
Jacobi–type Algorithm for Cosine–Sine

Decomposition
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Introduction



Definition of 2× 1 CS Decomposition

• Orthonormal matrix Q ∈ Rn×m

• 2× 1 block structure

Q =

[
Q1

Q2

]
, Q1 ∈ Rk×m , Q2 ∈ R(n−k)×m

• Assumption m ≤ k and k + m ≤ n

• Matrix Q can be decomposed as

Q =

[
U1 0

0 U2

]
C

0

S

0

V T

where U1, U2, V are orthogonal, C , S are real, diagonal,

non-negative, C 2 + S2 = I
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Definition of 2× 2 CS Decomposition

• Orthogonal matrix Q ∈ Rn×n

• 2× 2 block structure

Q =

[
Q11 Q12

Q21 Q22

]
, Q11 ∈ Rk×m

• Assumption m ≤ k, k + m ≤ n

• Matrix Q can be decomposed as

Q =

[
U1 0

0 U2

]
C −S 0 0

0 0 Ik−m 0

S C 0 0

0 0 0 In−k−m


[
V1 0

0 V2

]T

where U1, U2, V1, V2 are orthogonal, C , S are real, diagonal,

non-negative, C 2 + S2 = I
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Difficulties in computing CS decomposition

• Naive approach does not work

• close singular values

• small singular values
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Difficulties in computing CS decomposition

• Naive approach does not work

• close singular values

• small singular values

Algorithm

1: Use SVD to compute Q1 = U1CV
T

2: Use SVD to compute Q2 = U2SV
T
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Difficulties in computing CS decomposition

• Naive approach does not work

• close singular values

• small singular values

Algorithm

1: Use SVD to compute Q2 = U2SV
T

2: Set X = Q1V

3: Set C = diag(cnorm(X ))

4: Set U1 = XC−1
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Difficulties in computing CS decomposition

• Naive approach does not work

• close singular values

• small singular values

Algorithm

1: Use SVD to compute Q2 = U2SV
T

2: Set X = Q1V

3: Use QR to compute X = U1R

4: Set C = diag(diag(R))
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Existing solutions

• SVD plus corrections by Gilbert W. Stewart in 1982

• SVD plus corrections by Charles Van Loan in 1985

• Sketch of 2× 2 CS decomposition by Vjeran Hari in 2005

• The first 2× 2 CS decomposition by Brian D. Sutton in 2009

• Divide and conquer by Brian D. Sutton in 2013

• Polar decomposition by Evan S. Gawlik et al. in 2018
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Algorithm for 2× 1 CSD



Jacobi–type algorithm

Any algorithm that can be specified by

• subproblem selection

• pivoting strategy

• stopping criterion
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Eigenvalue problem

• Symmetric matrix A ∈ Rn×n

• Select pivoting element (p, q)

• Solve subproblem[
cosϕ − sinϕ

sinϕ cosϕ

]T [
app apq
aqp aqq

][
cosϕ − sinϕ

sinϕ cosϕ

]
=

[
a′pp 0

0 a′qq

]
by solving

tan(2ϕ) =
2apq

a2
pp − a2

qq

for smaller tanϕ and setting

cosϕ =
1√

1 + tan2 ϕ
and sinϕ =

tanϕ√
1 + tan2 ϕ

• Transform A to

A′ = J(p, q, ϕ)TAJ(p, q, ϕ)
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Singular value problem

• Matrix A ∈ Rn×m

• Eigenvalue problem for ATA

• Select columns p and q

• Solve subproblem[
cosϕ − sinϕ

sinϕ cosϕ

]T [
aTp ap aTp aq
aTq ap aTq aq

][
cosϕ − sinϕ

sinϕ cosϕ

]
=

[
a′pp 0

0 a′qq

]
by solving

tan(2ϕ) =
2aTp aq

‖ap‖2 − ‖aq‖2

for smaller tanϕ and setting

cosϕ =
1√

1 + tan2 ϕ
and sinϕ =

tanϕ√
1 + tan2 ϕ

• Transform A to

A′ = AJ(p, q, ϕ)
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CS Decomposition

• Orthonormal matrix Q ∈ Rn×m with 2× 1 block structure

Q =

[
Q1

Q2

]
=:

[
A

B

]
• Select columns p and q

• Solve subproblems[
cosϕ − sinϕ

sinϕ cosϕ

]T [
aTp ap aTp aq
aTq ap aTq aq

][
cosϕ − sinϕ

sinϕ cosϕ

]
=

[
a′pp 0

0 a′qq

]
and[

cosϕ − sinϕ

sinϕ cosϕ

]T [
bTp bp bTp bq
bTq bp bTq bq

][
cosϕ − sinϕ

sinϕ cosϕ

]
=

[
b′pp 0

0 b′qq

]
• Transform Q to

Q ′ = QJ(p, q, ϕ)
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Which subproblem to solve?

• Choose subproblem with smaller Frobenius norm

• Choose subproblem more sensitive to errors in rotation
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Sensitivity

Theorem

Let σ1, σ2 be singular values of matrix
[
x y

]
and let V be the matrix

of its right singular vectors. The angle between columns of the matrix

[
x ′ y ′

]
=
[
x y

]
V

(
I +

[
ε11 −ε12

ε12 ε11

])
, |ε11|, |ε12| ≤ ε

satisfies

cos](x ′, y ′) =
|ε12|

1 + 2ε11

∣∣∣∣σ1

σ2
− σ2

σ1

∣∣∣∣+O(ε2)
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Sensitivity (continued)

• In finite precision arithmetic computed rotation is

V̂ =

[
cosϕ − sinϕ

sinϕ cosϕ

](
I +

[
ε11 −ε12

ε12 ε11

])
, |ε11|, |ε12| ≤ ε

• Transformation with V̂ instead of V gives[
a′p a′q

]
=
[
ap aq

]
V̂ and

[
b′p b′q

]
=
[
bp bq

]
V̂

• Theorem implies

cos](a′p, a
′
q)

cos](b′p, b
′
q)
≈ tan θ1 tan θ2

where cos θ1, cos θ2 are singular values of matrix
[
ap aq

]
and

sin θ1, sin θ2 are singular values of matrix
[
bp bq

]
• Approximate tan θ1 tan θ2 by solving both subproblems
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Pivoting strategy

• Pivot is a pair (p, q)

• Sweep is a sequence of all distinct pivots

• Strategies

• row–cyclic and column–cyclic

• modulus

• Block and hierarchical versions
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Pivoting strategy

• Pivot is a pair (p, q)

• Sweep is a sequence of all distinct pivots

• Strategies

• row–cyclic and column–cyclic

• modulus

• Block and hierarchical versions
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Stopping criteria

• Skip subproblem if it is almost solved[
aTp ap aTp aq
aTq ap aTq aq

]

• small angle between columns

|aTp aq|
‖ap‖‖aq‖

< ε

• computed cosine in rotation equal to 1

• Stop after all pivots in a sweep have been skipped
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Final stage

• When stopped, algorithm has produced

Q =

[
Q1

Q2

]
=

[
Q ′1
Q ′2

]
V T

• Matrix V is obtained by accumulating rotations

• Matrices C and S are obtained by

C = diag(cnorm(Q ′1)) and S = diag(cnorm(Q ′2))

• Matrices U1 and U2 are obtained by

U1 = Q ′1C
−1 and U2 = Q ′2S

−1

• Or by QR factorization of Q1 and Q2
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Accuracy of computed matrices

• Matrices V , C i S are computed accurately

• Matrices U1 and U2 are computed with naive approach

• If stopping criterion in finite precision arithmetic satisfies∣∣∣∣∣
(

ap
‖ap‖

)T
aq
‖aq‖

∣∣∣∣∣ < ε

then matrices U1 and U2 satisfy

‖UT
1 U1 − I‖ = O(ε) and ‖UT

2 U2 − I‖ = O(ε)
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Algorithm for 2× 2 CSD



Generalization of previous algorithm

• Orthogonal matrix Q ∈ Rn×n with 2× 2 block structure

Q =

[
Q11 Q12

Q21 Q22

]

• Previous approach leads to two 2× 1 CS decompositions

• How to merge results?

• Instead, compute one 2× 1 CS decomposition and V2
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Our approach

• The goal is

Q =

[
U1 0

0 U2

]
C −S 0 0

0 0 Ik−m 0

S C 0 0

0 0 0 In−k−m


[
V1 0

0 V2

]T

• Start with 2× 1 CSD of the first block–column of Q

• Write U1 and U2 as

U1 =
[
U11 U12

]
and U2 =

[
U21 U22

]
• Write V2 as

V2 =
[
V21 V22 V23

]
• Then

V21 = −Q∗12U11S
−1 = Q∗22U21C

−1, V22 = Q∗12U12, V23 = Q∗22U22
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Computation of V2

• Decide which expression to use for V21

V21 = −Q∗12U11S
−1 = Q∗22U21C

−1

• Make decision for each column j

• Use first expression if [S ]jj ≥ 1/
√

2, otherwise use second

• Compare it with Sutton’s approach

V2 = −Q∗12U11S + Q∗22U21C

• If 2× 1 CS decomposition is computed backward stably, so is 2× 2

CS decomposition
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Numerical experiments



When is algorithm stable?

• Described by Van Loan in 1982, extended by Sutton in 2009

• Assume

‖QTQ − I‖2 = ε

• Algorithm is stable if computed matrices satisfy

‖UT
1 U1 − I‖2 ≈ ε , ‖UT

2 U2 − I‖2 ≈ ε

‖V T
1 V1 − I‖2 ≈ ε , ‖V T

2 V2 − I‖2 ≈ ε

[
U1 0

0 U2

]T
Q

[
V1 0

0 V2

]
≈


C −S 0 0

0 0 Ik−m 0

S C 0 0

0 0 0 In−k−m
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When is algorithm stable?

• Described by Van Loan in 1982, extended by Sutton in 2009

• Assume

‖QTQ − I‖2 = ε

• Algorithm is stable if computed matrices satisfy

‖UT
1 U1 − I‖2 ≈ ε , ‖UT

2 U2 − I‖2 ≈ ε

‖V T
1 V1 − I‖2 ≈ ε , ‖V T

2 V2 − I‖2 ≈ ε∥∥∥∥∥UT
1 Q11V1 −

[
C

0

]∥∥∥∥∥
2

≈ ε ,

∥∥∥∥∥UT
1 Q12V2 −

[
−S 0 0

0 Ik−m 0

]∥∥∥∥∥
2

≈ ε

∥∥∥∥∥UT
2 Q21V1 −

[
S

0

]∥∥∥∥∥
2

≈ ε ,

∥∥∥∥∥UT
2 Q22V2 −

[
C 0 0

0 0 In−k−m

]∥∥∥∥∥
2

≈ ε
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Examples

• First extensive testing was done by Sutton in 2009

• Haar measure

[Q, ] = qr(randn(n))

Q = Q * diag(sign(randn(n, 1)))

• Clusters of singular values

delta = 10.^(-18*rand(n/2+1, 1))

theta = pi/2 * cumsum(delta(1:n half)) / sum(delta)

C = diag(cos(theta))

S = diag(sin(theta))
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Results

• Ratio of maximal error and ‖QTQ − I‖2

• Repeated 50 times for each dimension

• Results for Haar measure

small norm more sensitive

n max err mean err max err mean err

8 6.3299 1.6650 3.4773 1.7572

16 3.5957 2.1857 4.0737 2.1895

32 4.8882 3.1968 5.9868 3.3542

64 7.5288 5.0814 6.3542 5.2818

128 16.1404 9.7910 16.1378 9.8586

256 28.4062 21.6186 31.5716 21.8330
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Results

• Ratio of maximal error and ‖QTQ − I‖2

• Repeated 50 times for each dimension

• Results for clusters of singular values

small norm more sensitive

n max err mean err max err mean err

8 2.6013 1.4913 2.7823 1.2905

16 3.1457 2.0416 4.0652 2.2305

32 6.2167 3.7636 5.6218 3.8143

64 9.7981 7.2262 11.0153 7.1827

128 22.3003 14.1390 21.3632 14.1483

256 43.0313 28.1370 47.9561 27.5747
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Conclusion



Conclusion and future work

• Conclusion

• Development of a new algorithm for 2× 1 CS decomposition

• Construction of Jacobi rotations

• Analysis of stopping criterion

• Modification of an algorithm for 2× 2 CS decomposition

• Future work

• Generalization to unitary matrices

• Block and parallel version
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Thank you for your attention!
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