Parallel solution of the generalized eigenvalue problem given in a factored form

Edoardo di Napoli ${ }^{1}$, Vedran Novaković ${ }^{2}$, Gayatri Čaklović ${ }^{3}$, Sanja Singer ${ }^{4}$
${ }^{1}$ Jülich Supercomputing Centre, and RWTH Aachen, Germany
${ }^{2}$ Universitat Jaume I, Castellón de la Plana, Spain
${ }^{3}$ M.S. student at Faculty of Science, Department of Mathematics, University of Zagreb, Croatia
${ }^{4}$ Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia

10th International Workshop on Parallel Matrix Algorithms and Applications PMAA18,
June 27-29, 2018, Zürich, Switzerland

This work has been supported in part by Croatian Science Foundation under the project IP-2014-09-3670.

Introduction

Outline of the talk:

- description of the problem,
- brief description of the two-sided Hari-Zimmermann (HZ) algorithm for the GEP,
- implementation details of the parallel algorithm,
- partial results of numerical testing.

DFT - Density Functional Theory

Density Functional Theory framework

- is used in simulation of the physical properties of complex quantum mechanical systems made of few dozens up to few hundreds of atoms
- the core of the method relies on the simultaneous solution of a set of Schrödinger-like equations also known as Kohn-Sham equations
- there exists a wide variety of approaches that can be used to "translate" the DFT mathematical layout into a computational tool.

FLAPW method

Full-potential Linearized Augmented Plane Wave (FLAPW) method

- FLAPW method is one od the most accurate methods particular discretization of the DFT fundamental equations
- FLAPW is all-electron method - it explicitly describes all of the (potentially large number of) electrons in the material with a much larger number of basis function
- it is a quite computationally expensive method.

FLAPW method

Full-potential Linearized Augmented Plane Wave (FLAPW) method

- the discretization in FLAPW method leads to the solution of the generalized eigenvalue problem for matrices (H, S), where

$$
\left.\begin{array}{rl}
H= & \sum_{a=1}^{N_{A}}\left(A_{a}^{*} T^{[A A]} A_{a}\right.
\end{array} \quad+A_{a}^{*} T^{[A B]} B_{a}\right)
$$

where $A_{a}, B_{a} \in \mathbb{C}^{N_{L} \times N_{G}}, T_{a}^{[\cdots]} \in \mathbb{C}^{N_{L} \times N_{L}}, U \in \mathbb{C}^{N_{L} \times N_{L}}$ is a diagonal matrix, while

$$
\left(T^{[A A]}\right)^{*}=T^{[A A]},\left(T^{[B B]}\right)^{*}=T^{[B B]}, \text { and }\left(T^{[A B]}\right)^{*}=T^{[B A]} .
$$

Problem sizes

Typical matrix sizes

- $N_{A}=\mathcal{O}(100), N_{G}=\mathcal{O}(1000)-\mathcal{O}(10000)$, and $N_{L}=\mathcal{O}(100)$
- test examples $\mathrm{NaCl}-N_{A}=512, N_{L}=49$
- $N_{G}=2256, N_{G}=3893, N_{G}=6217, N_{G}=9273$
- test examples $\mathrm{AuAg}-N_{A}=128, N_{L}=121$
- $N_{G}=3275, N_{G}=5638, N_{G}=8970, N_{G}=13379$.

Computation of H and S

Proposed by Fabregat-Traver at al.

- write H as $H=H_{A A}+H_{A B+B A+B B}$

$$
\begin{aligned}
H_{A A} & =\sum_{a=1}^{N_{A}} A_{a}^{*} T^{[A A]} A_{a} \\
H_{A B+B A+B B} & =\sum_{a=1}^{N_{A}}\left(B_{a}^{*} T^{[B A]} A_{a}+A_{a}^{*} T^{[A B]} B_{a}+B_{a}^{*} T^{[B B]} B_{a}\right) \\
& =\sum_{a=1}^{N_{A}}\left(B_{a}^{*} Z_{a}+Z_{a}^{*} B_{a}\right)
\end{aligned}
$$

(ZHER2Ks!), where

$$
Z_{a}=T^{[B A]} A_{a}+\frac{1}{2} T^{[B B]} B_{a} .
$$

Modification?

Why

- the algorithm proposed by Fabregat-Traver at al. computes in parallel only H and S - then use any GEVD,
- intention to keep matrices in a factored form - ideal for parallelization of the GEVD
- usage of one-sided methods - faster than the two-sided methods - columnwise action
- such approach usually computes small eigenvalues more accurately
- similar algorithm for the (real) generalized SVD is approximately 125 times faster than the LAPACK routine with theaded MKL.

Transform the problem!

Transformed problem

- by using the properties of matrices $T^{[\cdots]}$ it is obvious that the problem can be written as

$$
\begin{aligned}
H & =\sum_{a=1}^{N_{A}}\left[\begin{array}{ll}
A_{a}^{*} & B_{a}^{*}
\end{array}\right]\left[\begin{array}{cc}
T^{[A A]} & T^{[A B]} \\
\left(T^{[A B]}\right)^{*} & T^{[B B]}
\end{array}\right]\left[\begin{array}{l}
A_{a} \\
B_{a}
\end{array}\right]:=\sum_{k=1}^{n} H_{k}^{*} T_{k} H_{k}, \\
S & =\sum_{a=1}^{N_{A}}\left[\begin{array}{ll}
A_{a}^{*} & B_{a}^{*} U_{a}^{*}
\end{array}\right]\left[\begin{array}{c}
A_{a} \\
U_{a} B_{a}
\end{array}\right]:=\sum_{k=1}^{n} S_{k}^{*} S_{k} .
\end{aligned}
$$

Transform the problem!

... or as products of three (two) matices

$$
\begin{aligned}
& H=\left[\begin{array}{lll}
H_{1}^{*} & \cdots & H_{n}^{*}
\end{array}\right]\left[\begin{array}{ccc}
T_{1} & & \\
& \ddots & \\
& & T_{n}
\end{array}\right]\left[\begin{array}{c}
H_{1} \\
\vdots \\
H_{n}
\end{array}\right]:=\widetilde{F}^{*} T \widetilde{F} \\
& S=\left[\begin{array}{lll}
S_{1}^{*} & \cdots & S_{n}^{*}
\end{array}\right]\left[\begin{array}{c}
S_{1} \\
\vdots \\
S_{n}
\end{array}\right]:=G^{*} G .
\end{aligned}
$$

Matrix sizes

- $H_{k}, S_{k} \in \mathbb{C}^{\left(2 N_{L}\right) \times N_{G}}, T_{k} \in \mathbb{C}^{\left(2 N_{L}\right) \times\left(2 N_{L}\right)}$,
- $F, G \in \mathbb{C}^{\left(2 N_{A} N_{L}\right) \times N_{G}}, T \in \mathbb{C}^{\left(2 N_{A} N_{L}\right) \times\left(2 N_{A} N_{L}\right)}$.

Transform the problem!

Make T simpler

- the method can be applied even on already described matrices \widetilde{F}, G and T implicitely, but multiplication by T is slow
- T should be either factored (for example by using somewhat modified Hermitian indefinite factorization), or diagonalized (simultaneous diagonalization of $T_{k} \mathrm{~s}$) - diagonalization is too slow
- therefore, H is written as

$$
H:=F^{*} J F, \quad J=\operatorname{diag}(\pm 1)
$$

The complex Hari-Zimmermann method for the GEP

One-sided vs. two-sided method

- the original Hari-Zimmerman method works from both sides on the Hermitian matrix pair
- the modified method works from one side on the factors of the Hermitian matrix pair
- idea: think two-sided, act one-sided
- transformations will be computed from the pivot submatrices $H_{p q}$ of H and $S_{p q}$ of S

$$
H_{p q}=\left[\begin{array}{ll}
F_{p}^{*} J F_{p} & F_{p}^{*} J F_{q} \\
& F_{q}^{*} J F_{q}
\end{array}\right], \quad S_{p q}=\left[\begin{array}{ll}
G_{p}^{*} G_{p} & G_{p}^{*} G_{q} \\
& G_{q}^{*} G_{q}
\end{array}\right] .
$$

The complex Hari-Zimmermann method for the GEP

The method consists of 3 transformations (Hari)

- as a preprocessing step H and S can be scaled by the diagonal matrix D such that $\operatorname{diag}(D S D)=I$

$$
\begin{gathered}
H_{0}:=D H D, \quad S_{0}:=D S D, \\
D=\operatorname{diag}\left(\frac{1}{\sqrt{s_{11}}}, \frac{1}{\sqrt{s_{22}}}, \ldots, \frac{1}{\sqrt{s_{n n}}}\right)
\end{gathered}
$$

- in the first step the pivot submatrix \widehat{S}_{0} of S_{0} is diagonalized by the complex rotation

$$
\widehat{R}_{1}=\left[\begin{array}{cc}
\cos \varphi_{1} & e^{i \beta_{1}} \sin \varphi_{1} \\
-e^{-i \beta_{1}} \sin \varphi_{1} & \cos \varphi_{1}
\end{array}\right],
$$

The complex Hari-Zimmermann method for the GEP

The transformations

- the first transformation is

$$
H_{1}=R_{1}^{*} H_{0} R_{1}, \quad S_{1}=R_{1}^{*} S_{0} R_{1},
$$

$R_{1}=/$ except at the pivot positions, where $R_{1}=\widehat{R}_{1}$.

- if H and S are preprocessed, then $\varphi_{1}=-\frac{\pi}{4}$
- in the second step - the diagonal of S_{1} is rescaled to $/$
- this transformation is similar to the preprocessing step

$$
H_{2}:=D_{2} H_{1} D_{2}, \quad S_{2}:=D_{2} S_{1} D_{2} .
$$

The complex Hari-Zimmermann method for the GEP

The transformations

- in the third step the pivot submatrix \widehat{H}_{2} of H_{2} is diagonalized by the complex rotation

$$
\widehat{R}_{3}=\left[\begin{array}{cc}
\cos \varphi_{3} & e^{i \alpha_{3}} \sin \varphi_{3} \\
-e^{-i \alpha_{3}} \sin \varphi_{3} & \cos \varphi_{3}
\end{array}\right],
$$

- the third transformation is

$$
H_{3}=R_{3}^{*} H_{2} R_{3}, \quad S_{3}=R_{3}^{*} S_{2} R_{3},
$$

$R_{3}=l$ except at the pivot positions, where $R_{3}=\widehat{R}_{3}$.

- if H and S are preprocessed, then $\varphi_{3}=\vartheta+\frac{\pi}{4}$.

The complex Hari-Zimmermann method for the GEP

The transformations

- note that after the first three steps, the pivot submatrix \widehat{S}_{3} is still diagonal (in fact identity)

$$
\widehat{S}_{3}=\widehat{Z}^{*} \widehat{S} \widehat{Z}, \quad \widehat{Z}=\widehat{R}_{1} \widehat{D}_{2} \widehat{R}_{3}
$$

- if H and S are preprocessed, the fourth step is only formal it helps in coupling together all the transformations

$$
H_{4}=\Phi_{4}^{*} H_{3} \Phi_{4}, \quad S_{4}=\Phi_{4}^{*} S_{3} \Phi_{4}, \quad \widehat{\Phi}_{4}=\operatorname{diag}\left(e^{-i \sigma_{p}}, e^{-i \sigma_{q}}\right) .
$$

The complex Hari-Zimmermann method for the GEP

The coupled transformation $Z \ldots$

- looks similar to an ordinary plane rotation: it is the identity matrix, except for its (p, q)-restriction \widehat{Z}, where

$$
\widehat{Z}=\frac{1}{\sqrt{1-\left(\left|s_{p q}\right|\right)^{2}}}\left[\begin{array}{cc}
\cos \varphi & e^{i \alpha} \sin \varphi \\
-e^{-i \beta} \sin \psi & \cos \psi
\end{array}\right]
$$

- φ and ψ are determined so that the transformations diagonalize the pivot submatrices \widehat{H} and \widehat{S}
- the transformation keeps the diagonal elements of S intact
- if $S=I$ then Z is the ordinary rotation, the method is the ordinary Jacobi method for a single matrix.

The Hari-Zimmermann method for the GEP

Computation of the elements of \hat{Z}

- let

$$
\begin{gathered}
s=\left|s_{p q}\right|, \quad t=\sqrt{1-s^{2}}, \quad r=s_{q q}-s_{p p}, \\
\sigma=\left\{\begin{array}{r}
1 \\
-1
\end{array} \quad e \geq 0, \quad u+i v=e^{-i \arg \left(s_{p q}\right)} h_{p q},\right.
\end{gathered}
$$

- then if $\gamma=\alpha-\beta$

$$
\begin{aligned}
\tan (\gamma) & =2 \frac{v}{r}, \quad-\frac{\pi}{2} \leq \gamma \leq \frac{\pi}{2} \\
\tan (2 \vartheta) & =\sigma \frac{2 u-\left(h_{p p}+h_{q q}\right) s}{\sqrt{e^{2}+4 v^{2}} \cdot t}, \quad-\frac{\pi}{4}<\vartheta \leq \frac{\pi}{4}
\end{aligned}
$$

The Hari-Zimmermann method for the GEP

Computation of the elements of \widehat{Z}

- and

$$
\begin{aligned}
2 \cos ^{2} \varphi & =1+s \sin (2 \vartheta)+t \cos (2 \vartheta) \cos (\gamma), \quad 0 \leq \varphi<\frac{\pi}{2} \\
2 \cos ^{2} \psi & =1-s \sin (2 \vartheta)+t \cos (2 \vartheta) \cos (\gamma), \quad 0 \leq \psi<\frac{\pi}{2} \\
e^{i \alpha} \sin (\varphi) & =\frac{(\sin (2 \vartheta)-s)+i \sqrt{1-s^{2}} \sin (\gamma) \cos (2 \vartheta)}{1-s \sin (2 \vartheta)+\sqrt{1-s^{2}} \cos (\gamma) \cos (2 \vartheta)} \\
e^{-i \beta} \sin (\psi) & =\frac{(\sin (2 \vartheta)+s)-i \sqrt{1-s^{2}} \sin (\gamma) \cos (2 \vartheta)}{1+s \sin (2 \vartheta)+\sqrt{1-s^{2}} \cos (\gamma) \cos (2 \vartheta)} .
\end{aligned}
$$

The pointwise algorithm

The implicit HZ algorithm
$Z=I ; \quad$ it $=0$
repeat // sweep loop
$i t=i t+1$
for all pairs $(p, q), 1 \leq p<q \leq k$ compute

$$
\widehat{H}=\left[\begin{array}{ll}
f_{p}^{*} J f_{p} & f_{p}^{*} J f_{q} \\
& f_{q}^{*} J f_{q}
\end{array}\right] ; \quad \widehat{S}=\left[\begin{array}{cc}
g_{p}^{*} g_{p} & g_{p}^{*} g_{q} \\
& g_{q}^{*} g_{q}
\end{array}\right]
$$

compute the elements of \hat{Z}
// transform F, G and Z
$\left[f_{p}, f_{q}\right]=\left[f_{p}, f_{q}\right] \cdot \hat{Z}$
$\left[g_{p}, g_{q}\right]=\left[g_{p}, g_{q}\right] \cdot \hat{Z}$
$\left[z_{p}, z_{q}\right]=\left[z_{p}, z_{q}\right] \cdot \widehat{Z}$
until (no transf. in this sweep) or (it \geq maxcyc)

Hardware platform

Developer Edition of the Intel Xeon Phi 7210 (KNL) processor

- 96 GB of RAM per node,
- 64 cores per node,
- clock 1.30 GHz (Turbo Boost off),
- Intel AVX-512 (Advanced Vector Extensions) instruction set
- presence of two vector processing units (VPUs) per core each VPU operates independently on 512-bit vector registers suitable for simultaneous processing of 16 single precision or 8 double precision numbers.

The first step

Hermitian indefinite factorization of all T_{k} 's

- for all T_{k} 's do in parallel

$$
T_{k}=P_{k}^{T} R_{k}^{*} D_{k} R_{k} P_{k},
$$

P_{k} is a permutation matrix - formed as in LAPACK (as a sequence of partial permutations),
D_{k} is block diagonal, with 1×1 or 2×2 diagonal blocks, R_{k} is upper triangular

- diagonalize all D_{k} 's in parallel

$$
D_{k}=U_{k}^{*} \Delta_{k} U_{k}=U_{k}^{*} \sqrt{\left|\Delta_{k}\right|} J_{k} \sqrt{\left|\Delta_{k}\right|} U_{k},
$$

Δ_{k} diagonal, U_{k} block-diagonal, unitary, $J_{k}=\operatorname{diag}(\pm 1)$,

The first step (cnt'd)

- for all J_{k} repermute them in parallel

$$
J_{k}:=\widetilde{P}_{k}^{T} \operatorname{diag}(I,-l) \widetilde{P}_{k}
$$

\widetilde{P}_{k} is a permutation,

- multiply rows of all R_{k} and repermute them

$$
R_{k}=\widetilde{P}_{k} \sqrt{\left|\Delta_{k}\right|} U_{k}
$$

- repremute columns of all R_{k} according to pemutations stored in P_{k}

$$
R_{k}:=R_{k} P_{k} .
$$

The first step (cnt'd)

Final state

$$
T_{k}=R_{k}^{*} \operatorname{diag}(I,-I) R_{k}, \quad k=1, \ldots, n .
$$

Comments

- in the first step, the factorization is sequential for each T_{k}
- each physical core of the Xeon Phi deals with one or more T_{k} in turn (OpenMP parallel do over all T_{k})
- each core can use its own 1-4 hyperthreads in a call of the threaded BLAS routines - therefore even per core algoritm is somewhat parallel - but do not use hyperthreading, since. . .

1,2 or 4 threads, $\mathrm{NaCl}, N_{L}=49, N_{A}=512, N_{G}=9273$

1,2 or 4 threads, $\mathrm{NaCl}, N_{L}=49, N_{A}=512, N_{G}=9273$

1,2 or 4 threads, $\mathrm{NaCl}, N_{L}=49, N_{A}=512, N_{G}=9273$

1, 2 or 4 threads, $\mathrm{NaCl}, N_{L}=49, N_{A}=512, N_{G}=9273$

1,2 or 4 threads, $\mathrm{NaCl}, N_{L}=49, N_{A}=512, N_{G}=9273$

1,2 or 4 threads, $\mathrm{NaCl}, N_{L}=49, N_{A}=512, N_{G}=9273$

1,2 or 4 threads, $\mathrm{NaCl}, N_{L}=49, N_{A}=512, N_{G}=9273$

1,2 or 4 threads, $\mathrm{NaCl}, N_{L}=49, N_{A}=512, N_{G}=9273$

The second and the optional step

Form J, F and G

- store $J=\operatorname{diag}\left(J_{1}, \ldots, J_{n}\right)$,
- multiply $F=\operatorname{diag}\left(R_{1}, \ldots, R_{n}\right) F$, each R_{k} in parallel
- scale B_{k} by U_{k} in parallel and store G

Optional step - make J, F and G square

- square matrix - faster HZ algorithm
- this step is the hyperbolic QR factorization on F and the QR factorization on G - both algorithms moderately parallel
- pivoting strategy - partial pivoting?, threshold pivoting?
- usage of (block)-reflectors or (block)-rotations?
- do it or not - depends on the ratio (number of rows) / (number of columns) of F and G

Driver level of the implicit HZ algorithm

Details of the level-2 algorithm

- algorithm is Generalized Hyperbolic SVD of (F, G) with respect to J
- matrices F and G are divided in even number of block-columns

$$
F=\left[F_{1}, \ldots, F_{2 b}\right], \quad G=\left[G_{1}, \ldots, G_{2 b}\right]
$$

- number of block-columns depend on the number of physical cores of the processor (our case: 64 cores $=$ maximum 128 blocks, no hyperthreading)
- each thread is connected to one physical core.

Driver level of the implicit HZ algorithm

Each thread...

- works on a pair of block-columns of each matrix given by some parallel pivot strategy
- allocates storage for $\left[F_{p}, F_{q}\right],\left[G_{p}, G_{q}\right]$, their "shadow" counterparts, and for the part of the transformation matrix
- "shadow" memory - used for scaling by J_{k} and data exchange
- since architecture is NUMA (Non Uniform Memory Access), columns are also physically copied to "shadow" memory (alternative: reassignment of pointers)
- allocates square space in fast MCDRAM for computation of the transformation $Z_{p q}$ and the pivot block submatrices $H_{p q}$ and $S_{p q}$.

Pivoting strategy

Parallel pivoting strategy

- Choose pivot blocks independently in each step, for example, by using (block)-modulus strategy (not optimal!)

- stopping criterion
- skip a transformation if cosines are 1
- final stop - all transformations are skipped.

Driver level of the implicit HZ algorithm

Each thread...

- actually computes $H_{p q}$ and $S_{p q}$ (ZGEMM and ZHERK)
- factorizes $H_{p q}$ and $S_{p q}$ by the Hermitian indefinite factorization (test of definiteness of $S_{p q}$)

$$
H_{p q}=F_{p q}^{*} J_{p q} F_{p q}, \quad S_{p q}=G_{p q}^{*} G_{p q},
$$

where $F_{p q}, G_{p q}$, and $J_{p q}$ are square

- calls level-1 (non-blocked routine) on the triplet ($F_{p q}, G_{p q}, J_{p q}$)
- applies transformation matrix to original $F_{p q}, G_{p q}$, and $Z_{p q}$ (ZGEMMs)
- transfers one triplet of $\left(F_{\ell}, G_{\ell}, Z_{\ell}\right), \ell \in\{p, q\}$ to the next "owner" (thread) into its "shadow" memory.

Computational level of the implicit HZ algorithm

Details of the level-1 algorithm

- single-threaded (including BLAS calls) SIMD-parallel code,
- the main loop - sweep iterations (1, m, until convergence)
- parallel pivot strategy determines maximal number of independent pivot pairs - stage of the algorithm
- in each stage - pairs are divided into groups of 8 pairs (AVX-512 instructions)
- compute 6 dot products (vectorized + reductions) with only 4 accesses of f_{p}, f_{q}, g_{p}, and g_{q} :

$$
\widehat{H}_{p q}=\left[\begin{array}{ll}
f_{p}^{*} J_{p} f_{p} & f_{p}^{*} J_{q} f_{q} \\
& f_{q}^{*} J_{q} f_{q}
\end{array}\right], \quad \widehat{S}_{p q}=\left[\begin{array}{ll}
g_{p}^{*} g_{p} & g_{p}^{*} g_{q} \\
& g_{q}^{*} g_{q}
\end{array}\right],
$$

Computational level of the implicit HZ algorithm

Details of the level-1 algorithm

- an example: the dot products are computed without BLAS to avoid function calls (slow!)
- computing transformation matrices for 8 pairs simultaneously
- transformations to 8 column pairs $\left(f_{p}, f_{q}\right),\left(g_{p}, g_{q}\right),\left(z_{p}, z_{q}\right)$ are applied sequentially for each pair (cache!)

Distribution of eigenvalues -NaCl

Distribution of eigenvalues -AuAg

Timings

		Number of cores	
Example	Problem size	64	32
NaCl 2.5	50176×2256	800.70	556.95
$\mathrm{NaCl} \mathrm{3.0}$	50176×3893	1973.64	1465.68
NaCl 3.5	50176×6217	2810.50	3660.44
NaCl 4.0	50176×9273	4846.98	7028.50
$\mathrm{AuAg} \mathrm{2.5}$	26136×3275	724.20	587.23
$\mathrm{AuAg} \mathrm{3.0}$	26136×5638	1549.92	1715.60
$\mathrm{AuAg} \mathrm{3.5}$	26136×8970	3152.78	4711.65
$\mathrm{AuAg} \mathrm{4.0}$	26136×13379	6544.16	11955.74

Conclusion

On a particular hardware testing space is enormous

- use Quadrant or SNC-4 clustering mode?
- in a single step - transform columns only once (block-oriented algorithm) or fully diagonalize them (full block algorithm)
- best pivoting strategy?
- is there need to shorten the columns by the hyperbolic QR factorization, and is there a switching point (use them or not)

Work in progress

- only lower 20% of the eigenvalues are needed
- is there any sufficiently parallel algorithm to compute them (without multiplication of the factors)?

