
Computation of the CS and the indefinite CS
decomposition

Vedran Novaković1 Sanja Singer2

1Science and Technology Facilities Council, Daresbury Laboratory,
Sci–Tech Daresbury, Warrington, United Kingdom

2Faculty of Mechanical Engineering and Naval Architecture,
University of Zagreb, Croatia

9th International Workshop on
Parallel Matrix Algorithms and Applications, PMAA16

Bordeaux, 6th–9th July 2016

This work has been fully supported by
Croatian Science Foundation under the project IP–2014–09–3670.



Introduction

Outline of the talk:
I definition of the CS and the hyperbolic CS decomposition,
I brief description of the known methods for the computation of

the CSD,
I new Jacobi–type SVD algorithm for the computation of the

CSD and the HCSD,
I implementation details,
I minor problems in the computational procedure.



Applications of the Cosine Sine Decomposition (CSD)

Applications of the CSD

I used in computation of angles between subspaces, in
rudimentary form known by Camille Jordan in 1875,

I rediscovered by Chandler Davis and William Kahan in 1969,
I stated in the Golub–Van Loan’s textboox Matrix Analysis,

1983 in the context of angles beetwen subspaces, and
distances between orthogonal projectors,

I used by Van Loan in construction of the generalized SVD,
I proof of the CSD given in Stewart–Sun’s book Matrix

Perturbation Theory, 1990,
I used by Vjeran Hari, 2005, to speed up the updates in the

block–Jacobi SVD algorithm.



Definition of the CSD

Cosine Sine Decomposition (CSD)

I Let Q ∈ Cn×n be a unitary matrix, partitioned as follows

Q =

[
Q11 Q12
Q21 Q22

]
← k

← n−k
, 1 ≤ k ≤ n − 1.

↑ ↑
k n−k

I Then Q can be decomposed into three unitary matrices,

Q = UΘV ∗ =

[
U11 O
O U22

]
Θ

[
V11 O
O V22

]∗
,

where U11 and V11 are square of order k , while U22 and V22
are square are of order n − k .



Definition of the CSD ctnd.

Matrix Θ

I If 2k ≥ n then

Θ =

 I
C −S
S C

← 2k−n
← n−k
← n−k

↑ ↑ ↑
2k−n n−k n−k

I else if 2k ≤ n

Θ =

 C −S
I

S C

← k

← n−2k
← k

↑ ↑ ↑
k n−2k k

C and S are real and diagonal, Cii ≥ 0, with nonincreasing
diagonal, Sii ≥ 0 and C 2 + S2 = I holds.



Computation of the CSD

Brian Sutton’s approach

I simultaneous bidiagonalization of the all four blocks,
I afterwards divide and conquer SVD on the bidiagonal matrices.

Vjeran Hari’s approach

I compute the two SVD’s of the diagonal blocks of the
orthogonal matrix,

I clean-up of the offdiagonal blocks (in the case of multiple or
close to multiple eigenvalues).



Definition of the Hyperbolic Cosine Sine Decomposition

Hyperbolic Cosine Sine Decomposition (HCSD)

I Let Q ∈ Cn×n be a J–unitary matrix with respect to J,
J = diag(Ik ,−In−k), i.e., Q∗JQ = J

Q =

[
Q11 Q12
Q21 Q22

]
← k

← n−k
, 1 ≤ k ≤ n − 1.

↑ ↑
k n−k

I Then Q can be factored into two (J–)unitary matrices U and
V , and J–unitary matrix Θ

Q = UΘV ∗ =

[
U11 O
O U22

]
Θ

[
V11 O
O V22

]∗
,

where U11 and V11 are square of order k , while U22 and V22
are square are of order n − k .



Definition of the HCSD (continued)

Matrix Θ

I If 2k ≥ n then

Θ =

 C S
I

S C

← 2k−n
← n−k
← n−k

↑ ↑ ↑
2k−n n−k n−k

I else if 2k ≤ n

Θ =

 C S

S C
I

← k

← k

← n−2k
↑ ↑ ↑
k k n−2k

C and S are real and diagonal, Cii ≥ 1, with nonincreasing
diagonal, Sii ≥ 0 and C 2 − S2 = I holds.



Applications of the HCSD

Applications of the HCSD

I derived in the PhD. thesis of Ninoslav Truhar,
I used in computation of the singular values of a J-unitary

matrix,
I computation of the 2-norm of a J-unitary matrix,
I bounds for the hyperbolic sine of the maximal hyperbolic

cannonical angle,
I tool to speed up the updates in the hyperbolic block–Jacobi

SVD algorithm.



Updates in the (hyperbolic) Block Jacobi SVD algorithm

Update of the factor after the block transformation

= ×



Columnwise updates

Update of the factor after the block transformation

the first block column the second block column

=

×

+

×

=

×

+

×



Columnwise updates

Update of the factor after the block transformation (HCSD)

HCSD of the block-rotation

= × ×

I at the first step, postponed matrix V T is I ,
I multiply part of the postponed block diagonal matrix V T by

the current matrix U from the current HCSD,
I multiply the first and the second block column by the

appropriate V TU,
I apply xAXPY–like in-place operation (multiplication by the CS

matrix),
I postpone last matrix V T of the current HCSD to the new step.



Properties of the HCSD

Proposition 1
If Q is J-unitary, and J satisfies J2 = I , then Q∗ is also J-unitary.

Proof
I By definition Q is nonsingular.
I Multiplication of Q∗JQ = J, by QJ from the left, and by

Q−1J from the right completes the proof.



Properties of the HCSD (continued)

Proposition 2
If Q is is J-unitary and partitioned according to signs of the
diagonal elements in J, and U,V ∈ Cn×n are unitary
block-matrices

U = diag(Ukk ,Un−k,n−k), V = diag(Vkk ,Vn−k,n−k),

then W , where W = U∗QV , remains J-unitary.

Proof
I Due to block structure of U and V , they are both J-unitary

matrices.
I Then, it follows

W ∗JW = V ∗Q∗UJU∗QV = V ∗Q∗JQV = V ∗JV = J.



SVD and the structure of the blocks

SVDs of the diagonal blocks or SVDs of the off-diagonal
blocks?

I If k 6= n − k then the SVDs of the off-diagonal blocks can be
computed faster (suppose that k < n − k):

I QR factorization of the block Q21 followed by the SVD of the
matrix of order k ,

I LQ factorization of the block Q12 followed by the SVD of the
matrix of order k

versus
I SVD of the matrix of order k ,
I SVD of the matrix of order n − k .

I Since Cii > Sii in the hyperbolic case, it is more accurate to
determine to high relative accuracy smaller of the quantities,
i.e., matrix S!



SVD and the structure of the blocks

Structures of the blocks
I Suppose that SVDs of Q12 and Q21 are computed,

Q12 := U12S12V
∗
12 = U12

[
Σ 0
0 0

]
V ∗12, Σ = diag(γ1, . . . , γ`),

γ1 ≥ γ2 ≥ · · · ≥ γ` > 0,

Q21 := U21S21V
∗
21 = U21

[
Σ′ 0
0 0

]
V ∗21, Σ′ = diag(γ1, . . . , γ

′
`′),

γ′1 ≥ γ′2 ≥ · · · ≥ γ′`′ > 0.

I Then W and W ∗,

W :=

[
U∗12

U∗21

] [
Q11 Q12
Q21 Q22

] [
V12

V21

]
=

[
W1 S12
S21 W2

]
are J-unitary.



SVD and the structure of the blocks

Structures of the blocks
I If the partition of W1 and W2 are written according to the

structures od S12 and S21, we obtain

W =


W11 W12 Σ 0
W21 W22 0 0
Σ′ 0 W33 W34
0 0 W43 W44


← `

← k−`
← `′

← n−k−`′

↑ ↑ ↑ ↑
`′ k−`′ ` n−k−`

I and by using that both W and W ∗ are J-unitary . . .



SVD and the structure of the blocks

Properties of the matrix W

I . . . from W ∗JW = J we obtain the following set of equations:

W ∗
11W11 −W ∗

21W21 − (Σ′)2 = I`′

W ∗
12W12 + W ∗

22W22 = Ik−`′

W ∗
33W33 + W ∗

43W43 − Σ2 = I`

W ∗
34W34 + W ∗

44W44 = In−k−`

W ∗
11W12 + W ∗

21W22 = 0`′,k−`′

W ∗
11Σ− Σ′W33 = 0`′,`

Σ′W34 = 0`′,n−k−`
W ∗

12Σ = 0k−`′,`
W ∗

33W34 + W ∗
43W44 = 0`,n−k−`



SVD and the structure of the blocks

Structure of SVD the matrix W

I . . . and from WJW ∗ = J:

W11W
∗
11 −W12W

∗
12 − Σ2 = I`

W21W
∗
21 + W22W

∗
22 = Ik−`

W33W
∗
33 + W34W

∗
34 − (Σ′)2 = I`′

W43W
∗
43 + W44W

∗
44 = In−k−`′

W11W
∗
21 + W12W

∗
22 = 0`,k−`

W11Σ′ − ΣW ∗
33 = 0`,`′

Σ′W ∗
43 = 0`,n−k−`′

W ∗
21Σ′ = 0k−`,`′

W33W
∗
43 + W34W

∗
44 = 0`′,n−k−`′ .



SVD and the structure of the blocks

After a simple manipulation, we have

I W12 = 0`,k−`′ , W34 = 0`′,`, W21 = 0k−`,`′ , W43 = 0k−`′,k−`,
I ` = `′, Σ = Σ′,
I W22 and W44 are unitary matrices (and can be pulled out),
I W33 = W ∗

11,
I W11 is a scaled unitary matrix, i.e.,

W ∗
11W11 = W11W

∗
11 = Σ2 + I`,

I moreover W11 has inner block structure

W11 = diag(Z1, . . . ,Zq),

where each block Zi corresponds to a possibly multiple
singular value γi .



The algorithm for the HCSD

Algorithm for k ≤ n − k

do in parallel
{compute the RR QR factorization of Q12
compute the RR LQ factorization of Q21}

do in parallel
{update U22 and V ∗22}

do (possibly) in parallel
{compute the SVDs of Q12 and Q21}

do in parallel
{update matrices U and V ∗}

if n − k > k then
{extract the unitary block that corresponds to I in Q22}

cleanup in parallel of the diagonal blocks in the case of multiple
hyperbolic singular values



The parallel Jacobi SVD

Speed of the HCSD algorithm

I almost exclusively depends on the speed of the SVD
I in addition, there are only few xGEMMs.

Multilevel Jacobi-type SVD algorithm

I can have 3 or 4 levels:
I the first level targets L1 cache,
I the second level targets multiple threads of one core,
I the third level targets one NUMA domain,
I possible fourth (MPI) level targets multiple machines.



The parallel Jacobi SVD

Levels of hierarchy



The parallel Jacobi SVD

The first level algorithm

I uses Advanced Vector eXtensions (AVXn) registers to process
multiple doubles simultaneously, i.e., the algorithm process
multiple independent columns in parallel

The main problem

I how to allocate appropriate number of threads for each level of
the algorithm (work in progress).



Numerical testing

Test data
I matrices C , S , U and V are generated and multiplied in higher

precision,
I resulting matrix is rounded to double precision.

Full testing

I is in progress.


	Introduction
	Definition of the CSD
	Definition of the HCSD

