
Parallel solution of the generalized eigenvalue
problem given in a factored form

Edoardo di Napoli1, Vedran Novaković2, Gayatri Čaklović3, Sanja Singer4

1Jülich Supercomputing Centre, and RWTH Aachen, Germany
2Universitat Jaume I, Castellón de la Plana, Spain

3M.S. student at Faculty of Science, Department of Mathematics, University of Zagreb, Croatia
4Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia

10th International Workshop on Parallel Matrix Algorithms and Applications
PMAA18,

June 27–29, 2018, Zürich, Switzerland

This work has been supported in part by
Croatian Science Foundation under the project IP–2014–09–3670.

Introduction

Outline of the talk:
I description of the problem,
I brief description of the two-sided Hari–Zimmermann (HZ)

algorithm for the GEP,
I implementation details of the parallel algorithm,
I partial results of numerical testing.

DFT – Density Functional Theory

Density Functional Theory framework

I is used in simulation of the physical properties of complex
quantum mechanical systems made of few dozens up to few
hundreds of atoms

I the core of the method relies on the simultaneous solution of a
set of Schrödinger–like equations also known as Kohn–Sham
equations

I there exists a wide variety of approaches that can be used to
“translate” the DFT mathematical layout into a computational
tool.

FLAPW method

Full-potential Linearized Augmented Plane Wave (FLAPW)
method
I FLAPW method is one od the most accurate methods —

particular discretization of the DFT fundamental equations
I FLAPW is all-electron method — it explicitly describes all of

the (potentially large number of) electrons in the material with
a much larger number of basis function

I it is a quite computationally expensive method.

FLAPW method

Full-potential Linearized Augmented Plane Wave (FLAPW)
method
I the discretization in FLAPW method leads to the solution of

the generalized eigenvalue problem for matrices (H,S), where

H =

NA∑
a=1

(A∗
aT

[AA]Aa + A∗
aT

[AB]Ba

+ B∗
aT

[BA]Aa + B∗
aT

[BB]Ba)

S =

NA∑
a=1

(A∗
aAa + B∗

aU
∗
aUaBa),

where Aa,Ba ∈ CNL×NG , T [···]
a ∈ CNL×NL , U ∈ CNL×NL is a

diagonal matrix, while
(T [AA])∗ = T [AA], (T [BB])∗ = T [BB], and (T [AB])∗ = T [BA].

Problem sizes

Typical matrix sizes

I NA = O(100), NG = O(1000)–O(10000), and NL = O(100)

I test examples NaCl – NA = 512, NL = 49
I NG = 2256, NG = 3893, NG = 6217, NG = 9273

I test examples AuAg – NA = 128, NL = 121
I NG = 3275, NG = 5638, NG = 8970, NG = 13379.

Computation of H and S

Proposed by Fabregat–Traver at al.

I write H as H = HAA + HAB+BA+BB

HAA =

NA∑
a=1

A∗
aT

[AA]Aa

HAB+BA+BB =

NA∑
a=1

(
B∗
aT

[BA]Aa + A∗
aT

[AB]Ba + B∗
aT

[BB]Ba

)

=

NA∑
a=1

(B∗
aZa + Z ∗

aBa)

(ZHER2Ks!), where

Za = T [BA]Aa +
1
2
T [BB]Ba.

Modification?

Why

I the algorithm proposed by Fabregat–Traver at al. computes in
parallel only H and S — then use any GEVD,

I intention to keep matrices in a factored form – ideal for
parallelization of the GEVD

I usage of one-sided methods — faster than the two-sided
methods — columnwise action

I such approach usually computes small eigenvalues more
accurately

I similar algorithm for the (real) generalized SVD is
approximately 125 times faster than the LAPACK routine with
theaded MKL.

Transform the problem!

Transformed problem

I by using the properties of matrices T [···] it is obvious that the
problem can be written as

H =

NA∑
a=1

[
A∗
a B∗

a

] [T [AA] T [AB]

(T [AB])∗ T [BB]

] [
Aa

Ba

]
:=

n∑
k=1

H∗
kTkHk ,

S =

NA∑
a=1

[
A∗
a B∗

aU
∗
a

] [Aa

UaBa

]
:=

n∑
k=1

S∗
kSk .

Transform the problem!

. . . or as products of three (two) matices

H =
[
H∗
1 · · · H∗

n

] T1
. . .

Tn

H1

...
Hn

 := F̃ ∗TF̃

S =
[
S∗
1 · · · S∗

n

] S1...
Sn

 := G ∗G .

Matrix sizes
I Hk , Sk ∈ C(2NL)×NG , Tk ∈ C(2NL)×(2NL),
I F ,G ∈ C(2NANL)×NG , T ∈ C(2NANL)×(2NANL).

Transform the problem!

Make T simpler

I the method can be applied even on already described matrices
F̃ , G and T implicitely, but multiplication by T is slow

I T should be either factored (for example by using somewhat
modified Hermitian indefinite factorization), or diagonalized
(simultaneous diagonalization of Tks) — diagonalization is too
slow

I therefore, H is written as

H := F ∗JF , J = diag(±1).

The complex Hari–Zimmermann method for the GEP

One-sided vs. two-sided method
I the original Hari–Zimmerman method works from both sides

on the Hermitian matrix pair
I the modified method works from one side on the factors of the

Hermitian matrix pair
I idea: think two-sided, act one-sided
I transformations will be computed from the pivot submatrices

Hpq of H and Spq of S

Hpq =

[
F ∗
p JFp F ∗

p JFq
F ∗
q JFq

]
, Spq =

[
G ∗
pGp G ∗

pGq

G ∗
qGq

]
.

The complex Hari–Zimmermann method for the GEP

The method consists of 3 transformations (Hari)

I as a preprocessing step H and S can be scaled by the diagonal
matrix D such that diag(DSD) = I

H0 := DHD, S0 := DSD,

D = diag

(
1
√
s11

,
1
√
s22

, . . . ,
1
√
snn

)

I in the first step the pivot submatrix Ŝ0 of S0 is diagonalized by
the complex rotation

R̂1 =

[
cosϕ1 e iβ1 sinϕ1

−e−iβ1 sinϕ1 cosϕ1

]
,

The complex Hari–Zimmermann method for the GEP

The transformations
I the first transformation is

H1 = R∗
1H0R1, S1 = R∗

1S0R1,

R1 = I except at the pivot positions, where R1 = R̂1.
I if H and S are preprocessed, then ϕ1 = −π

4
I in the second step – the diagonal of S1 is rescaled to I

I this transformation is similar to the preprocessing step

H2 := D2H1D2, S2 := D2S1D2.

The complex Hari–Zimmermann method for the GEP

The transformations
I in the third step the pivot submatrix Ĥ2 of H2 is diagonalized

by the complex rotation

R̂3 =

[
cosϕ3 e iα3 sinϕ3

−e−iα3 sinϕ3 cosϕ3

]
,

I the third transformation is

H3 = R∗
3H2R3, S3 = R∗

3S2R3,

R3 = I except at the pivot positions, where R3 = R̂3.
I if H and S are preprocessed, then ϕ3 = ϑ+ π

4 .

The complex Hari–Zimmermann method for the GEP

The transformations
I note that after the first three steps, the pivot submatrix Ŝ3 is

still diagonal (in fact identity)

Ŝ3 = Ẑ ∗Ŝ Ẑ , Ẑ = R̂1D̂2R̂3

I if H and S are preprocessed, the fourth step is only formal —
it helps in coupling together all the transformations

H4 = Φ∗
4H3Φ4, S4 = Φ∗

4S3Φ4, Φ̂4 = diag(e−iσp , e−iσq).

The complex Hari–Zimmermann method for the GEP

The coupled transformation Z . . .

I looks similar to an ordinary plane rotation: it is the identity
matrix, except for its (p, q)-restriction Ẑ , where

Ẑ =
1√

1−
(
|spq|

)2
[

cosϕ e iα sinϕ
−e−iβ sinψ cosψ

]
,

I ϕ and ψ are determined so that the transformations
diagonalize the pivot submatrices Ĥ and Ŝ

I the transformation keeps the diagonal elements of S intact
I if S = I then Z is the ordinary rotation, the method is the

ordinary Jacobi method for a single matrix.

The Hari–Zimmermann method for the GEP

Computation of the elements of Ẑ

I let

s = |spq|, t =
√

1− s2, r = sqq − spp,

σ =

{
1 e ≥ 0
−1 e < 0,

, u + iv = e−i arg(spq)hpq,

I then if γ = α− β

tan(γ) = 2
v

r
, −π

2
≤ γ ≤ π

2

tan(2ϑ) = σ
2u − (hpp + hqq)s√

e2 + 4v2 · t
, −π

4
< ϑ ≤ π

4

The Hari–Zimmermann method for the GEP

Computation of the elements of Ẑ

I and

2 cos2 ϕ = 1 + s sin(2ϑ) + t cos(2ϑ) cos(γ), 0 ≤ ϕ < π

2

2 cos2 ψ = 1− s sin(2ϑ) + t cos(2ϑ) cos(γ), 0 ≤ ψ < π

2

e iα sin(ϕ) =
(sin(2ϑ)− s) + i

√
1− s2 sin(γ) cos(2ϑ)

1− s sin(2ϑ) +
√
1− s2 cos(γ) cos(2ϑ)

e−iβ sin(ψ) =
(sin(2ϑ) + s)− i

√
1− s2 sin(γ) cos(2ϑ)

1 + s sin(2ϑ) +
√
1− s2 cos(γ) cos(2ϑ)

.

The pointwise algorithm

The implicit HZ algorithm

Z = I ; it = 0
repeat // sweep loop
it = it + 1
for all pairs (p, q), 1 ≤ p < q ≤ k

compute

Ĥ =

[
f ∗p Jfp f ∗p Jfq

f ∗q Jfq

]
; Ŝ =

[
g∗
pgp g∗

pgq
g∗
qgq

]
compute the elements of Ẑ

// transform F , G and Z

[fp, fq] = [fp, fq] · Ẑ
[gp, gq] = [gp, gq] · Ẑ
[zp, zq] = [zp, zq] · Ẑ

until (no transf. in this sweep) or (it ≥ maxcyc)

Hardware platform

Developer Edition of the Intel Xeon Phi 7210 (KNL) processor

I 96 GB of RAM per node,
I 64 cores per node,
I clock 1.30 GHz (Turbo Boost off),
I Intel AVX-512 (Advanced Vector Extensions) instruction set
I presence of two vector processing units (VPUs) per core —

each VPU operates independently on 512-bit vector registers –
suitable for simultaneous processing of 16 single precision
or 8 double precision numbers.

The first step

Hermitian indefinite factorization of all Tk ’s

I for all Tk’s do in parallel

Tk = PT
k R∗

kDkRkPk ,

Pk is a permutation matrix – formed as in LAPACK
(as a sequence of partial permutations),

Dk is block diagonal, with 1× 1 or 2× 2 diagonal blocks,
Rk is upper triangular

I diagonalize all Dk’s in parallel

Dk = U∗
k∆kUk = U∗

k

√
|∆k |Jk

√
|∆k |Uk ,

∆k diagonal, Uk block-diagonal, unitary, Jk = diag(±1),

The first step (cnt’d)

I for all Jk repermute them in parallel

Jk := P̃T
k diag(I ,−I)P̃k

P̃k is a permutation,
I multiply rows of all Rk and repermute them

Rk = P̃k

√
|∆k |Uk

I repremute columns of all Rk according to
pemutations stored in Pk

Rk := RkPk .

The first step (cnt’d)

Final state

Tk = R∗
k diag(I ,−I)Rk , k = 1, . . . , n.

Comments
I in the first step, the factorization is sequential for each Tk

I each physical core of the Xeon Phi deals with one or more Tk

in turn (OpenMP parallel do over all Tk)
I each core can use its own 1–4 hyperthreads in a call of the

threaded BLAS routines – therefore even per core algoritm is
somewhat parallel – but do not use hyperthreading, since. . .

1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273

0 100 200 300 400 500 600

atom

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055
ti
m

e
 [
s
]

NaCl 4.0 on phi01 in Quadrant mode with 1 thread (HT OFF) per core and 64 cores

ZHEBPC

ZGEMM

ZDSCAL

1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273

0 100 200 300 400 500 600

atom

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
ti
m

e
 [

s
]

NaCl 4.0 on phi01 in Quadrant mode with 1 thread per core and 64 cores

ZHEBPC

ZGEMM

ZDSCAL

1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273

0 100 200 300 400 500 600

atom

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
ti
m

e
 [

s
]

NaCl 4.0 on phi01 in Quadrant mode with 2 threads per core and 64 cores

ZHEBPC

ZGEMM

ZDSCAL

1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273

0 100 200 300 400 500 600

atom

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ti
m

e
 [
s
]

NaCl 4.0 on phi01 in Quadrant mode with 4 threads per core and 64 cores

ZHEBPC

ZGEMM

ZDSCAL

1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273

0 100 200 300 400 500 600

atom

0

0.01

0.02

0.03

0.04

0.05

0.06
ti
m

e
 [

s
]

NaCl 4.0 on phi02 in SNC-4 mode with 1 thread (HT OFF) per core and 64 cores

ZHEBPC

ZGEMM

ZDSCAL

1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273

0 100 200 300 400 500 600

atom

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
ti
m

e
 [

s
]

NaCl 4.0 on phi02 in SNC-4 mode with 1 thread per core and 64 cores

ZHEBPC

ZGEMM

ZDSCAL

1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273

0 100 200 300 400 500 600

atom

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
ti
m

e
 [

s
]

NaCl 4.0 on phi02 in SNC-4 mode with 2 threads per core and 64 cores

ZHEBPC

ZGEMM

ZDSCAL

1, 2 or 4 threads, NaCl, NL = 49, NA = 512, NG = 9273

0 100 200 300 400 500 600

atom

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
ti
m

e
 [

s
]

NaCl 4.0 on phi02 in SNC-4 mode with 4 threads per core and 64 cores

ZHEBPC

ZGEMM

ZDSCAL

The second and the optional step

Form J , F and G

I store J = diag(J1, . . . , Jn),
I multiply F = diag(R1, . . . ,Rn)F, each Rk in parallel
I scale Bk by Uk in parallel and store G

Optional step — make J , F and G square

I square matrix – faster HZ algorithm
I this step is the hyperbolic QR factorization on F and the QR

factorization on G – both algorithms moderately parallel
I pivoting strategy – partial pivoting?, threshold pivoting?
I usage of (block)-reflectors or (block)-rotations?
I do it or not – depends on the ratio (number of rows) /

(number of columns) of F and G

Driver level of the implicit HZ algorithm

Details of the level-2 algorithm

I algorithm is Generalized Hyperbolic SVD of (F ,G) with
respect to J

I matrices F and G are divided in even number of
block-columns

F = [F1, . . . ,F2b], G = [G1, . . . ,G2b]

I number of block-columns depend on the number of physical
cores of the processor (our case: 64 cores = maximum 128
blocks, no hyperthreading)

I each thread is connected to one physical core.

Driver level of the implicit HZ algorithm

Each thread . . .
I works on a pair of block-columns of each matrix given by some

parallel pivot strategy
I allocates storage for [Fp,Fq], [Gp,Gq], their “shadow”

counterparts, and for the part of the transformation matrix
I “shadow” memory — used for scaling by Jk and data exchange
I since architecture is NUMA (Non Uniform Memory Access),

columns are also physically copied to “shadow” memory
(alternative: reassignment of pointers)

I allocates square space in fast MCDRAM for computation of
the transformation Zpq and the pivot block submatrices Hpq

and Spq.

Pivoting strategy

Parallel pivoting strategy

I Choose pivot blocks independently in each step, for example,
by using (block)-modulus strategy (not optimal!)

3 4 k 1

2

3

k-2

k-1

k-2

3 4 k 1

2

3

k-1

I stopping criterion
I skip a transformation if cosines are 1
I final stop — all transformations are skipped.

Driver level of the implicit HZ algorithm

Each thread . . .
I actually computes Hpq and Spq (ZGEMM and ZHERK)
I factorizes Hpq and Spq by the Hermitian indefinite

factorization (test of definiteness of Spq)

Hpq = F ∗
pqJpqFpq, Spq = G ∗

pqGpq,

where Fpq, Gpq, and Jpq are square
I calls level-1 (non-blocked routine) on the triplet (Fpq,Gpq, Jpq)

I applies transformation matrix to original Fpq, Gpq, and Zpq

(ZGEMMs)
I transfers one triplet of (F`,G`,Z`), ` ∈ {p, q} to the next

“owner” (thread) into its “shadow” memory.

Computational level of the implicit HZ algorithm

Details of the level-1 algorithm

I single-threaded (including BLAS calls) SIMD-parallel code,
I the main loop — sweep iterations (1, m, until convergence)
I parallel pivot strategy determines maximal number of

independent pivot pairs — stage of the algorithm
I in each stage — pairs are divided into groups of 8 pairs

(AVX-512 instructions)
I compute 6 dot products (vectorized + reductions) with only 4

accesses of fp, fq, gp, and gq:

Ĥpq =

[
f ∗p Jpfp f ∗p Jqfq

f ∗q Jqfq

]
, Ŝpq =

[
g∗
pgp g∗

pgq
g∗
qgq

]
,

Computational level of the implicit HZ algorithm

Details of the level-1 algorithm

I an example: the dot products are computed without BLAS to
avoid function calls (slow!)

I computing transformation matrices for 8 pairs simultaneously
I transformations to 8 column pairs (fp, fq), (gp, gq), (zp, zq) are

applied sequentially for each pair (cache!)

Distribution of eigenvalues – NaCl

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
-20

-15

-10

-5

0

5

10

15

20

g
e
n
e
r
a
l
i
z
e
d

e
i
g
e
n
v
a
l
u
e

Distribution of eigenvalues – AuAg

0 2000 4000 6000 8000 10000 12000
-500

0

500

1000

g
e
n
e
r
a
l
i
z
e
d

e
i
g
e
n
v
a
l
u
e

Timings

Number of cores
Example Problem size 64 32

NaCl 2.5 50176× 2256 800.70 556.95
NaCl 3.0 50176× 3893 1973.64 1465.68
NaCl 3.5 50176× 6217 2810.50 3660.44
NaCl 4.0 50176× 9273 4846.98 7028.50

AuAg 2.5 26136× 3275 724.20 587.23
AuAg 3.0 26136× 5638 1549.92 1715.60
AuAg 3.5 26136× 8970 3152.78 4711.65
AuAg 4.0 26136× 13379 6544.16 11955.74

Conclusion

On a particular hardware testing space is enormous

I use Quadrant or SNC-4 clustering mode?
I in a single step — transform columns only once (block-oriented

algorithm) or fully diagonalize them (full block algorithm)
I best pivoting strategy?
I is there need to shorten the columns by the hyperbolic QR

factorization, and is there a switching point (use them or not)
. . .

Work in progress

I only lower 20% of the eigenvalues are needed
I is there any sufficiently parallel algorithm to compute them

(without multiplication of the factors)?

