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Introduction

Outline of the talk:
I brief description of the original Falk–Langemeyer algorithm,

and the Hari–Zimmermann (HZ) algorithm for the GEP,
I description how to use the HZ algorithm for the GSVD

computation,
I accyracy of the pointwise HZ GSVD algorithm,
I some implementation details,
I results of numerical testing.



The Falk–Langemeyer method for the GEP

The Falk–Langemeyer method

I invented in 1960, paper published in two parts in collection
Elektronische Datenverarbeitung,

I quadratic convergence of the cyclic method is proved in
M.Sc. thesis of Slapničar (1989, supervised by Hari),

I the method solves the Generalized Eigenvalue Problem
(GEP) for a symmetric and definite matrix pair (A,B),

I it constructs a sequence of congruent pairs,

A(`+1) = CT
` A

(`)C`, B(`+1) = CT
` B

(`)C`,

where (A(1), B(1)) := (A,B),
I pairs are selected according to some pivot order.



The Falk–Langemeyer method for the GEP

The transformation matrix C`

I resembles a scaled plane rotation: it is the identity matrix,
except for its (i, j)-restriction Ĉ`, where

Ĉ` =

[
1 α`

−β` 1

]
.

I α` and β` are determined so that the transformations
diagonalize the pivot submatrices

Â(`) =

[
a
(`)
ii a

(`)
ij

a
(`)
ij a

(`)
jj

]
, B̂(`) =

[
b
(`)
ii b

(`)
ij

b
(`)
ij b

(`)
jj

]
.



Hari–Zimmermann method for the GEP

The Hari–Zimmermann method
I Zimmermann in her Ph.D. thesis (1969) briefly sketched a

method for the GEP if B is positive definite,
I Hari in his Ph.D. thesis (1984) filled in the missing details,

proved global and quadratic convergence (cyclic strategies)
I before iterative part, the pair is scaled so that the diagonal

elements of B are all equal to one,

A(1) := DAD, B(1) := DBD,

D = diag
(
(b11)

−1/2, (b22)
−1/2, . . . , (bkk)−1/2

)
,

I the method constructs a sequence of congruent pairs,

A(`+1) = ZT
` A

(`)Z`, B(`+1) = ZT
` B

(`)Z`.



Hari–Zimmermann method for the GEP

The transformation matrix Z`

I resembles an ordinary plane rotation: it is the identity
matrix, except for its (i, j)-restriction Ẑ`, where

Ẑ` =
1√

1−
(
b
(`)
ij

)2
[

cosϕ` sinϕ`

− sinψ` cosψ`

]
,

I α` and β` are determined so that the transformations
diagonalize the pivot submatrices Â(`) and B̂(`)

I the transformation keeps the diagonal elements of B intact
I if B = I then Z` is ordinary rotation, the method is

ordinary Jacobi method for a single matrix.



Hari–Zimmermann method for the GEP

Computation of the elements of Z̃`

I for simplicity, index of the transformation ` is omitted

tan(2ϑ) =
2aij − (aii + ajj)bij

(ajj − aii)
√

1− (bij)2
, −π

4
< ϑ ≤ π

4

ξ =
bij√

1 + bij +
√

1− bij

η =
bij(

1 +
√

1 + bij
)(

1 +
√

1− bij
)

cosϕ = cosϑ+ ξ(sinϑ− η cosϑ)

cosψ = cosϑ− ξ(sinϑ+ η cosϑ)

sinϕ = sinϑ− ξ(cosϑ+ η sinϑ)

sinψ = sinϑ+ ξ(cosϑ− η sinϑ)



Generalized SVD

Definition
I For given matrices F ∈ Cm×n and G ∈ Cp×n, where

K =

[
F
G

]
, k = rank(K),

there exist unitary matrices U ∈ Cm×m, V ∈ Cp×p, and a
matrix X ∈ Ck×n, such that

F = UΣFX, G = V ΣGX, ΣF ∈ Rm×k, ΣG ∈ Rp×k.

I ΣF and ΣG are real, “diagonal”, and nonnegative.
I Furthermore, ΣF and ΣG satisfy

ΣT
FΣF + ΣT

GΣG = I.

I The ratios (ΣF )ii/(ΣG)ii are called the generalized singular
values of the pair (F,G).



Hari–Zimmermann method for the GSVD

Connection between the GEP and the GSVD
I Given matrices: F0 ∈ Rm×n and G0 ∈ Rp×n.
I If G0 is not of full column rank, then use, for example,

LAPACK preprocessing to obtain square matrices (F,G),
with G of full rank k.

I For such F and G, since GTG is a positive definite matrix,
the pair (F TF,GTG) in the corresponding GEP is
symmetric and definite.

I There exist many nonsingular matrices Z that
simultaneously diagonalize (F TF,GTG) by congruences,

ZTF TFZ = ΛF , ZTGTGZ = ΛG,

where ΛF and ΛG are diagonal, (ΛF )ii ≥ 0 and (ΛG)ii > 0,
for i = 1, . . . , k.



Hari–Zimmermann method for the GSVD

Connection between the GEP and the GSVD
I Since ΛF and ΛG are diagonal, the columns of FZ and GZ

are orthogonal (not orthonormal),

FZ = UΛ
1/2
F , GZ = V Λ

1/2
G ,

U and V are orthogonal matrices.
I If ΛF + ΛG 6= I, then the matrices in the GSVD are

X := SZ−1, ΣF := Λ
1/2
F S−1, ΣG := Λ

1/2
G S−1.

where S = (ΛF + ΛG)1/2 is the diagonal scaling.
I If only the generalized singular values are needed, rescaling

is not necessary, and σi = (Λ
−1/2
G Λ

1/2
F )ii, for i = 1, . . . , k.



Pointwise algorithm for the GSVD

Implicit HZ algorithm for the GSVD
Z = I; it = 0
repeat // sweep loop
it = it+ 1
for all pairs (i, j), 1 ≤ i < j ≤ k
compute

Â =

[
fTi fi fTi fj
fTi fj fTj fj

]
; B̂ =

[
gTi gi gTi gj
gTi gj gTj gj

]
compute the elements of Ẑ
// transform F , G and Z

[fi, fj ] = [fi, fj ] · Ẑ
[gi, gj ] = [gi, gj ] · Ẑ
[zi, zj ] = [zi, zj ] · Ẑ

until (no transf. in this sweep) or (it ≥ maxcyc))



Accuracy of the implicit HZ algorithm

Standard assumptions on f ` arithmetic

I f `(x ◦ y) = (1 + ε◦)(x ◦ y), |ε◦| ≤ ε, ◦ = +,−, ∗, /,
I f `(

√
x) = (1 + ε√ )

√
x, |ε√ | ≤ ε,

I f `(x+ (y · z)) = (1 + εfma)(x+ (y · z)), |εfma| ≤ ε.

Assumptions

I transformation Ẑ` is determined by sinϕ, sinψ, and bij
(transformation indices omitted)

I both cosines are positive, and uniquely determined

cosϕ =

√
1− sin2 ϕ, cosψ =

√
1− sin2 ψ.



Accuracy of the implicit HZ algorithm

Analysis

I Let W be a certain HZ transformation in step `
I its submatrix of order 2 in the (i, j) plane is

Ŵ =

[
ŵ11 ŵ12

ŵ21 ŵ22

]
=

1√
1− b2

[
cos ϕ̃ sin ϕ̃

− sin ψ̃ cos ψ̃

]
.

I Ŵ is used to transform the pivot columns i and j, to obtain
the transformed matrices FW and GW

I in f ` arithmetic, each computation involves rounding
errors, therefore W ′ = f `(W ) is the actually computed
transformation matrix

I F ′ = f `(FW ′) and G′ = f `(GW ′) are the computed
matrices after the transformation.



Accuracy of the implicit HZ algorithm

Forward bounds
I The computed matrices F ′ and G′ can be written as

F ′ = FW + δF ′, G′ = GW + δG′,

δF ′ and δG′ are the forward perturbations
I only the columns i and j are changed

[f ′i , f
′
j ] = [fi, fj ] · Ŵ + [δf ′i , δf

′
j ].

I Normwise bounds for the columns of F are

‖δf ′i‖2 ≤
ε√

1− b2
(
5 cos ϕ̃ · ‖fi‖2 + 4.5 | sin ψ̃| · ‖fj‖2

)
,

‖δf ′j‖2 ≤
ε√

1− b2
(
4.5 | sin ϕ̃| · ‖fi‖2 + 5 cos ψ̃ · ‖fj‖2

)
.

I The same holds for G, with ‖gi‖2 = ‖gj‖2 = 1.



Accuracy of the implicit HZ algorithm

Backward bounds
I The computed matrices F ′ and G′ can be wieved as

F ′ = (F + δF )W, G′ = (G+ δG)W,

where δF and δG denote the backward perturbations
I only the columns i and j are changed

[f ′i , f
′
j ] =

(
[fi, fj ] + [δfi, δfj ]

)
Ŵ .

I Normwise bounds for the columns of F are

‖δfi‖2 ≤ εcij
(
5‖fi‖2 + 4.25‖fj‖2

)
,

‖δfj‖2 ≤ εcij
(
4.25‖fi‖2 + 5‖fj‖2

)
,

where cij = 1/| cos(ϕ̃− ψ̃)|.
I The same holds for G, with ‖gi‖2 = ‖gj‖2 = 1.



Accuracy of the implicit HZ algorithm

The main result
I Assumption: each pivot pair (i, j) is ordered such that
‖fi‖2 ≥ ‖fj‖2

I F is of full column rank, and therefore

‖fj‖2 = rij‖fi‖2, 0 < rij ≤ 1.

I Let rs := min rij over all pairs of pivot indices (i, j) at this
stage of the algorithm,

I and let
ε := εcs

(
4.25

rs
+ 5

)
.



Accuracy of the implicit HZ algorithm

Theorem (Drmač)
Let F and G be of full column rank, and let the columns of
perturbation matrices satisfy

‖δfp‖2 ≤ ε‖fp‖2, ‖δgp‖2 ≤ ε‖gp‖2

for some constant ε, such that 0 ≤ ε < 1. Then, the relative
errors in the perturbed generalized singular values σ̃p of the pair
(F + δF,G+ δG) are bounded by

|σ̃p − σp|
σp

≤
(

1 +
σmin(GS)

σmin(FS)

)
ε
√
q

σmin(GS)− ε√q
,

where FS = F diag
(
‖fp‖−12

)
, GS = G diag

(
‖gp‖−12

)
, and q is the

maximal number of nonzero elements in any row of δF and δG.



How to make the algorithm fast and accurate

Sequential algorithms

I blocking each block has ki ≈ k/nb columns

F = [F1, F2, . . . , Fnb], G = [G1, G2, . . . , Gnb].

I each pivot block can either be fully orthogonalized –
full-block algorithm, or,

I in each pair of columns in each block are orthogonalized
once – block oriented algorithm

I pivoting – transformations are applied in such way that
after each transformation it holds

‖F ′i‖2
‖G′i‖2

≥
‖F ′j‖2
‖G′j‖2

, i < j.



Numerical testing of the sequential algorithms

with threaded MKL (12 cores)
k DTGSJA pointwise HZ HZ-FB-32 HZ-BO-32

500 16.16 3.17 4.36 2.03
1000 128.56 26.89 18.50 7.65
1500 466.11 105.31 42.38 19.31
2000 1092.39 273.48 86.01 41.60
2500 2186.39 547.84 139.53 73.07
3000 3726.76 1652.14 203.00 109.46
3500 6062.03 2480.14 294.58 186.40
4000 8976.99 3568.00 411.71 239.89
4500 12805.27 4910.09 553.67 343.58
5000 20110.39 6599.68 711.86 426.76



How to make the algorithm fast and accurate

Parallel algorithms

I Choose pivot blocks independently in each step, for
example by using (block)-modulus strategy

I shared-memory algorithm – a building block for distributed
memory algorithm

3 4 k 1

2

3

k-2

k-1

k-2

3 4 k 1

2

3

k-1



How to make the algorithm fast and accurate

with sequential MKL
k P-HZ-FB-32 P-HZ-BO-32

500 1.41 0.88
1000 4.78 2.02
1500 14.57 5.99
2000 30.02 12.13
2500 53.13 22.34
3000 86.78 36.08
3500 129.37 55.20
4000 180.32 86.36
4500 249.92 119.74
5000 320.39 159.59



Accuracy for matrix of order 5000

Test matrix condition number maxσi/minσi ≈ 6.32 · 105
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Accuracy for matrix of order 5000

Test matrix condition number maxσi/minσi ≈ 6.32 · 105
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Accuracy for matrix of order 5000

Test matrix condition number maxσi/minσi ≈ 6.32 · 105
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Accuracy for matrix of order 5000

Test matrix condition number maxσi/minσi ≈ 6.32 · 105
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Conclusion

On a particular hardware (with threaded MKL on 12 cores)

I pointwise HZ method is 3 times faster than DTGSJA on
matrices of order 5000

I sequential block-oriented HZ-BO-32 algorithm, is 15 times
faster than the pointwise algorithm, i.e., more than 47
times faster than DTGSJA

I For the fastest explicitly parallel shared memory algorithm
P-HZ-BO-32, the speedup factor is 126!

I DTGSJA is unable to handle large matrices in any reasonable
time.

I Triangularization is mandatory for DTGSJA, but not
necessary for the Hari–Zimmermann method, when G is of
full column rank.


