On the Global Convergence of the Block Jacobi Method

Vjeran Hari and Erna Begović

Faculty of Science, Department of Mathematics, University of Zagreb hari@math.hr

Faculty of Chemical Engineering and Technology, University of Zagreb ebegovic@fkit.hr

6th Croatian Mathematical Congress Zagreb, Croatia

• Block Jacobi method for hermitian matrices

- Block Jacobi method for hermitian matrices
- Convergence

- Block Jacobi method for hermitian matrices
- Convergence
- Pivot strategies

- Block Jacobi method for hermitian matrices
- Convergence
- Pivot strategies
- Generalized serial strategies

- Block Jacobi method for hermitian matrices
- Convergence
- Pivot strategies
- Generalized serial strategies
- Applications

•
$$A \in \mathbb{R}^{n \times n}$$
, $A = A^*$

- $A \in \mathbb{R}^{n \times n}$, $A = A^*$
- $\pi = (n_1, n_2, \dots, n_m), \quad n = n_1 + \dots + n_m, \quad n_i \geq 1$

•
$$A \in \mathbb{R}^{n \times n}$$
, $A = A^*$

•
$$\pi = (n_1, n_2, \dots, n_m), \quad n = n_1 + \dots + n_m, \quad n_i \ge 1$$

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \vdots & & & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mm} \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ n_m \end{bmatrix}, \qquad A_{ij} = A_{ji}^*$$

•
$$A \in \mathbb{R}^{n \times n}$$
, $A = A^*$

•
$$\pi = (n_1, n_2, \dots, n_m), \quad n = n_1 + \dots + n_m, \quad n_i \geq 1$$

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \vdots & & & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mm} \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ n_m \end{bmatrix}, \qquad A_{ij} = A_{ji}^*$$

$$\mathbf{U}_{ij} = \left[egin{array}{cccc} I & & & & & \\ & U_{ii} & & U_{ij} & & \\ & & I & & \\ & U_{ji} & & U_{jj} & & \\ & & & I \end{array}
ight] egin{array}{c} n_i & & & & \\ n_j & & & & \\ & & & & \\ \end{array}, \qquad i < j, \qquad unitary$$

Block Jacobi method for A is iterative process of the form

$$A^{(k+1)} = U_k^* A^{(k)} U_k, \quad k \ge 0; \qquad A^{(0)} = A,$$

where U_k , $k \ge 0$, are unitary elementary block matrices.

Block Jacobi method for A is iterative process of the form

$$A^{(k+1)} = U_k^* A^{(k)} U_k, \quad k \ge 0; \qquad A^{(0)} = A,$$

where U_k , $k \ge 0$, are unitary elementary block matrices.

At step k, the pivot submatrix of $A^{(k)}$ is diagonalized:

$$\begin{bmatrix} \Lambda_{ii}^{(k+1)} & 0 \\ 0 & \Lambda_{jj}^{(k+1)} \end{bmatrix} = \begin{bmatrix} U_{ii}^{(k)} & U_{ij}^{(k)} \\ U_{ji}^{(k)} & U_{jj}^{(k)} \end{bmatrix}^* \begin{bmatrix} A_{ii}^{(k)} & A_{ij}^{(k)} \\ (A_{ij}^{(k)})^T & A_{jj}^{(k)} \end{bmatrix} \begin{bmatrix} U_{ii}^{(k)} & U_{ij}^{(k)} \\ U_{ji}^{(k)} & U_{jj}^{(k)} \end{bmatrix}$$

$$\hat{A}_{ij}^{(k+1)} = \hat{U}_k^* \hat{A}^{(k)} \hat{U}_k, \quad k \ge 0; \quad i = i(k), \ j = j(k)$$

Block Jacobi method for A is iterative process of the form

$$A^{(k+1)} = U_k^* A^{(k)} U_k, \quad k \ge 0; \qquad A^{(0)} = A,$$

where U_k , $k \ge 0$, are unitary elementary block matrices.

At step k, the pivot submatrix of $A^{(k)}$ is diagonalized:

$$\begin{bmatrix} \Lambda_{ii}^{(k+1)} & 0 \\ 0 & \Lambda_{jj}^{(k+1)} \end{bmatrix} = \begin{bmatrix} U_{ii}^{(k)} & U_{ij}^{(k)} \\ U_{ji}^{(k)} & U_{jj}^{(k)} \end{bmatrix}^* \begin{bmatrix} A_{ii}^{(k)} & A_{ij}^{(k)} \\ (A_{ij}^{(k)})^T & A_{jj}^{(k)} \end{bmatrix} \begin{bmatrix} U_{ii}^{(k)} & U_{ij}^{(k)} \\ U_{ji}^{(k)} & U_{jj}^{(k)} \end{bmatrix}$$

$$\hat{A}_{ij}^{(k+1)} = \hat{U}_k^* \hat{A}^{(k)} \hat{U}_k, \quad k \ge 0; \quad i = i(k), \ j = j(k)$$

(i,j), i < j pivot pair, $\hat{A}^{(k)}$, $\hat{U}^{(k)}$ pivot submatrices

Block Jacobi method for A is iterative process of the form

$$A^{(k+1)} = U_k^* A^{(k)} U_k, \quad k \ge 0; \qquad A^{(0)} = A,$$

where U_k , $k \ge 0$, are unitary elementary block matrices.

At step k, the pivot submatrix of $A^{(k)}$ is diagonalized:

$$\begin{bmatrix} \Lambda_{ii}^{(k+1)} & 0 \\ 0 & \Lambda_{jj}^{(k+1)} \end{bmatrix} = \begin{bmatrix} U_{ii}^{(k)} & U_{ij}^{(k)} \\ U_{ji}^{(k)} & U_{jj}^{(k)} \end{bmatrix}^* \begin{bmatrix} A_{ii}^{(k)} & A_{ij}^{(k)} \\ (A_{ij}^{(k)})^T & A_{jj}^{(k)} \end{bmatrix} \begin{bmatrix} U_{ii}^{(k)} & U_{ij}^{(k)} \\ U_{ji}^{(k)} & U_{jj}^{(k)} \end{bmatrix}$$
$$\hat{A}_{ij}^{(k+1)} = \hat{U}_k^* \hat{A}^{(k)} \hat{U}_k, \quad k \ge 0; \quad i = i(k), \ j = j(k)$$

$$(i,j)$$
, $i < j$ pivot pair, $\hat{A}^{(k)}$, $\hat{U}^{(k)}$ pivot submatrices

 $n_1 = n_2 = \cdots = n_m = 1 \longrightarrow \text{standard (element-wise)}$ Jacobi method

$$I: \mathbb{N}_0 \to P_m$$
 pivot strategy

$$\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}, \qquad P_m = \{(i, j) \mid 1 \le i < j \le m\}$$

$$I: \mathbb{N}_0 \to P_m$$
 pivot strategy

I is a periodic function $\longrightarrow I$ is periodic pivot strategy.

 $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}, \qquad P_m = \{(i, j) \mid 1 \le i < j \le m\}$

$$I: \mathbb{N}_0 \rightarrow P_m$$
 pivot strategy

$$\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}, \qquad P_m = \{(i, j) \mid 1 \le i < j \le m\}$$

I is a periodic function \longrightarrow I is periodic pivot strategy.

I is cyclic pivot strategy if

- the period is $M \equiv \frac{m(m-1)}{2}$
 - $\{(i(0),j(0)), (i(1),j(1)), \ldots, (i(M-1),j(M-1))\} = P_m$.

$$I: \mathbb{N}_0 \rightarrow P_m$$
 pivot strategy

$$\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}, \qquad P_m = \{(i, j) \mid 1 \le i < j \le m\}$$

I is a periodic function \longrightarrow I is periodic pivot strategy.

I is cyclic pivot strategy if

- the period is $M \equiv \frac{m(m-1)}{2}$
- $\{(i(0),j(0)), (i(1),j(1)), \ldots, (i(M-1),j(M-1))\} = P_m$.

Each cyclic strategy is defined by some ordering of P_m .

$$I: \mathbb{N}_0 \rightarrow P_m$$
 pivot strategy

$$\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}, \qquad P_m = \{(i, j) \mid 1 \le i < j \le m\}$$

I is a periodic function \longrightarrow I is periodic pivot strategy.

I is cyclic pivot strategy if

- the period is $M \equiv \frac{m(m-1)}{2}$
- $\{(i(0),j(0)), (i(1),j(1)), \ldots, (i(M-1),j(M-1))\} = P_m$.

Each cyclic strategy is defined by some ordering of P_m .

During any M successive steps all off-diagonal blocks are annihilated exactly once. Such block Jacobi method is called cyclic.

$$I: \mathbb{N}_0 \to P_m$$
 pivot strategy

$$\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}, \qquad P_m = \{(i, j) \mid 1 \le i < j \le m\}$$

I is a periodic function \longrightarrow I is periodic pivot strategy.

I is cyclic pivot strategy if

- the period is $M \equiv \frac{m(m-1)}{2}$
- $\{(i(0),j(0)), (i(1),j(1)), \ldots, (i(M-1),j(M-1))\} = P_m$.

Each cyclic strategy is defined by some ordering of P_m .

During any M successive steps all off-diagonal blocks are annihilated exactly once. Such block Jacobi method is called cyclic. The transition

- $A^{(k)} \longrightarrow A^{(k+1)}$ is the kth step of the method
- $A^{((r-1)M)} \longrightarrow A^{(rM-1)}$ is the rth cycle or sweep of the method.

The Serial Pivot Strategies

Typical cyclic strategies are the column and row-cyclic strategies.

$$\mathcal{O}_c = (1,2), (1,3), (2,3), \dots, (1,m), (2,m), \dots, (m-1,m)$$

$$\mathcal{O}_r = (1,2), (1,3), \dots, (1,m), \dots, (m-2,m-1), (m-2,m), (m-1,m)$$

The Serial Pivot Strategies

Typical cyclic strategies are the column and row-cyclic strategies.

$$\mathcal{O}_c = (1,2), (1,3), (2,3), \dots, (1,m), (2,m), \dots, (m-1,m)$$

 $\mathcal{O}_r = (1,2), (1,3), \dots, (1,m), \dots, (m-2,m-1), (m-2,m), (m-1,m)$

The Serial Pivot Strategies

Typical cyclic strategies are the column and row-cyclic strategies.

$$\mathcal{O}_c = (1,2), (1,3), (2,3), \dots, (1,m), (2,m), \dots, (m-1,m)$$

 $\mathcal{O}_r = (1,2), (1,3), \dots, (1,m), \dots, (m-2,m-1), (m-2,m), (m-1,m)$

 $\mathcal{O}_c, \mathcal{O}_r \in \mathcal{O}(P_m)$ — the set of all orderings of the set P_m .

$$S^{2}(A) = \sum_{r \neq s} \|A_{rs}\|_{F}^{2}, \qquad A = A^{*}$$

 $S(A) \ge 0$ is departure from the block diagonal form (block off-norm) of A.

$$S^{2}(A) = \sum_{r \neq s} \|A_{rs}\|_{F}^{2}, \qquad A = A^{*}$$

 $S(A) \ge 0$ is departure from the block diagonal form (block off-norm) of A.

Definition

A block Jacobi method is convergent on A if the obtained sequence of matrices $(A^{(k)})$ converges to some diagonal matrix Λ . The method is globally convergent if it is convergent on every hermitian matrix A.

$$S^{2}(A) = \sum_{r \neq s} \|A_{rs}\|_{F}^{2}, \qquad A = A^{*}$$

 $S(A) \ge 0$ is departure from the block diagonal form (block off-norm) of A.

Definition

A block Jacobi method is convergent on A if the obtained sequence of matrices $(A^{(k)})$ converges to some diagonal matrix Λ . The method is globally convergent if it is convergent on every hermitian matrix A.

Obviously, the global convergence implies $S(A^{(k)}) \to 0$ as $k \to \infty$. Hence

$$\lim_{k\to\infty} S(A^{(k)}) = 0 \quad \text{for any initial } A$$

is a necessary condition for the global convergence.

$$S^{2}(A) = \sum_{r \neq s} \|A_{rs}\|_{F}^{2}, \qquad A = A^{*}$$

 $S(A) \ge 0$ is departure from the block diagonal form (block off-norm) of A.

Definition

A block Jacobi method is convergent on A if the obtained sequence of matrices $(A^{(k)})$ converges to some diagonal matrix Λ . The method is globally convergent if it is convergent on every hermitian matrix A.

Obviously, the global convergence implies $S(A^{(k)}) \to 0$ as $k \to \infty$. Hence

$$\lim_{k \to \infty} S(A^{(k)}) = 0 \quad \text{for any initial } A$$

is a necessary condition for the global convergence.

Is it also a sufficient condition for the global convergence?

A Sufficient Condition for Convergence

Theorem

Let A be a hermitian matrix and $A^{(k)}$, $k \ge 0$ be the sequence obtained by applying the block Jacobi method to A. Let the pivot strategy be cyclic and let $\lim_{k\to\infty} S(A^{(k)}) = 0$.

- (i) If the algorithm which diagonalizes the pivot submatrix always delivers diag($\Lambda_{ii}^{(k+1)}, \Lambda_{jj}^{(k+1)}$) with non-increasingly (non-decreasingly) ordered diagonal elements, then $\lim_{k\to\infty} A^{(k)} = \Lambda$, where Λ is diagonal with diagonal elements of Λ non-increasingly (non-decreasingly) ordered.
- (ii) If the algorithm which diagonalizes the pivot submatrix is any standard (i.e. element-wise) globally convergent Jacobi method, then $\lim_{k\to\infty}A^{(k)}=\Lambda$ is diagonal.

Thus, we can focus on proving $S(A^{(k)}) \to 0$ as $k \to \infty$.

UBC Orthogonal Transformations

What kind of transformation matrices to use? If $\pi=(1,1,\ldots,1)$ the transformations are plane rotations and satisfy

$$\cos \phi_k \ge \frac{\sqrt{2}}{2}, \ k \ge 0$$
 (recall the Forsythe-Henrici condition!)

UBC Orthogonal Transformations

What kind of transformation matrices to use? If $\pi=(1,1,\ldots,1)$ the transformations are plane rotations and satisfy

$$\cos \phi_k \ge \frac{\sqrt{2}}{2}, \ k \ge 0$$
 (recall the Forsythe-Henrici condition!)

The analog condition for the unitary elementary block matrices reads: they are UBCE (Uniformly Bounded Cosine Elementary) matrices.

UBC Orthogonal Transformations

What kind of transformation matrices to use? If $\pi=(1,1,\ldots,1)$ the transformations are plane rotations and satisfy

$$\cos \phi_k \geq \frac{\sqrt{2}}{2}, \ k \geq 0$$
 (recall the Forsythe-Henrici condition!)

The analog condition for the unitary elementary block matrices reads: they are UBCE (Uniformly Bounded Cosine Elementary) matrices. If \mathbf{U}_{ii} is UBCE, then its diagonal blocks satisfy

$$\sigma_{min}(U_{ii}) = \sigma_{min}(U_{jj}) \ge \gamma_{ij} > \tilde{\gamma}_{n_i + n_j} \ge \tilde{\gamma}_n,$$

where

$$\gamma_{ij} = \frac{3}{\sqrt{(4^{n_i}+6n_j-1)(n_j+1)}}, \quad \tilde{\gamma}_r = \frac{3\sqrt{2}}{\sqrt{4^r+26}}.$$

What is known?

Drmač: SIAM J. Mat. Anal. Appl. 31, 2009

Convergence proof for the serial block Jacobi methods:

$$S(A') \leq c_n S(A), \qquad 0 \leq c_n < 1,$$

 $A' \leftarrow A$ after one sweep, c_n is a constant depending just on n. Here are introduced UBCE matrices.

What is known?

Drmač: SIAM J. Mat. Anal. Appl. 31, 2009

Convergence proof for the serial block Jacobi methods:

$$S(A') \leq c_n S(A), \qquad 0 \leq c_n < 1,$$

 $A' \leftarrow A$ after one sweep, c_n is a constant depending just on n. Here are introduced UBCE matrices.

Begović: Ph.D. thesis, University of Zagreb, 2014

Several new global convergence results for more general cyclic and quasi-cyclic strategies (Jacobi for symmetric and Hermitian matrices).

What is known?

Drmač: SIAM J. Mat. Anal. Appl. 31, 2009

Convergence proof for the serial block Jacobi methods:

$$S(A') \leq c_n S(A), \qquad 0 \leq c_n < 1,$$

 $A' \leftarrow A$ after one sweep, c_n is a constant depending just on n. Here are introduced UBCE matrices.

Begović: Ph.D. thesis, University of Zagreb, 2014

Several new global convergence results for more general cyclic and quasi-cyclic strategies (Jacobi for symmetric and Hermitian matrices).

Hari: Numer. Math. 129, 2015

More general setting, global convergence results for general block Jacobi-type methods under the serial and weak-wavefront strategies.

What Pivot Strategies?

So far we know the following:

- it is sufficient to consider the problem $S(A^{(k)}) \to 0$ as $k \to \infty$
- The transformation matrices must be UBCE

The remaining problems include:

- to find some larger class of usable pivot strategies for which the proof can be made
- to try to obtain the result in the form:

$$S(A') \leq c_n S(A), \qquad 0 \leq c_n < 1,$$

 $A' \leftarrow A$ after one sweep, c_n is a constant depending just on n.

Cyclic Pivot Strategies

$$\mathcal{O}(P_m) \quad \stackrel{1-1}{\longleftrightarrow} \quad \text{set of cyclic strategies}$$

Cyclic Pivot Strategies

$$\mathcal{O}(P_m) \stackrel{1-1}{\longleftrightarrow}$$
 set of cyclic strategies I cyclic iff $I = I_{\mathcal{O}}$ for some $\mathcal{O} \in \mathcal{O}(P_m)$

 \mathcal{O} is also called pivot ordering. It generally has the form:

$$\mathcal{O} = (i_0, j_0), (i_1, j_1), \ldots, (i_{M-1}, j_{M-1}), \qquad M = m(m-1)/2.$$

Cyclic Pivot Strategies

$$\mathcal{O}(P_m) \stackrel{1-1}{\longleftrightarrow}$$
 set of cyclic strategies
 I cyclic iff $I = I_{\mathcal{O}}$ for some $\mathcal{O} \in \mathcal{O}(P_m)$

 \mathcal{O} is also called pivot ordering. It generally has the form:

$$\mathcal{O} = (i_0, j_0), (i_1, j_1), \ldots, (i_{M-1}, j_{M-1}), \qquad M = m(m-1)/2.$$

To visually depict \mathcal{O} , we use the symmetric matrix $M_{\mathcal{O}} = (m_{rt})$, defined by

$$m_{i(k)j(k)} = m_{j(k)i(k)} = k, \quad k = 0, 1, \dots, M-1.$$

We set $m_{ss}=-1$, $1 \le s \le m$. Since $(s,s) \notin \mathcal{O}$ we depict them by *.

Inverse Ordering, Inverse Cyclic Strategy

With

$$\mathcal{O} = (i_0, j_0), (i_1, j_1), \ldots, (i_{M-1}, j_{M-1})$$

is associated its inverse or reverse ordering

$$\mathcal{O}^{\leftarrow} = (i_{M-1}, j_{M-1}), \ldots, (i_1, j_1), (i_0, j_0)$$

 $I_{\mathcal{O}^{\leftarrow}}$ is the inverse (reverse) strategy of $I_{\mathcal{O}}$. Note: $\mathcal{O}^{\leftarrow\leftarrow}=\mathcal{O}$.

Two pivot orderings $\mathcal{O},\mathcal{O}'\in\mathcal{O}(P_m)$ are permutation equivalent if

$$M_{\mathcal{O}'} = P^T M_{\mathcal{O}} P$$

holds for some permutation matrix P. Then we write $\mathcal{O}' \stackrel{P}{\sim} \mathcal{O}$, $I_{\mathcal{O}'} \stackrel{P}{\sim} I_{\mathcal{O}}$.

Two pivot orderings $\mathcal{O}, \mathcal{O}' \in \mathcal{O}(P_m)$ are permutation equivalent if

$$M_{\mathcal{O}'} = P^T M_{\mathcal{O}} P$$

holds for some permutation matrix P. Then we write $\mathcal{O}' \stackrel{P}{\sim} \mathcal{O}$, $I_{\mathcal{O}'} \stackrel{P}{\sim} I_{\mathcal{O}}$.

Let p be a permutation of $\{1, 2, ..., m\}$ such that

$$Pe_i = e_{p(i)}, \quad 1 \le i \le m; \quad I_m = [e_1, \dots, e_m].$$

Two pivot orderings $\mathcal{O}, \mathcal{O}' \in \mathcal{O}(P_m)$ are permutation equivalent if

$$M_{\mathcal{O}'} = P^T M_{\mathcal{O}} P$$

holds for some permutation matrix P. Then we write $\mathcal{O}' \stackrel{\mathsf{p}}{\sim} \mathcal{O}$, $I_{\mathcal{O}'} \stackrel{\mathsf{p}}{\sim} I_{\mathcal{O}}$.

Let p be a permutation of $\{1, 2, ..., m\}$ such that

$$Pe_i = e_{p(i)}, \qquad 1 \leq i \leq m; \qquad I_m = [e_1, \dots, e_m].$$

If
$$\mathcal{O} = (i_0, j_0), (i_1, j_1), \dots, (i_{M-1}, j_{M-1})$$
 and $\tilde{\mathcal{O}} \stackrel{p}{\sim} \mathcal{O}$, then $\tilde{\mathcal{O}} = (p(i_0), p(j_0)), (p(i_1), p(j_1)), \dots, (p(i_{M-1}), p(j_{M-1})).$

Two pivot orderings $\mathcal{O},\mathcal{O}'\in\mathcal{O}(P_m)$ are permutation equivalent if

$$M_{\mathcal{O}'} = P^T M_{\mathcal{O}} P$$

holds for some permutation matrix P. Then we write $\mathcal{O}' \stackrel{p}{\sim} \mathcal{O}$, $I_{\mathcal{O}'} \stackrel{p}{\sim} I_{\mathcal{O}}$.

Let p be a permutation of $\{1, 2, ..., m\}$ such that

$$Pe_i = e_{p(i)}, \quad 1 \le i \le m; \quad I_m = [e_1, \dots, e_m].$$

If
$$\mathcal{O} = (i_0, j_0), (i_1, j_1), \dots, (i_{M-1}, j_{M-1})$$
 and $\tilde{\mathcal{O}} \stackrel{p}{\sim} \mathcal{O}$, then $\tilde{\mathcal{O}} = (p(i_0), p(j_0)), (p(i_1), p(j_1)), \dots, (p(i_{M-1}), p(j_{M-1})).$

 $\stackrel{\mathsf{p}}{\sim}$ is equivalence relation on $\mathcal{O}(P_m)$.

Let $\mathcal{O} \in \mathcal{O}(P_m)$. The number of pairs in \mathcal{O} , $|\mathcal{O}|$, is the length of \mathcal{O} .

An admissible transposition on \mathcal{O} is any transposition of two adjacent terms $(i_r,j_r),(i_{r+1},j_{r+1})\to(i_{r+1},j_{r+1}),(i_r,j_r)$, provided that $\{i_r,j_r\}$ and $\{i_{r+1},j_{r+1}\}$ are disjoint (we say that such pairs commute).

Let $\mathcal{O} \in \mathcal{O}(P_m)$. The number of pairs in \mathcal{O} , $|\mathcal{O}|$, is the length of \mathcal{O} .

An admissible transposition on \mathcal{O} is any transposition of two adjacent terms $(i_r,j_r),(i_{r+1},j_{r+1})\to(i_{r+1},j_{r+1}),(i_r,j_r)$, provided that $\{i_r,j_r\}$ and $\{i_{r+1},j_{r+1}\}$ are disjoint (we say that such pairs commute).

Two pivot orderings $\mathcal{O}, \mathcal{O}' \in \mathcal{O}(P_m)$, are equivalent (we write $\mathcal{O} \sim \mathcal{O}'$) if one can be obtained from the other by a finite set of admissible transpositions.

Let $\mathcal{O} \in \mathcal{O}(P_m)$. The number of pairs in \mathcal{O} , $|\mathcal{O}|$, is the length of \mathcal{O} .

An admissible transposition on \mathcal{O} is any transposition of two adjacent terms $(i_r,j_r),(i_{r+1},j_{r+1})\to(i_{r+1},j_{r+1}),(i_r,j_r)$, provided that $\{i_r,j_r\}$ and $\{i_{r+1},j_{r+1}\}$ are disjoint (we say that such pairs commute).

Two pivot orderings $\mathcal{O}, \mathcal{O}' \in \mathcal{O}(P_m)$, are equivalent (we write $\mathcal{O} \sim \mathcal{O}'$) if one can be obtained from the other by a finite set of admissible transpositions.

Cyclic pivot strategy $I_{\mathcal{O}'}$ is equivalent to $I_{\mathcal{O}}$ (we write $I_{\mathcal{O}'} \sim I_{\mathcal{O}}$) if $\mathcal{O}' \sim \mathcal{O}$.

Let $\mathcal{O} \in \mathcal{O}(P_m)$. The number of pairs in \mathcal{O} , $|\mathcal{O}|$, is the length of \mathcal{O} .

An admissible transposition on \mathcal{O} is any transposition of two adjacent terms $(i_r,j_r),(i_{r+1},j_{r+1})\to(i_{r+1},j_{r+1}),(i_r,j_r)$, provided that $\{i_r,j_r\}$ and $\{i_{r+1},j_{r+1}\}$ are disjoint (we say that such pairs commute).

Two pivot orderings $\mathcal{O}, \mathcal{O}' \in \mathcal{O}(P_m)$, are equivalent (we write $\mathcal{O} \sim \mathcal{O}'$) if one can be obtained from the other by a finite set of admissible transpositions.

Cyclic pivot strategy $I_{\mathcal{O}'}$ is equivalent to $I_{\mathcal{O}}$ (we write $I_{\mathcal{O}'} \sim I_{\mathcal{O}}$) if $\mathcal{O}' \sim \mathcal{O}$. \sim is equivalence relation on $\mathcal{O}(P_m)$.

Weakly Equivalent Strategies

Two pivot orderings $\mathcal{O}, \mathcal{O}' \in \mathcal{O}(P_m)$, are

(ii) shift-equivalent $(\mathcal{O} \stackrel{s}{\sim} \mathcal{O}')$ if $\mathcal{O} = [\mathcal{O}_1, \mathcal{O}_2]$ and $\mathcal{O}' = [\mathcal{O}_2, \mathcal{O}_1]$, where $[\ ,\]$ stands for concatenation.

Weakly Equivalent Strategies

Two pivot orderings $\mathcal{O}, \mathcal{O}' \in \mathcal{O}(P_m)$, are

- (ii) shift-equivalent $(\mathcal{O} \stackrel{s}{\sim} \mathcal{O}')$ if $\mathcal{O} = [\mathcal{O}_1, \mathcal{O}_2]$ and $\mathcal{O}' = [\mathcal{O}_2, \mathcal{O}_1]$, where $[\ ,\]$ stands for concatenation.
- (iii) weak equivalent $(\mathcal{O} \stackrel{w}{\sim} \mathcal{O}')$ if there are orderings $\mathcal{O}_i \in \mathcal{O}(P_m)$, such that in the sequence $\mathcal{O} = \mathcal{O}_0, \mathcal{O}_1, \dots, \mathcal{O}_r = \mathcal{O}'$ each two neighboring terms are equivalent or shift-equivalent.

Weakly Equivalent Strategies

Two pivot orderings $\mathcal{O}, \mathcal{O}' \in \mathcal{O}(P_m)$, are

- (ii) shift-equivalent $(\mathcal{O} \stackrel{s}{\sim} \mathcal{O}')$ if $\mathcal{O} = [\mathcal{O}_1, \mathcal{O}_2]$ and $\mathcal{O}' = [\mathcal{O}_2, \mathcal{O}_1]$, where $[\ ,\]$ stands for concatenation.
- (iii) weak equivalent $(\mathcal{O} \stackrel{w}{\sim} \mathcal{O}')$ if there are orderings $\mathcal{O}_i \in \mathcal{O}(P_m)$, such that in the sequence $\mathcal{O} = \mathcal{O}_0, \mathcal{O}_1, \dots, \mathcal{O}_r = \mathcal{O}'$ each two neighboring terms are equivalent or shift-equivalent.

 $\stackrel{s}{\sim}$ and $\stackrel{w}{\sim}$ are equivalence relations on $\mathcal{O}(P_m)$.

$$I_{\mathcal{O}'} \stackrel{\mathfrak{s}}{\sim} I_{\mathcal{O}} \quad \text{iff} \quad \mathcal{O}' \stackrel{\mathfrak{s}}{\sim} \mathcal{O},$$

$$I_{\mathcal{O}'} \stackrel{w}{\sim} I_{\mathcal{O}} \quad \text{iff} \quad \mathcal{O}' \stackrel{w}{\sim} \mathcal{O}.$$

The Main Theorem

Let $A=A^*$ of order $n, \pi=(n_1,\ldots,n_m)$ and $\mathcal{O}\in\mathcal{O}(P_m)$. Apply to A the cyclic block Jacobi method, defined by π , $I_{\mathcal{O}}$, and let the transformation matrices be UBCE. Let A' be obtained from A after one cycle. Suppose that

$$S(A') \le c_n S(A), \qquad 0 \le c_n < 1. \tag{1}$$

Let $\tilde{A} = \tilde{A}^*$ be of order n, $\tilde{\pi} = (\tilde{n}_1, \dots, \tilde{n}_m)$ partition of n and $\tilde{\mathcal{O}} \in \mathcal{O}(P_m)$. Apply to \tilde{A} the cyclic block Jacobi method, defined by $\tilde{\pi}$, $I_{\tilde{\mathcal{O}}}$ and let the transformation matrices be UBCE. Let \tilde{A}' be obtained from \tilde{A} after one sweep.

- If $ilde{\mathcal{O}} \sim \mathcal{O}$ then $S(ilde{\mathcal{A}}') \leq c_n S(ilde{\mathcal{A}})$
- If $\tilde{\mathcal{O}} \stackrel{\mathsf{p}}{\sim} \mathcal{O}$ then $S(\tilde{A}') \leq c_n S(\tilde{A})$
- If $\tilde{\mathcal{O}} = \mathcal{O}^{\leftarrow}$ then $S(\tilde{A}') \leq c_n S(\tilde{A})$
- If $\tilde{\mathcal{O}} \stackrel{w}{\sim} \mathcal{O}$ then the block Jacobi method defined by $I_{\tilde{\mathcal{O}}}$ is globally convergent.

Serial strategies with permutations

 $\Pi^{(k_1,k_2)}$ the group of permutations of the set $\{k_1,k_1+1,\ldots,k_2\}$.

Column-wise orderings with permutations of the set P_m

$$\mathcal{B}_{c}^{(m)} = \left\{ \mathcal{O} \in \mathcal{O}(\mathbf{P}_{m}) \mid \mathcal{O} = (1,2), (\tau_{3}(1),3), (\tau_{3}(2),3), \dots \right. \\ \left. , (\tau_{m}(1),m), \dots, (\tau_{m}(m-1),m), \ \tau_{j} \in \Pi^{(1,j-1)}, \ 3 \leq j \leq m \right\}.$$

	$ ilde{\mathcal{O}} \overset{w}{\sim} \mathcal{O}$														
	「 * 0	0	2 1	4 5	9 8	12 10			「 * 7	7 *	9 10	0 13	2 14	5 6	
$M_\mathcal{O} =$	2 4	1 5	*	3	7 6	13 11	,	$M_{\tilde{\mathcal{O}}} =$	9	10 13	* 11	11 *	12 1	8 4	
	9 12	8 10	7 13	6 11	* 14	14 *			2 5	14 6	12 8	1 4	* 3	3	

Serial strategies with permutations

The same theorem holds for the class of orderings

$$\mathcal{B}_{r}^{(m)} = \{ \mathcal{O} \in \mathcal{O}(\mathbf{P}_{m}) \mid \mathcal{O} = (m-1, m), \dots, (1, \tau_{1}(2)), \dots, (1, \tau_{1}(m)), \\ \tau_{i} \in \Pi^{(i+1, m)}, \ 1 \leq i \leq m-2 \}.$$

		$\tilde{\mathcal{O}} \overset{w}{\sim} \mathcal{O}$												
$M_\mathcal{O} =$	* 10 11 12 13 14	11 * 9 6 7 8	13 9 * 5 3 4	5	10 6 3 1 *	4	,		* 14 1 0 11 2	* 13 10	1 13 * 9 6 8	10 9 * 4	11 7 6 4 * 3	2 12 8 5 3 * -

Serial Strategies with Permutations

Let

$$\begin{array}{lcl} \overleftarrow{\mathcal{B}}_{c}^{(m)} & = & \left\{ \mathcal{O} \in \mathcal{O}(P_{m}) \mid \mathcal{O}^{\leftarrow} \in \mathcal{B}_{c}^{(m)} \right\}, \\ \overleftarrow{\mathcal{B}}_{r}^{(m)} & = & \left\{ \mathcal{O} \in \mathcal{O}(P_{m}) \mid \mathcal{O}^{\leftarrow} \in \mathcal{B}_{r}^{(m)} \right\}. \end{array}$$

and

$$\mathcal{B}_{s}^{(m)} = \mathcal{B}_{c}^{(m)} \cup \overleftarrow{\mathcal{B}}_{c}^{(m)} \cup \mathcal{B}_{r}^{(m)} \cup \overleftarrow{\mathcal{B}}_{r}^{(m)}$$

 $\{I_{\mathcal{O}} \mid \mathcal{O} \in \mathcal{B}_s^{(m)}\}$ is the set of serial strategies with permutations.

Serial Strategies with Permutations

Let

$$\begin{array}{lcl} \overleftarrow{\mathcal{B}}_{c}^{(m)} & = & \left\{ \mathcal{O} \in \mathcal{O}(P_{m}) \mid \mathcal{O}^{\leftarrow} \in \mathcal{B}_{c}^{(m)} \right\}, \\ \overleftarrow{\mathcal{B}}_{r}^{(m)} & = & \left\{ \mathcal{O} \in \mathcal{O}(P_{m}) \mid \mathcal{O}^{\leftarrow} \in \mathcal{B}_{r}^{(m)} \right\}. \end{array}$$

and

$$\mathcal{B}_{s}^{(m)} = \mathcal{B}_{c}^{(m)} \cup \overleftarrow{\mathcal{B}}_{c}^{(m)} \cup \mathcal{B}_{r}^{(m)} \cup \overleftarrow{\mathcal{B}}_{r}^{(m)}$$

 $\{I_{\mathcal{O}} \mid \mathcal{O} \in \mathcal{B}_{s}^{(m)}\}$ is the set of serial strategies with permutations.

The main theorem holds if $\mathcal{O} \in \mathcal{B}_s^{(m)}$.

Generalized Serial Strategies

Let $\pi = (n_1, \ldots, n_m)$ be a partition of n. Let

$$\begin{array}{lll} \mathcal{B}_{sp}^{(m)} & = & \left\{ \mathcal{O} \in \mathcal{O}(\mathcal{P}_m) \; \middle| \; \mathcal{O} \overset{p}{\sim} \mathcal{O}' \sim \mathcal{O}'' \; \text{or} \; \mathcal{O} \sim \mathcal{O}' \overset{p}{\sim} \mathcal{O}'', \; \mathcal{O}'' \in \mathcal{B}_s^{(m)} \right\}, \\ \mathcal{B}_{sg}^{(m)} & = & \left\{ \mathcal{O} \in \mathcal{O}(\mathcal{P}_m) \; \middle| \; \mathcal{O} \overset{p}{\sim} \mathcal{O}' \overset{w}{\sim} \mathcal{O}'' \; \text{or} \; \mathcal{O} \overset{w}{\sim} \mathcal{O}' \overset{p}{\sim} \mathcal{O}'', \; \mathcal{O}'' \in \mathcal{B}_s^{(m)} \right\}. \end{array}$$

 $\mathcal{B}_{sg}^{(m)}$ is the class of generalized serial pivot orderings

 $\mathcal{B}_{sp}^{(m)}$ is the subclass of $\mathcal{B}_{sg}^{(m)}$ with no shifts.

Generalized Serial Strategies

Let $\pi = (n_1, \dots, n_m)$ be a partition of n. Let

$$\begin{array}{lll} \mathcal{B}_{sp}^{(m)} & = & \left\{ \mathcal{O} \in \mathcal{O}(\mathcal{P}_m) \; \middle| \; \mathcal{O} \overset{p}{\sim} \mathcal{O}' \sim \mathcal{O}'' \; \text{or} \; \mathcal{O} \sim \mathcal{O}' \overset{p}{\sim} \mathcal{O}'', \; \mathcal{O}'' \in \mathcal{B}_s^{(m)} \right\}, \\ \mathcal{B}_{sg}^{(m)} & = & \left\{ \mathcal{O} \in \mathcal{O}(\mathcal{P}_m) \; \middle| \; \mathcal{O} \overset{p}{\sim} \mathcal{O}' \overset{w}{\sim} \mathcal{O}'' \; \text{or} \; \mathcal{O} \overset{w}{\sim} \mathcal{O}' \overset{p}{\sim} \mathcal{O}'', \; \mathcal{O}'' \in \mathcal{B}_s^{(m)} \right\}. \end{array}$$

 $\mathcal{B}_{\mathsf{sg}}^{(m)}$ is the class of generalized serial pivot orderings

 $\mathcal{B}_{sp}^{(m)}$ is the subclass of $\mathcal{B}_{sg}^{(m)}$ with no shifts.

The main theorem holds for $\{I_{\mathcal{O}} \mid \mathcal{O} \in \mathcal{B}_{sp}^{(m)}\}$.

It holds in a weaker form for $\{I_{\mathcal{O}} \mid \mathcal{O} \in \mathcal{B}_{sg}^{(m)}\}$, which still ensures the global convergence.

• For the standard Jacobi method, there are exactly 720 cyclic strategies if n=4, $\pi=(1,1,1,1)$. Now, we can prove that any cyclic Jacobi method for symmetric matrix of order 4 is globally convergent.

- For the standard Jacobi method, there are exactly 720 cyclic strategies if n=4, $\pi=(1,1,1,1)$. Now, we can prove that any cyclic Jacobi method for symmetric matrix of order 4 is globally convergent.
- As part of these considerations, we are able to show that for given n and $\varepsilon > 0$, there is a symmetric matrix $A(\varepsilon)$ and a cyclic pivot strategy, such that for the standard Jacobi method holds

$$S(A') > (1 - \varepsilon)S(A)$$
.

- For the standard Jacobi method, there are exactly 720 cyclic strategies if n=4, $\pi=(1,1,1,1)$. Now, we can prove that any cyclic Jacobi method for symmetric matrix of order 4 is globally convergent.
- As part of these considerations, we are able to show that for given n and $\varepsilon > 0$, there is a symmetric matrix $A(\varepsilon)$ and a cyclic pivot strategy, such that for the standard Jacobi method holds

$$S(A') > (1 - \varepsilon)S(A)$$
.

 We have developed tools, such as block Jacobi annihilators and operators for hermitian matrices, which enable us to prove the global convergence of block Jacobi-type methods for other eigenvalue problems (e.g. the generalized eigenvalue problem).

THANK YOU FOR YOUR ATTENTION

