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Introduction

Outline of the talk:
I description of the problem,
I brief description of the two-sided Hari–Zimmermann (HZ)

algorithm for the GEP,
I implementation details of the parallel algorithm,
I partial results of numerical testing.



DFT – Density Functional Theory

Density Functional Theory framework

I is used in simulation of the physical properties of complex
quantum mechanical systems made of few dozens up to few
hundreds of atoms

I the core of the method relies on the simultaneous solution of a
set of Schrödinger–like equations also known as Kohn–Sham
equations

I there exists a wide variety of approaches that can be used to
“translate” the DFT mathematical layout into a computational
tool.



FLAPW method

Full-potential Linearized Augmented Plane Wave (FLAPW)
method
I FLAPW method is one od the most accurate methods —

particular discretization of the DFT fundamental equations
I FLAPW is all-electron method — it explicitly describes all of

the (potentially large number of) electrons in the material with
a much larger number of basis function

I it is a quite computationally expensive method.



FLAPW method

Full-potential Linearized Augmented Plane Wave (FLAPW)
method
I the discretization in FLAPW method leads to the solution of

the generalized eigenvalue problem for matrices (H,S), where

H =

NA∑
a=1

(A∗
aT

[AA]Aa + A∗
aT

[AB]Ba

+ B∗
aT

[BA]Aa + B∗
aT

[BB]Ba)

S =

NA∑
a=1

(A∗
aAa + B∗

aU
∗
aUaBa),

where Aa,Ba ∈ CNL×NG , T [··· ]
a ∈ CNL×NL , U ∈ CNL×NL is a

diagonal matrix, while
(T [AA])∗ = T [AA], (T [BB])∗ = T [BB], and (T [AB])∗ = T [BA].



Problem sizes

Typical matrix sizes

I NA = O(100), NG = O(1000)–O(10000), and NL = O(100)

I test examples NaCl – NA = 512, NL = 49
I NG = 2256, NG = 3893, NG = 6217, NG = 9273

I test examples AuAg – NA = 128, NL = 121
I NG = 3275, NG = 5638, NG = 8970, NG = 13379.



Computation of H and S

Proposed by Fabregat–Traver at al.

I write H as H = HAA + HAB+BA+BB

HAA =

NA∑
a=1

A∗
aT

[AA]Aa

HAB+BA+BB =

NA∑
a=1

(
B∗
aT

[BA]Aa + A∗
aT

[AB]Ba + B∗
aT

[BB]Ba

)

=

NA∑
a=1

(B∗
aZa + Z ∗

aBa)

(ZHER2Ks!), where

Za = T [BA]Aa +
1
2
T [BB]Ba.



Modification?

Why

I the algorithm proposed by Fabregat–Traver at al. computes in
parallel only H and S — then use any GEVD,

I intention to keep matrices in a factored form – ideal for
parallelization of the GEVD

I usage of one-sided methods — faster than the two-sided
methods — columnwise action

I such approach usually computes small eigenvalues more
accurately

I similar algorithm for the (real) generalized SVD is
approximately 125 times faster than the LAPACK routine with
theaded MKL.



Transform the problem!

Transformed problem

I by using the properties of matrices T [··· ] it is obvious that the
problem can be written as

H =

NA∑
a=1

[
A∗
a B∗

a

] [ T [AA] T [AB]

(T [AB])∗ T [BB]

] [
Aa

Ba

]
:=

n∑
k=1

H∗
kTkHk ,

S =

NA∑
a=1

[
A∗
a B∗

aU
∗
a

] [ Aa

UaBa

]
:=

n∑
k=1

S∗
kSk .



Transform the problem!

. . . or as products of three (two) matices

H =
[
H∗
1 · · · H∗

n

] T1
. . .

Tn


H1

...
Hn

 := F̃ ∗TF̃

S =
[
S∗
1 · · · S∗

n

] S1...
Sn

 := G ∗G .

Matrix sizes
I Hk , Sk ∈ C(2NL)×NG , Tk ∈ C(2NL)×(2NL),
I F ,G ∈ C(2NANL)×NG , T ∈ C(2NANL)×(2NANL).



Transform the problem!

Make T simpler

I the method can be applied even on already described matrices
F̃ , G and T implicitely, but multiplication by T is slow

I T should be either factored (for example by using somewhat
modified Hermitian indefinite factorization), or diagonalized
(simultaneous diagonalization of Tks) — diagonalization is too
slow

I therefore, H is written as

H := F ∗JF , J = diag(±1).



The complex Hari–Zimmermann method for the GEP

One-sided vs. two-sided method
I the original Hari–Zimmerman method works from both sides

on the Hermitian matrix pair
I the modified method works from one side on the factors of the

Hermitian matrix pair
I idea: think two-sided, act one-sided
I transformations will be computed from the pivot submatrices

Hpq of H and Spq of S

Hpq =

[
F ∗
p JFp F ∗

p JFq
F ∗
q JFq

]
, Spq =

[
G ∗
pGp G ∗

pGq

G ∗
qGq

]
.



The complex Hari–Zimmermann method for the GEP

The method consists of 3 transformations (Hari)

I as a preprocessing step H and S can be scaled by the diagonal
matrix D such that diag(DSD) = I

H0 := DHD, S0 := DSD,

D = diag

(
1
√
s11

,
1
√
s22

, . . . ,
1
√
snn

)

I in the first step the pivot submatrix Ŝ0 of S0 is diagonalized by
the complex rotation

R̂1 =

[
cosϕ1 e iβ1 sinϕ1

−e−iβ1 sinϕ1 cosϕ1

]
,



The complex Hari–Zimmermann method for the GEP

The transformations
I the first transformation is

H1 = R∗
1H0R1, S1 = R∗

1S0R1,

R1 = I except at the pivot positions, where R1 = R̂1.
I if H and S are preprocessed, then ϕ1 = −π

4
I in the second step – the diagonal of S1 is rescaled to I

I this transformation is similar to the preprocessing step

H2 := D2H1D2, S2 := D2S1D2.



The complex Hari–Zimmermann method for the GEP

The transformations
I in the third step the pivot submatrix Ĥ2 of H2 is diagonalized

by the complex rotation

R̂3 =

[
cosϕ3 e iα3 sinϕ3

−e−iα3 sinϕ3 cosϕ3

]
,

I the third transformation is

H3 = R∗
3H2R3, S3 = R∗

3S2R3,

R3 = I except at the pivot positions, where R3 = R̂3.
I if H and S are preprocessed, then ϕ3 = ϑ+ π

4 .



The complex Hari–Zimmermann method for the GEP

The transformations
I note that after the first three steps, the pivot submatrix Ŝ3 is

still diagonal (in fact identity)

Ŝ3 = Ẑ ∗Ŝ Ẑ , Ẑ = R̂1D̂2R̂3

I if H and S are preprocessed, the fourth step is only formal —
it helps in coupling together all the transformations

H4 = Φ∗
4H3Φ4, S4 = Φ∗

4S3Φ4, Φ̂4 = diag(e−iσp , e−iσq).



The complex Hari–Zimmermann method for the GEP

The coupled transformation Z . . .

I looks similar to an ordinary plane rotation: it is the identity
matrix, except for its (p, q)-restriction Ẑ , where

Ẑ =
1√

1−
(
|spq|

)2
[

cosϕ e iα sinϕ
−e−iβ sinψ cosψ

]
,

I ϕ and ψ are determined so that the transformations
diagonalize the pivot submatrices Ĥ and Ŝ

I the transformation keeps the diagonal elements of S intact
I if S = I then Z is the ordinary rotation, the method is the

ordinary Jacobi method for a single matrix.



The Hari–Zimmermann method for the GEP

Computation of the elements of Ẑ

I let

s = |spq|, t =
√

1− s2, r = sqq − spp,

σ =

{
1 e ≥ 0
−1 e < 0,

, u + iv = e−i arg(spq)hpq,

I then if γ = α− β

tan(γ) = 2
v

r
, −π

2
≤ γ ≤ π

2

tan(2ϑ) = σ
2u − (hpp + hqq)s√

e2 + 4v2 · t
, −π

4
< ϑ ≤ π

4



The Hari–Zimmermann method for the GEP

Computation of the elements of Ẑ

I and

2 cos2 ϕ = 1 + s sin(2ϑ) + t cos(2ϑ) cos(γ), 0 ≤ ϕ < π

2

2 cos2 ψ = 1− s sin(2ϑ) + t cos(2ϑ) cos(γ), 0 ≤ ψ < π

2

e iα sin(ϕ) =
(sin(2ϑ)− s) + i

√
1− s2 sin(γ) cos(2ϑ)

1− s sin(2ϑ) +
√
1− s2 cos(γ) cos(2ϑ)

e−iβ sin(ψ) =
(sin(2ϑ) + s)− i

√
1− s2 sin(γ) cos(2ϑ)

1 + s sin(2ϑ) +
√
1− s2 cos(γ) cos(2ϑ)

.



The pointwise algorithm

The implicit HZ algorithm

Z = I ; it = 0
repeat // sweep loop
it = it + 1
for all pairs (p, q), 1 ≤ p < q ≤ k

compute

Ĥ =

[
f ∗p Jfp f ∗p Jfq

f ∗q Jfq

]
; Ŝ =

[
g∗
pgp g∗

pgq
g∗
qgq

]
compute the elements of Ẑ

// transform F , G and Z

[fp, fq] = [fp, fq] · Ẑ
[gp, gq] = [gp, gq] · Ẑ
[zp, zq] = [zp, zq] · Ẑ

until (no transf. in this sweep) or (it ≥ maxcyc)



Hardware platform

Developer Edition of the Intel Xeon Phi 7210 (KNL) processor

I 96 GB of RAM per node,
I 64 cores per node,
I clock 1.30 GHz (Turbo Boost off),
I Intel AVX-512 (Advanced Vector Extensions) instruction set
I presence of two vector processing units (VPUs) per core —

each VPU operates independently on 512-bit vector registers –
suitable for simultaneous processing of 16 single precision
or 8 double precision numbers.



The first step

Hermitian indefinite factorization of all Tk ’s

I for all Tk’s do in parallel

Tk = PT
k R∗

kDkRkPk ,

Pk is a permutation matrix – formed as in LAPACK
(as a sequence of partial permutations),

Dk is block diagonal, with 1× 1 or 2× 2 diagonal blocks,
Rk is upper triangular

I diagonalize all Dk’s in parallel

Dk = U∗
k∆kUk = U∗

k

√
|∆k |Jk

√
|∆k |Uk ,

∆k diagonal, Uk block-diagonal, unitary, Jk = diag(±1),



The first step (cnt’d)

I for all Jk repermute them in parallel

Jk := P̃T
k diag(I ,−I )P̃k

P̃k is a permutation,
I multiply rows of all Rk and repermute them

Rk = P̃k

√
|∆k |Uk

I repremute columns of all Rk according to
pemutations stored in Pk

Rk := RkPk .



The first step (cnt’d)

Final state

Tk = R∗
k diag(I ,−I )Rk , k = 1, . . . , n.

Comments
I in the first step, the factorization is sequential for each Tk

I each physical core of the Xeon Phi deals with one or more Tk

in turn (OpenMP parallel do over all Tk)
I each core can use its own 1–4 hyperthreads in a call of the

threaded BLAS routines – therefore even per core algoritm is
somewhat parallel – but do not use hyperthreading, since. . .



1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273
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1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273
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1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273
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1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273
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1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273
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1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273
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1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273
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1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273
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The second and the optional step

Form J , F and G

I store J = diag(J1, . . . , Jn),
I multiply F = diag(R1, . . . ,Rn)F, each Rk in parallel
I scale Bk by Uk in parallel and store G

Optional step — make J , F and G square

I square matrix – faster HZ algorithm
I this step is the hyperbolic QR factorization on F and the QR

factorization on G – both algorithms moderately parallel
I pivoting strategy – partial pivoting?, threshold pivoting?
I usage of (block)-reflectors or (block)-rotations?
I do it or not – depends on the ratio (number of rows) /

(number of columns) of F and G



Driver level of the implicit HZ algorithm

Details of the level-2 algorithm

I algorithm is Generalized Hyperbolic SVD of (F ,G ) with
respect to J

I matrices F and G are divided in even number of
block-columns

F = [F1, . . . ,F2b], G = [G1, . . . ,G2b]

I number of block-columns depend on the number of physical
cores of the processor (our case: 64 cores = maximum 128
blocks, no hyperthreading)

I each thread is connected to one physical core.



Driver level of the implicit HZ algorithm

Each thread . . .
I works on a pair of block-columns of each matrix given by some

parallel pivot strategy
I allocates storage for [Fp,Fq], [Gp,Gq], their “shadow”

counterparts, and for the part of the transformation matrix
I “shadow” memory — used for scaling by Jk and data exchange
I since architecture is NUMA (Non Uniform Memory Access),

columns are also physically copied to “shadow” memory
(alternative: reassignment of pointers)

I allocates square space in fast MCDRAM for computation of
the transformation Zpq and the pivot block submatrices Hpq

and Spq.



Pivoting strategy

Parallel pivoting strategy

I Choose pivot blocks independently in each step, for example,
by using (block)-modulus strategy (not optimal!)

3 4 k 1

2

3

k-2

k-1

k-2

3 4 k 1

2

3

k-1

I stopping criterion
I skip a transformation if cosines are 1
I final stop — all transformations are skipped.



Driver level of the implicit HZ algorithm

Each thread . . .
I actually computes Hpq and Spq (ZGEMM and ZHERK)
I factorizes Hpq and Spq by the Hermitian indefinite

factorization (test of definiteness of Spq)

Hpq = F ∗
pqJpqFpq, Spq = G ∗

pqGpq,

where Fpq, Gpq, and Jpq are square
I calls level-1 (non-blocked routine) on the triplet (Fpq,Gpq, Jpq)

I applies transformation matrix to original Fpq, Gpq, and Zpq

(ZGEMMs)
I transfers one triplet of (F`,G`,Z`), ` ∈ {p, q} to the next

“owner” (thread) into its “shadow” memory.



Computational level of the implicit HZ algorithm

Details of the level-1 algorithm

I single-threaded (including BLAS calls) SIMD-parallel code,
I the main loop — sweep iterations (1, m, until convergence)
I parallel pivot strategy determines maximal number of

independent pivot pairs — stage of the algorithm
I in each stage — pairs are divided into groups of 8 pairs

(AVX-512 instructions)
I compute 6 dot products (vectorized + reductions) with only 4

accesses of fp, fq, gp, and gq:

Ĥpq =

[
f ∗p Jpfp f ∗p Jqfq

f ∗q Jqfq

]
, Ŝpq =

[
g∗
pgp g∗

pgq
g∗
qgq

]
,



Computational level of the implicit HZ algorithm

Details of the level-1 algorithm

I an example: the dot products are computed without BLAS to
avoid function calls (slow!)

I computing transformation matrices for 8 pairs simultaneously
I transformations to 8 column pairs (fp, fq), (gp, gq), (zp, zq) are

applied sequentially for each pair (cache!)



Distribution of eigenvalues – NaCl
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Distribution of eigenvalues – AuAg
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Timings

Number of cores
Example Problem size 64 32

NaCl 2.5 50176× 2256 800.70 556.95
NaCl 3.0 50176× 3893 1973.64 1465.68
NaCl 3.5 50176× 6217 2810.50 3660.44
NaCl 4.0 50176× 9273 4846.98 7028.50

AuAg 2.5 26136× 3275 724.20 587.23
AuAg 3.0 26136× 5638 1549.92 1715.60
AuAg 3.5 26136× 8970 3152.78 4711.65
AuAg 4.0 26136× 13379 6544.16 11955.74



Conclusion

On a particular hardware testing space is enormous

I use Quadrant or SNC-4 clustering mode?
I in a single step — transform columns only once (block-oriented

algorithm) or fully diagonalize them (full block algorithm)
I best pivoting strategy?
I is there need to shorten the columns by the hyperbolic QR

factorization, and is there a switching point (use them or not)
. . .

Work in progress

I only lower 20% of the eigenvalues are needed
I is there any sufficiently parallel algorithm to compute them

(without multiplication of the factors)?


