath M$.

CANONICAL FORM - PER-HERMITIAN

Theorem (BK, Faßbender, Saltenberger)

For every normal per-Hermitian $A \in \mathbb{C}^{2 n \times 2 n}$ there is unitary perplectic U such that

$$
U^{H} A U=\left[\begin{array}{cccc}
D_{1} & 0 & 0 & 0 \\
0 & D_{2} & D_{3} & 0 \\
0 & F D_{3} F & F D_{2} F & 0 \\
0 & 0 & 0 & F D_{1} F
\end{array}\right],
$$

where D_{1} i D_{2} are diagonal, and D_{3} is antidiagonal matrix, $D_{1} \in \mathbb{C}^{n_{1} \times n_{1}}, D_{2} \in \mathbb{R}^{n_{2} \times n_{2}}, D_{3} \in \mathbb{R}^{n_{2} \times n_{2}}, n_{1}+n_{2}=n$.

$$
U^{H} A U=\left[\begin{array}{cc}
\Lambda_{1} & \Lambda_{2} F \\
F \Lambda_{2} & F \Lambda_{1}^{H} F
\end{array}\right]=\left[\begin{array}{cc}
\searrow / \\
/ & \searrow
\end{array}\right]=: \Lambda_{\mathcal{P}}
$$

Jacobi-type algorithm
 for the reduction to the canonical form

MAXIMIZATION ALGORITHM

$$
\max _{Z Z^{H}=I, Z \in S p_{2 n}(\mathbb{C})}\left\{f_{\mathcal{H}}(Z):=\left\|\operatorname{diag}\left(Z^{H} A Z\right)\right\|_{F}^{2}+\left\|\operatorname{diag}\left(J Z^{H} A Z\right)\right\|_{F}^{2}\right\}
$$

- Iterative algorithm of the form

$$
A^{(k+1)}=R_{k}^{H} A^{(k)} R_{k}, \quad k \geq 0
$$

- Transformations R_{k} are structure-preserving rotations obtained by embedding two Jacobi rotations

$$
\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right]:=\left[\begin{array}{cc}
\cos \phi & -e^{\imath \alpha} \sin \phi \\
e^{-\imath \alpha} \sin \phi & \cos \phi
\end{array}\right] \quad \text { in } l_{2 n}
$$

They are chosen to maximize

$$
\left\|\operatorname{diag}\left(A^{(k+1)}\right)\right\|_{F}^{2}+\left\|\operatorname{diag}\left(J A^{(k+1)}\right)\right\|_{F}^{2} .
$$

- D. S. Mackey, N. Mackey, F. Tisseur: Structured tools for structured matrices. Electron. J. Linear AI. 10 (2003) 106-145.

MAXIMIZATION ALGORITHM

$$
\max _{Z Z^{H}=I, Z \in P p_{2 n}(\mathbb{C})}\left\{f_{\mathcal{P}}(Z):=\left\|\operatorname{diag}\left(Z^{H} A Z\right)\right\|_{F}^{2}+\left\|\operatorname{diag}\left(F Z^{H} A Z\right)\right\|_{F}^{2}\right\}
$$

- Iterative algorithm of the form

$$
A^{(k+1)}=R_{k}^{H} A^{(k)} R_{k}, \quad k \geq 0 .
$$

- Transformations R_{k} are structure-preserving rotations obtained by embedding two Jacobi rotations

$$
\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right]:=\left[\begin{array}{cc}
\cos \phi & -e^{\imath \alpha} \sin \phi \\
e^{-\imath \alpha} \sin \phi & \cos \phi
\end{array}\right] \quad \text { in } I_{2 n}
$$

They are chosen to maximize

$$
\left\|\operatorname{diag}\left(A^{(k+1)}\right)\right\|_{F}^{2}+\left\|\operatorname{diag}\left(F A^{(k+1)}\right)\right\|_{F}^{2}
$$

- D. S. Mackey, N. Mackey, F. Tisseur: Structured tools for structured matrices. Electron. J. Linear AI. 10 (2003) 106-145.

SYMPLECTIC ROTATIONS

$$
\begin{aligned}
& R(i, j, \phi, \alpha)=\left[\begin{array}{lll|ll}
c & -s & & \\
\bar{s} & c & & \\
\hline & & c & -s \\
\bar{s} & c
\end{array}\right] \begin{array}{c}
i \\
j \\
\\
\end{array} \\
& R(i, j, \phi, \alpha)=\left[\begin{array}{lll|ll}
c & & & \\
& c & -s \\
& s & -\bar{s} & \\
\bar{s} & & c & \\
\hline & & c
\end{array}\right] \begin{array}{c}
i \\
j-n \\
j+i \\
j
\end{array}
\end{aligned}
$$

PIVOT POSITIONS (SYMPLECTIC)

PIVOT POSITIONS (SYMPLECTIC)

PERPLECTIC ROTATIONS

PIVOT POSITIONS (PERPLECTIC)

PIVOT POSITIONS (PERPLECTIC)

PIVOT PAIRS

- Pivot position $(i, j) \rightarrow$ cyclic pivot strategy
- Convergence condition:

$$
\begin{gathered}
\left|\left\langle\operatorname{grad} f(Z), Z \dot{R}\left(i_{k}, j_{k}, 0, \alpha_{k}\right)\right\rangle\right| \geq \eta\|\operatorname{grad} f(Z)\|_{F}, \\
\text { where } \dot{R}(i, j, \phi, \alpha)=\frac{\partial}{\partial \phi} R(i, j, \phi, \alpha) \text { and } f=f_{\mathcal{H}} \text { or } f=f_{\mathcal{P}} .
\end{gathered}
$$

ROTATION ANGLES

- In step k we take ϕ_{k} and α_{k} such that $R_{k}=R\left(i_{k}, j_{k}, \phi_{k}, \alpha_{k}\right)$ maximizes

$$
\left\|\operatorname{diag}\left(A^{(k+1)}\right)\right\|_{F}+\left\|P \operatorname{diag}\left(P A^{(k+1)}\right)\right\|_{F}
$$

for $P=J$ or $P=F$.

ROTATION ANGLES

- In step k we take ϕ_{k} and α_{k} such that $R_{k}=R\left(i_{k}, j_{k}, \phi_{k}, \alpha_{k}\right)$ maximizes

$$
\left\|\operatorname{diag}\left(A^{(k+1)}\right)\right\|_{F}+\left\|P \operatorname{diag}\left(P A^{(k+1)}\right)\right\|_{F}
$$

for $P=J$ or $P=F$.

- Denote $A^{(k+1)}=A^{\prime}, A^{(k)}=A, \phi_{k}=\phi, \alpha_{k}=\alpha$.
- For example, if A is Hamiltonian and we have symplectic rotation of the first type, we consider submatrix

$$
A_{i j}=\left[\begin{array}{cccc}
a_{i i} & a_{i j} & a_{i, n+i} & a_{i, n+j} \\
a_{j i} & a_{j j} & a_{j, n+i} & a_{j, n+j} \\
a_{n+i, i} & a_{n+i, j} & a_{n+i, n+i} & a_{n+i, n+j} \\
a_{n+j, i} & a_{n+j, j} & a_{n+j, n+i} & a_{n+j, n+j}
\end{array}\right]
$$

We have

$$
A_{i j}^{\prime}=\left[\begin{array}{cccc}
\cos \phi & -e^{\imath \alpha} \sin \phi & 0 & 0 \\
e^{-\imath \alpha} \sin \phi & \cos \phi & 0 & 0 \\
0 & 0 & \cos \phi & -e^{\imath \alpha} \sin \phi \\
0 & 0 & e^{-\imath \alpha} \sin \phi & \cos \phi
\end{array}\right]^{H} A_{i j}\left[\begin{array}{cccc}
\cos \phi & -e^{\imath \alpha} \sin \phi & 0 & 0 \\
e^{-\imath \alpha} \sin \phi & \cos \phi & 0 & 0 \\
0 & 0 & \cos \phi & -e^{\imath \alpha} \sin \phi \\
0 & 0 & e^{-\imath \alpha} \sin \phi & \cos \phi
\end{array}\right]
$$

ROTATION ANGLES-cont.

- We need

$$
\begin{aligned}
& \left|a_{i i}^{\prime}\right|^{2}+\left|a_{j j}^{\prime}\right|^{2}+\left|a_{n+i, n+i}^{\prime}\right|^{2}+\left|a_{n+j, n+j}^{\prime}\right|^{2}+ \\
& +\left|a_{i, n+i}^{\prime}\right|^{2}+\left|a_{j, n+j}^{\prime}\right|^{2}+\left|a_{n+i, i}^{\prime}\right|^{2}+\left|a_{n+j, j}^{\prime}\right|^{2} \rightarrow \max .
\end{aligned}
$$

ROTATION ANGLES-cont.

- We need

$$
\begin{aligned}
& \left|a_{i i}^{\prime}\right|^{2}+\left|a_{j j}^{\prime}\right|^{2}+\left|a_{n+i, n+i}^{\prime}\right|^{2}+\left|a_{n+j, n+j}^{\prime}\right|^{2}+ \\
& \quad+\left|a_{i, n+i}^{\prime}\right|^{2}+\left|a_{j, n+j}^{\prime}\right|^{2}+\left|a_{n+i, i}^{\prime}\right|^{2}+\left|a_{n+j, j}^{\prime}\right|^{2} \rightarrow \max
\end{aligned}
$$

- Set $a_{r s}=x_{r s}+y_{r s} \imath$ and use the properties of a Hamiltonian matrix. We define function

$$
\begin{aligned}
g_{\mathcal{H}}(\phi, \alpha)= & 2\left|x_{i i}^{\prime}\right|^{2}+2\left|y_{i i}^{\prime}\right|^{2}+2\left|x_{j j}^{\prime}\right|^{2}+2\left|y_{j j}^{\prime}\right|^{2}+ \\
& +\left|x_{i, n+i}^{\prime}\right|^{2}+\left|y_{i, n+i}^{\prime}\right|^{2}+\left|x_{j, n+j}^{\prime}\right|^{2}+\left|y_{j, n+j}^{\prime}\right|^{2} \\
& +\left|x_{n+i, i}^{\prime}\right|^{2}+\left|y_{n+i, i}^{\prime}\right|^{2}+\left|x_{n+j, j}^{\prime}\right|^{2}+\left|y_{n+j, j}^{\prime}\right|^{2} .
\end{aligned}
$$

- We take rotation angles ϕ and α that maximize $g_{\mathcal{H}}(\phi, \alpha)$.

REDUCTION TO CANONICAL FORM

Jacobi-type algorithm 1

Input: $A \in \mathbb{C}^{2 n \times 2 n} \in \mathcal{S}, Z_{0}=1$
Output: structure-preserving unitary Z
Repeat
Select $\left(i_{k}, j_{k}\right)$.
Find ϕ_{k} and α_{k} for $R\left(i_{k}, j_{k}, \phi_{k}, \alpha_{k}\right)$.
$A^{(k+1)}=R_{k}^{H} A^{(k)} R_{k}$
$Z_{k+1}=Z_{k} R_{k}$
UnTIL convergence

Convergence

CONVERGENCE

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian (or skew-Hamiltonian) and let $\left(Z_{k}\right)_{k}$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm. Every accumulation point of $\left(Z_{k}\right)_{k}$ is a stationary point of function $f_{\mathcal{H}}$.

Theorem (BK, Faßbender, Saltenberger)

Let A be per-Hermitian (or perskew-Hermitian) and let $\left(Z_{k}\right)_{k}$ be a sequence of unitary perplectic matrices generated by the Jacobi algorithm. Every accumulation point of $\left(Z_{k}\right)_{k}$ is a stationary point of function $f_{\mathcal{P}}$.

CONVERGENCE

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian (or skew-Hamiltonian) and let $\left(Z_{k}\right)_{k}$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm. Every accumulation point of $\left(Z_{k}\right)_{k}$ is a stationary point of function $f_{\mathcal{H}}$.

Theorem (BK, Faßbender, Saltenberger)

Let A be per-Hermitian (or perskew-Hermitian) and let $\left(Z_{k}\right)_{k}$ be a sequence of unitary perplectic matrices generated by the Jacobi algorithm. Every accumulation point of $\left(Z_{k}\right)_{k}$ is a stationary point of function $f_{\mathcal{P}}$.

- M. Ishteva, P.-A. Absil, P. Van Dooren: Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors.
SIAM J. Matrix Anal. Appl. 34(2) (2013) 651-672.
- E. Begović Kovač, D. Kressner: Structure-preserving low multilinear rank approximation of antisymmetric tensors.
SIAM. J. Matrix Anal. Appl. 38(3) (2017) 967-983.

THREE LEMMAS FOR $f_{\mathcal{H}}$

Lemma (BK, Faßbender, Saltenberger)

We have $\operatorname{grad} f_{\mathcal{H}}(Z)=Z X$, where $\operatorname{diag}(X)=0, \operatorname{diag}(J X)=0$, and X is skew-Hermitian Hamiltonian.

Lemma (BK, Faßbender, Saltenberger)

For every unitary symplectic $Z \in \mathbb{C}^{2 n \times 2 n}$ there is symplectic rotation $R(i, j, \phi, \alpha)$ such that

$$
\left|\left\langle\operatorname{grad} f_{\mathcal{H}}(Z), Z \dot{R}(i, j, 0, \alpha)\right\rangle\right| \geq \eta\left\|\operatorname{grad} f_{\mathcal{H}}(Z)\right\|_{F}, \quad \eta=\frac{4}{\sqrt{4 n^{2}-4 n}}
$$

Lemma (BK, Faßbender, Saltenberger)

Let $\hat{Z} \in \mathbb{C}^{2 n \times 2 n}$ be symplectic. Let $f=f_{\mathcal{H}}$ and $\left(Z_{k}, k \geq 0\right)$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm. If $\operatorname{grad} f(\hat{Z}) \neq 0$, there exist $\epsilon>0$ and $\delta>0$ such that

$$
\left\|Z_{k}-\hat{Z}\right\|_{F}<\epsilon \quad \Rightarrow \quad f\left(Z_{k+1}\right)-f\left(Z_{k}\right) \geq \delta
$$

Finding the closest normal matrix with a given structure

THE CLOSEST NORMAL MATRIX

- Let A be Hamiltonian. Analogy with unstructured case:
(i) Find Z that maximizes

$$
f_{\mathcal{H}}(Z)=\left\|\operatorname{diag}\left(Z^{H} A Z\right)\right\|_{F}^{2}+\left\|\operatorname{diag}\left(J Z^{H} A Z\right)\right\|_{F}^{2}
$$

(ii) Extract the canonical form,
(iii) Solution is given by $X=Z\left[\searrow \searrow^{H}\right.$.
\rightarrow But this can produce a matrix that is not normal!

THE CLOSEST NORMAL MATRIX

- Let A be Hamiltonian. Analogy with unstructured case:
(i) Find Z that maximizes

$$
f_{\mathcal{H}}(Z)=\left\|\operatorname{diag}\left(Z^{H} A Z\right)\right\|_{F}^{2}+\left\|\operatorname{diag}\left(J Z^{H} A Z\right)\right\|_{F}^{2}
$$

(ii) Extract the canonical form,
(iii) Solution is given by $X=Z\left[\searrow \searrow z^{H}\right.$.
\rightarrow But this can produce a matrix that is not normal!

- We set

$$
f_{\mathcal{D}}(Z)=\left\|\operatorname{diag}\left(Z^{H} A Z\right)\right\|_{F}^{2} .
$$

(i) Find Z that maximizes $f_{\mathcal{D}}$.
(ii) Extract the diagonal.
(iii) Solution is given by $X=Z$

ADDITIONAL ROTATIONS

\rightarrow To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

- Symplectic rotations

$$
R(i, n+i, \phi, 0)=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right] \begin{gathered}
i \\
n+i
\end{gathered}
$$

ADDITIONAL ROTATIONS

\rightarrow To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

- Symplectic rotations

ADDITIONAL ROTATIONS

\rightarrow To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

- Symplectic rotations

$$
R(i, n+i, \phi, 0)=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right] \begin{gathered}
i \\
n+i
\end{gathered}
$$

- Perplectic rotations

$$
R\left(i, 2 n-i+1, \phi,-\frac{\pi}{2}\right)=\left[\begin{array}{cc}
\cos \phi & \imath \sin \phi \\
\imath \sin \phi & \cos \phi
\end{array}\right] \begin{gathered}
i \\
2 n-i+1
\end{gathered}
$$

ADDITIONAL ROTATIONS

\rightarrow To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

- Symplectic rotations

$$
R(i, n+i, \phi, 0)=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right] \begin{gathered}
i \\
n+i
\end{gathered}
$$

- Perplectic rotations

ADDITIONAL ROTATIONS

\rightarrow To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

- Symplectic rotations

$$
R(i, n+i, \phi, 0)=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right] \begin{gathered}
i \\
n+i
\end{gathered}
$$

- Perplectic rotations

$$
R\left(i, 2 n-i+1, \phi,-\frac{\pi}{2}\right)=\left[\begin{array}{cc}
\cos \phi & \imath \sin \phi \\
\imath \sin \phi & \cos \phi
\end{array}\right] \begin{gathered}
i \\
2 n-i+1
\end{gathered}
$$

DIAGONALIZATION ALGORITHM

Jacobi-type algorithm 2

Input: $A \in \mathbb{C}^{2 n \times 2 n} \in \mathcal{S}, Z_{0}=I$
Output: structure-preserving unitary Z
Repeat
Select $\left(i_{k}, j_{k}\right)$. (additional pivot positions are included)
Find ϕ_{k} and α_{k} for $R\left(i_{k}, j_{k}, \phi_{k}, \alpha_{k}\right)$.
$A^{(k+1)}=R_{k}^{H} A^{(k)} R_{k}$
$Z_{k+1}=Z_{k} R_{k}$
UNTIL convergence

DIAGONALIZATION ALGORITHM

Jacobi-type algorithm 2

Input: $A \in \mathbb{C}^{2 n \times 2 n} \in \mathcal{S}, Z_{0}=I$
Output: structure-preserving unitary Z
Repeat
Select $\left(i_{k}, j_{k}\right)$. (additional pivot positions are included)
Find ϕ_{k} and α_{k} for $R\left(i_{k}, j_{k}, \phi_{k}, \alpha_{k}\right)$.

$$
\begin{aligned}
& A^{(k+1)}=R_{k}^{H} A^{(k)} R_{k} \\
& Z_{k+1}=Z_{k} R_{k}
\end{aligned}
$$

UNTIL convergence

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian and let $\left(Z_{k}\right)_{k}$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm with additional rotations. Every accumulation point of $\left(Z_{k}\right)_{k}$ is a stationary point of function $f_{\mathcal{D}}$.

Numerical examples

NUMERICAL EXAMPLES - Canonical form

Random Hamiltonian 20×20 matrix.

NUMERICAL EXAMPLES - Canonical form

Reduction to the canonical form (Algorithm 1) after 10 cycles.

NUMERICAL EXAMPLES - Diagonalization

The same Hamiltonian 20×20 matrix.

NUMERICAL EXAMPLES - Diagonalization

Diagonalization (Algorithm 2) after 10 cycles.

NUMERICAL EXAMPLES - Distance from normal matrix

We take normal Hamiltonian X and set $H=X+E$, such that H is Hamiltonian, but not normal.
Algorithm 2 on H gives its closest normal Y.

NUMERICAL EXAMPLES - Departure from normality

For any matrix A its Schur form

$$
U^{H} A U=T=D+N
$$

exists, where U is unitary, $D=\operatorname{diag}(T)$ and N is strictly upper triangular. The quantity $\Delta(A)=\|N\|_{F}$ is referred to as A 's departure from normality.
We compare $\Delta(H)$ and off $\left(H^{(20)}\right)$ where $H^{(20)}$ is obtained by 20 iterations of Algorithm 2 and $\operatorname{off}(A)=\|A-\operatorname{diag}(A)\|_{F}^{2}$.

Example i	Size of H_{i}	$\Delta\left(H_{i}\right)$	$\operatorname{off}\left(H_{i}^{(20)}\right)$
1	10	$7.1 \cdot 10^{+0}$	$6.4 \cdot 10^{+0}$
2	10	$4.0 \cdot 10^{-3}$	$3.1 \cdot 10^{-3}$
3	20	$3.5 \cdot 10^{-5}$	$3.1 \cdot 10^{-5}$
4	20	$5.3 \cdot 10^{+2}$	$4.4 \cdot 10^{+2}$
5	30	$7.7 \cdot 10^{+0}$	$6.7 \cdot 10^{+0}$
6	30	$1.0 \cdot 10^{-1}$	$9.0 \cdot 10^{-2}$
7	40	$7.9 \cdot 10^{-7}$	$6.6 \cdot 10^{-7}$
8	40	$3.1 \cdot 10^{+3}$	$2.7 \cdot 10^{+3}$
9	50	$1.1 \cdot 10^{-2}$	$9.5 \cdot 10^{-3}$
10	100	$7.8 \cdot 10^{-7}$	$6.8 \cdot 10^{-7}$

NUMERICAL EXAMPLES - Convergence of Algorithm 1

Normal Hamiltonian 20×20

Random Hamiltonian 20×20
$\Gamma(A):=\left\|\operatorname{diag}\left(Z^{H} A Z\right)\right\|_{F}^{2}+\left\|\operatorname{diag}\left(J Z^{H} A Z\right)\right\|_{F}^{2}$

QUESTIONS???

