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Cosine-Sine Decomposition (CSD) of Orthogonal Matrix Q

Let Q be orthogonal matrix of order n and let

Q =

[
Q11 Q12

Q21 Q22

]
} l
} n − l

(1)︸︷︷︸ ︸︷︷︸
l n − l

be the partition of Q defined by l , 1 ≤ l ≤ n − 1.

The Cosine-Sine decomposition of Q is read

Q =

[
Q11 Q12

Q21 Q22

]
=

[
U1

U2

] [
C −S
S C

] [
V1

V2

]T
C , S diagonal, , C 2 + S2 = I , U1, U2, V1, V2 orthogonal.
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A Bit of History

• C. C. Paige, M. Wei, History and Generality of the CS
Decomposition, Linear Algebra and its Appl. 208 (1994) 303-326

• G. W. Stewart, Computing the CS decomposition of a partitioned
orthogonal matrix, Numer. Math. 40 (1982) 297-306

• C. Van Loan. Computing the CS and the generalized singular value
decompositions, Numer. Math. 46(4) (1985) 479491

• B. D. Sutton, Computing the complete CS decomposition, Numer.
Algorithms 50 (209) 3365

• B. D. Sutton, Stable computation of the CS decomposition:
simultaneous bidiagonalization, SIAM J. Matrix Anal. Appl. 33
(2012) 121

• D. Calvetti, L. Reichel, H. Xu, A CS decomposition for orthogonal
matrices with application to eigenvalue computation, Linear Algebra
and its Appl. 476 (2015) 10.1016/j.laa.2015.03.007
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Applications of CSD

Z. Bai, The CSD, GSVD, their Applications and Computations 1999
(preprint)

In matrix theory, CSD is used

• to define canonical angles between two subspaces of Rn

• in the theory of orthogonal projections

• in solving GSVD

• in accelerating block Jacobi methods

• in quantum compiling

• . . .
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A New Approach to CSD Computation

The first goal is to find out what happens if we make SVDs of the diagonal
blocks of Q and extract the left and right singular vector matrices:

Q11 = U11C1V T
11, Q22 = U22C2V T

22

U =

[
U11 O
O U22

]
, V =

[
V11 O
O V22

]
.

We have

W = UTQV =

[
C1 W12

W21 C2

]
, (2)

where
W12 = UT

11Q12V22, W21 = UT
22Q21V11.

and C1 and C2 are diagonal.
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A New Approach to CSD Computation

The first goal is to find out what happens if we make SVDs of the diagonal
blocks of Q and extract the left and right singular vector matrices:

Q11 = U11C1V T
11, Q22 = U22C2V T

22

U =

[
U11 O
O U22

]
, V =

[
V11 O
O V22

]
.

We have

W = UTQV =

[
C1 W12

W21 C2

]
, (2)

where
W12 = UT

11Q12V22, W21 = UT
22Q21V11.

and C1 and C2 are diagonal.

Hari (University of Zagreb) CSD Open Problems ApplMath 18, Šibenik 6 / 33
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CSD Computation in Exact Arithmetic

We can assume

C1 = diag (γ1, . . . , γl), C2 = diag (γl+1, . . . , γn)

γ1 ≥ γ2 ≥ · · · ≥ γl , γl+1 ≥ γl+2 ≥ · · · ≥ γn .

Lemma

Let n = 2l . Then C1 = C2 and W12, W21 are block diagonal. If γn > 0
then W21 = −W T

12. Otherwise W21 and −W T
12 can differ in the last

diagonal blocks. In the special case when C2 = O or C1 = O these blocks
are the whole matrices W12 and W21.
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CSD Computation in Exact Arithmetic

Theorem

Let W be orthogonal matrix satisfying the above relations. If 2l ≥ n then

W =

 I
C S1

S2 C

 } 2l − n
} n − l
} n − l︸︷︷︸ ︸︷︷︸ ︸︷︷︸

2l − n n − l n − l

.
If 2l < n, then

W =

 C S1

I
S2 C

 } l} n − 2l
} l︸︷︷︸ ︸︷︷︸ ︸︷︷︸

l n − 2l l

where C is diagonal with nonnegative diagonal elements arranged nonincreasingly,
S1 and S2 are block-diagonal such that each diagonal block of S1 and of S2 is
some multiple of an orthogonal matrix. The relation S1 = −ST

2 holds, except
possibly for the last diagonal block. If all diagonal elements of C are distinct, S1

and S2 are diagonal and S2
1 = S2

2 = I − C 2 holds.
Hari (University of Zagreb) CSD Open Problems ApplMath 18, Šibenik 8 / 33



CSD Computation in Exact Arithmetic

C = diag ( γ(1)In1 , . . . , γ
(p−1)Inp−1 , γ(p)Inp),

S2 = diag ( σ(1)S11, . . . , σ(p−1)Sp−1,p−1, σ(p)Spp),

S1 = diag (−σ(1)ST
11, . . .− σ(p−1)S̃T

p−1,p−1, −σ(p)S̃T
pp),

To obtain the CSD of Q, we make the block-diagonal orthogonal matrices

Ũ =

[
I0

diag(S11, . . . ,Spp)

]
,

Ṽ =

[
I0

diag(ST
11, . . . S̃

T
pp)

]
,

where I0 stands for I2l−n (In−2l) provided that 2l > n (2l < n). It does not
exist when 2l = n. Then make the transformation W̃ = ŨTW Ṽ .
The matrix W̃ has the same form as W in Theorem 2, but C (resp. S2,
S1) is replaced by Γ, (resp. Σ, −Σ). Here

Γ = diag(γ(1)In1 , . . . , γ
(p)Inp), Σ = diag(σ(1)In1 , . . . , σ

(p)Inp),

and we have Γ2 + Σ2 = I . The CS decomposition of Q has the form
Q = (UŨ)W̃ (V W̃ )T .

Hari (University of Zagreb) CSD Open Problems ApplMath 18, Šibenik 9 / 33



Computing CSD in Finite Arithmetic

In computer we rarely have orthogonal matrix Q, rather we have Q̃ which
is almost orthogonal.

• Usually, Q̃ computed as product of Householder reflectors or plane rotations

• Just storing a matrix in the computer generates small relative errors in the
matrix elements

• Q̃T Q̃ and Q̃Q̃T are close to identity

• Our goal here is to compute an approximate CS decomposition of Q̃ which
is as accurate as the data warrant

• To this end Q̃ is partitioned, as earlier, so that the diagonal blocks are of
order l and n − l .

• We assume that the two initial diagonalizations of the diagonal blocks Q̃11

and Q̃22 are already performed, so that these diagonal blocks are diagonal.
By W̃ we denote the computed version of W from the preceding section
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Computing CSD in Finite Arithmetic

Since W̃ is almost orthogonal, we can assume

W̃ T W̃ = I + E , W̃ W̃ T = I + F , ‖E‖2 ≤ ε, ‖F‖2 ≤ ε

ε is a small number, typically like O(nu) or O(n2u), where u denotes the
unit roundoff of the finite arithmetic used in the computation. The bound
ε measures how close to orthogonality is W̃ .
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Computing CSD in Finite Arithmetic, Case: 2l ≤ n

We assume

W̃ =

 Γ+ ΨT Y T

Φ I −∆′ 0
X 0 Γ−


• Γ+ and Γ− are of order l

• the central term is written in the form I −∆′ because we have

ΨΨT + (I −∆′)2 ≈ I .

So, we expect that the diagonal elements of ∆′ are nonnegative.

Set

Γ =
1

2
(Γ+ + Γ−)

then we have
Γ+ = Γ(I + ∆), Γ− = Γ(I −∆)

and we can assume

‖Γ∆‖2 ≤ ε1 , ‖∆′‖2 ≤ ε1 .

Here, ε1 is a modest multiple of u. Namely, Γ∆ has as diagonal elements
the means of the absolute errors of the singular values of Q̃11 and Q̃22 and
they are tiny. We have assumed the same bound for ‖Γ∆‖2 and for ‖∆′‖2

because ∆′ and Γ− are parts of the same SVD computation of Q̃22.
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Computing CSD in Finite Arithmetic, Case: 2l ≤ n

W̃ =

 Γ+ ΨT Y T

Φ I −∆′ 0
X 0 Γ−


Lemma

The following assertions hold.

(i)
‖Φ‖2 ≤

√
ε and ‖Ψ‖2 ≤

√
ε. (3)

(ii) For all i , j , such that γi 6= γj ,

xij =
ξij

γi − γj
and yij =

ηij
γi − γj

, |ξij | ≤ |ε|, |ηij | ≤ |ε|. (4)
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Computing CSD in Finite Arithmetic, Case: 2l ≤ n

W̃ =

 Γ+ ΨT Y T

Φ I −∆′ 0
X 0 Γ−


These results are analogous to those of Lemma 1 and theorem 2. They tell us
that tiny gap between successive diagonals of Γ can make the appropriate
off-diagonal elements of X and Y large. Hence, in order to compute the CS
decomposition we shall have to work on X and Y .

• We know that the possible large elements in X and Y form a small
diagonal block (in earlier notation: a diagonal submatrix −Y T

i in X and Yi

in Y ) which is close to a multiple of orthogonal matrix

• Note that the QL, QR, LQ, RQ factorizations of an almost diagonal matrix
actually almost diagonalizes it

• Therefore, we can make the QL factorization of X , X = QXLX and of Y ,
Y = QY LY = QY RT and transform W̃ appropriately
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Computing CSD in Finite Arithmetic, Case: 2l ≤ n

W̃ ′ =

[
I O
O QT

X

]
W̃

[
I O
O QY

]
=

 Γ(I + ∆) ΨT R
Φ I −∆′ O
LX O QT

X Γ(I −∆)QY

 .

• If the norm of Y is close to u, the QY becomes dependent on the errors in
W̃ which are also of that order of magnitude

• In that case, the same is true for QX since ‖X‖ ≈ ‖Y ‖. This can make
QT

X Γ(I −∆)QY to be far from Γ. Therefore, we shall follow another way.

• We split Γ = diag (γ1, . . . , γl) into two parts,

Γ =

[
Γ1 O
O Γ2

]
, Γ1 = diag (γ1, . . . , γm), 0 ≤ m ≤ l ,

where m is the largest index for which γm ≥
√

2
2 , 0 ≤ m ≤ l , holds. Thus,

if γl ≥
√

2/2, then Γ = Γ1 and if γ1 <
√

2/2, then Γ = Γ2.

• Although the story complicates, now we can make sharp estimates for
almost all blocks appearing in W̃ ′.
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How to Diagonalize 4x4 Symmetric Matrix by 6 Rotations

• In today’s CPU and GPU eigenvalue and singular value computation, very
efficient and accurate are the block diagonalization methods. They are
generalizations of the element-wise Jacobi methods. Instead of annihilating
two off-diagonal elements, they annihilate two off-diagonal blocks.

• The dimension of these blocks depends on the available cache memory of
the computing machine. Typically these blocks are of order 16–256. For the
annihilation of these blocks one employs a special method that is referred to
as kernel algorithm.

• So, the kernel algorithm diagonalizes a symmetric matrix of order 32–512.
Typically, an element-wise Jacobi method is used.

• The kernel algorithm can be made more efficient if instead of two
off-diagonal elements it annihilates two blocks of small order 2–4. If the
blocks are of order 2 then there is a need for a simple, efficient and accurate
eigenvalue algorithm for a symmetric matrix of order 4.

• We shall show how the CSD can be used to shed some light how to the
construction 6 plane rotations that diagonalize the given 4× 4 symmetric
matrix.
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How to Diagonalize 4x4 Symmetric Matrix by 6 Rotations

Let

A =

[
A11 A12

AT
12 A22

]
=


a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

 ,
be a symmetric matrix of order 4 and let Q be orthogonal and such that

A = QΛQτ .

Recall the CSD of Q with n = 4, l = 2

Q =

[
Q11 Q12

Q21 Q22

]
=

[
U1

U2

] [
C −S
S C

] [
V1

V2

]T
= UGV T

C , S diagonal, , C 2 + S2 = I , U1, U2, V1, V2 orthogonal.
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How to Diagonalize 4x4 Symmetric Matrix by 6 Rotations

• Let DU , DV be special 4× 4 diagonal matrices of signs

• Let DU contain the signs of the diagonal elements of U

• Let DV contain the signs of the diagonal elements of VDU

• Then Ũ = UDU has nonnegative diagonal, so Ũ = R1R2

• R1 and R2 are plane rotations with angles in [−π/2, π/2]

• Then Ṽ = DV VDU has nonnegative diagonal, so Ṽ T = R5R6

• R5 and R6 are plane rotations with angles in [−π/2, π/2]

• R1 and R5 (R2 and R6) rotate in the (1, 2)-plane ((3, 4)-plane)
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How to Diagonalize 4x4 Symmetric Matrix by 6 Rotations

Note that

Q = UGV T = UDU(DUGDU)(DV VDU)TDV = ŨG̃ Ṽ TDV

Note also that

G̃ =

[
C −D1SD2

D2SD1 C

]
= R3R4

The plane rotations R3 and R4 rotate in the (1, 3) and (2, 4) planes with
angles in [−π/2, π/2].

This way we have obtained

Q = R1R2R3R4R5R6DV .

Hence

Λ = QTAQ = DV RT
6 RT

5 RT
4 RT

3 RT
2 RT

1 AR1R2R3R4R5R6DV

= RT
6 RT

5 RT
4 RT

3 RT
2 RT

1 AR1R2R3R4R5R6.
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Note also that

G̃ =

[
C −D1SD2

D2SD1 C

]
= R3R4

The plane rotations R3 and R4 rotate in the (1, 3) and (2, 4) planes with
angles in [−π/2, π/2].

This way we have obtained

Q = R1R2R3R4R5R6DV .

Hence

Λ = QTAQ = DV RT
6 RT

5 RT
4 RT

3 RT
2 RT

1 AR1R2R3R4R5R6DV

= RT
6 RT

5 RT
4 RT

3 RT
2 RT

1 AR1R2R3R4R5R6.

Hari (University of Zagreb) CSD Open Problems ApplMath 18, Šibenik 20 / 33



How to Diagonalize 4x4 Symmetric Matrix by 6 Rotations

Recall

A =

[
A11 A12

AT
12 A22

]
=


a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

 ,
Λ = (R5R6)T (R3R4)T (R1R2)TA(R1R2) (R3R4) (R5R6).

The rotations within each parenthesis commute. We can conclude:

• Since R5 and R6 rotate in (1, 2) and (3, 4) planes they cannot change ‖A12‖F
• Since R1 and R2 rotate in (1, 2) and (3, 4) planes they cannot change ‖A12‖F
• So, the product R3R4 has the task to zero A12

• Hence the task of R5 and R6 is to annihilate (1, 2)- and (3, 4)-elements

• Therefore, we can choose R5 and R6 as simple Jacobi rotations

• The role of R1 and R2 is to prepare the matrix, in such a way that R3 and
R4 can accomplish their task
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a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

 ,
Let us rename

A← (R3R4)T (R1R2)TA(R1R2) (R3R4).

• Since R3 does not affect/change a24, R4 must be Jacobi rotation

• Since R4 does not affect/change a13, R3 must be Jacobi rotation

• Since R5R6 annihilates a14 and a23 R5 or/and R6 must be Givens rotation(s)

• Since R3R4 = R4R3 the angle of R3 (R4) does not depend on that of R4 (R3)

• Once we know R1 and R2, we are done since all later rotations are Jacobi
rotations. However, for R3 and R4 we must alow for the larger interval
[−π/2, π/2] for the angles.
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Numerical Experiment in MATLAB

We have made a simple experiment in MATLAB to check the role of the
rotations R1—R6. We shall explain the details by describing the steps of
the experiment.

• Everything starts with the symmetric matrix A,

A =


0 2 3 4
2 3 4 5
3 4 5 6
4 5 6 8


• Using the commands: digits(dg); AA = vpa(sym(A,’f’))

A is converted to symbolic type, so we can apply to it variable
precision arithmetic (vpa). We set dg= 80.

• Using the command [Qv ,Dv ] = eig(AA); the eigenvector matrix Qv
and the eigenvalue diagonal matrix Dv are computed in vpa with 80
decimal digits
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Numerical Experiment in MATLAB

• Using the commands: D = double(Dv); Q = double(Qv); these vpa
matrices are converted to double. Here are Q and D:


2.931093180703362e-01 −8.798579328718921e-02 −2.278262800852170e-01 9.243595696169855e-01

4.193767196696980e-01 1.911371496763030e-01 8.815256669327826e-01 1.024805130325522e-01

5.289096009714916e-01 7.298536860359306e-01 −3.873541839913629e-01 −1.937136214217473e-01

6.771002353120279e-01 −6.504142427507317e-01 −1.447909554690162e-01 −3.123013983025982e-01




1.751525068292106e-01 0 0 0

0 3.389366899857361e-01 0 0

0 0 −9.579649901340663e-02 0

0 0 0 −1.758390873893391e+00


• Thus Q is the eigenvector matrix for A which is accurate to the last

decimal digit
• Indeed, we have checked the orthogonality of Q:

‖QTQ − I4‖2 = 2.470193220159530e-16, ‖QQT − I4‖2 = 2.489175293808355e-16

• The remaining computation is performed in double
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Numerical Experiment in MATLAB

Q =

[
Q11 Q12

Q21 Q22

]
Next, we compute the matrix W . First compute the SVDs of the diagonal
blocks

Q11 = U11C1V T
11, Q22 = U22C2V T

22

Then form the block diagonal U and V

U =

[
U11 O
O U22

]
, V =

[
V11 O
O V22

]
.

and also

W = UTQV =

[
C1 W12

W21 C2

]
, (5)

where
W12 = UT

11Q12V22, W21 = UT
22Q21V11.

and C1 and C2 are diagonal.
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Numerical Experiment in MATLAB

• We have obtained: W is to working accuracy G , the central matrix in CSD!
• Then we employ the procedure which transforms 2× 2 reflectors into

rotations with angles from the interval [−π/2, π/2]
• This makes the decomposition Q = ŨG̃ Ṽ DV . Here are Ũ, G̃ , Ṽ , DV :


5.057945141284034e-01 −8.626539917473362e-01 0 0

8.626539917473362e-01 5.057945141284033e-01 0 0

0 0 8.012598003675062e-01 −5.983165820157615e-01

0 0 5.983165820157615e-01 8.012598003675064e-01




5.240444959932522e-01 0 −8.516908865422823e-01 −1.110223024625157e-16

2.775557561562891e-17 1.773194331327221e-01 −5.551115123125783e-17 9.841533511772902e-01

8.516908865422820e-01 −1.387778780781446e-16 5.240444959932518e-01 0

5.551115123125783e-17 −9.841533511772899e-01 1.387778780781446e-17 1.773194331327220e-01




9.732572143939268e-01 −2.297180764114445e-01 0 0

2.297180764114445e-01 9.732572143939268e-01 0 0

0 0 7.575733907232336e-01 −6.527499962988148e-01

0 0 6.527499962988148e-01 7.575733907232336e-01




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


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Numerical Experiment in MATLAB

• Now is the time to “extract” the 6 rotations from the CSD

• To ensure the best orthogonality of the rotations we make a
procedure that takes the mean of two diagonal elements and similar
for the off-diagonal elements. So, each “updated rotation” will have
equal diagonal and opposite off-diagonal elements

• We have checked
‖Q − RqR2R3R4R5R6DV ‖2 = 3.885944763273228e − 16

• Next, we successively apply these 6 rotations R1–R6 to the symmetric
matrix A. We shall have 6 steps to display, each one of the form

A(k) = RT
k A(k−1)Rk , k = 1, 2, 3, 4, 5, 6, A(0) = A
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Step 1 A(1) = RT
1 AR1

A =


0 2 3 4
2 3 4 5

3 4 5 6
4 5 6 8



R1 =


5.057945141284034e-01 −8.626539917473362e-01 0 0

8.626539917473362e-01 5.057945141284033e-01 0 0

0 0 1 0

0 0 0 1


A(1) = RT

1 AR1


3.977818354899925e+00 3.322893319398632e-01 4.967999509374554e+00 6.336448015250294e+00

3.322893319398633e-01 −9.778183548999233e-01 −5.647839187283954e-01 −9.216433963473283e-01

4.967999509374554e+00 −5.647839187283954e-01 5.000000000000000e+00 6.000000000000000e+00

6.336448015250294e+00 −9.216433963473283e-01 6.000000000000000e+00 8.000000000000000e+00


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Step 2, A(2) = RT
2 A(1)R2

A(1)


3.977818354899925e+00 3.322893319398632e-01 4.967999509374554e+00 6.336448015250294e+00

3.322893319398633e-01 −9.778183548999233e-01 −5.647839187283954e-01 −9.216433963473283e-01

4.967999509374554e+00 −5.647839187283954e-01 5.000000000000000e+00 6.000000000000000e+00

6.336448015250294e+00 −9.216433963473283e-01 6.000000000000000e+00 8.000000000000000e+00



R2 =


1 0 0 0

0 1 0 0

0 0 8.012598003675062e-01 −5.983165820157615e-01

0 0 5.983165820157615e-01 8.012598003675064e-01


A(2) = RT

2 A(1)R2


3.977818354899925e+00 3.322893319398632e-01 7.771860213712436e+00 2.104704585833569e+00

3.322893319398633e-01 −9.778183548999233e-01 −1.003973176711023e+00 −4.005562199362495e-01

7.771860213712436e+00 −1.003973176711023e+00 1.182683249769528e+01 3.142428287407269e+00

2.104704585833569e+00 −4.005562199362495e-01 3.142428287407268e+00 1.173167502304712e+00


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Step 3, A(3) = RT
3 A(2)R3

A(2)


3.977818354899925e+00 3.322893319398632e-01 7.771860213712436e+00 2.104704585833569e+00

3.322893319398633e-01 −9.778183548999233e-01 −1.003973176711023e+00 −4.005562199362495e-01

7.771860213712436e+00 −1.003973176711023e+00 1.182683249769528e+01 3.142428287407269e+00

2.104704585833569e+00 −4.005562199362495e-01 3.142428287407268e+00 1.173167502304712e+00



R3 =


5.240444959932520e-01 0 −8.516908865422821e-01 0

0 1 0 0

8.516908865422821e-01 0 5.240444959932520e-01 0

0 0 0 1


A(3) = RT

3 A(2)R3


1.660884981522208e+01 −6.809404094573227e-01 −3.552713678800501e-15 3.779336387895281e+00

−6.809404094573226e-01 −9.778183548999233e-01 −8.091344130886772e-01 −4.005562199362495e-01

−2.664535259100376e-15 −8.091344130886771e-01 −8.041989626268715e-01 −1.457854665489189e-01

3.779336387895281e+00 −4.005562199362495e-01 −1.457854665489193e-01 1.173167502304712e+00


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Step 4, A(4) = RT
4 A(3)R4

A(3)


1.660884981522208e+01 −6.809404094573227e-01 −3.552713678800501e-15 3.779336387895281e+00

−6.809404094573226e-01 −9.778183548999233e-01 −8.091344130886772e-01 −4.005562199362495e-01

−2.664535259100376e-15 −8.091344130886771e-01 −8.041989626268715e-01 −1.457854665489189e-01

3.779336387895281e+00 −4.005562199362495e-01 −1.457854665489193e-01 1.173167502304712e+00



R4 =


1 0 0 0

0 1.773194331327221e-01 0 9.841533511772900e-01

0 0 1 0

0 −9.841533511772900e-01 0 1.773194331327221e-01


A(4) = RT

4 A(3)R4


1.660884981522208e+01 −3.840190538775552e+00 −3.552713678800501e-15 5.551115123125783e-16

−3.840190538775552e+00 1.245337557684717e+00 1.637578961322106e-15 −2.775557561562891e-16

−2.664535259100376e-15 1.221245327087672e-15 −8.041989626268715e-01 −8.221629404815349e-01

6.661338147750939e-15 −2.498001805406602e-16 −8.221629404815352e-01 −1.049988410279928e+00


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Step 5, A(5) = RT
5 A(4)R5

A(4)


1.660884981522208e+01 −3.840190538775552e+00 −3.552713678800501e-15 5.551115123125783e-16

−3.840190538775552e+00 1.245337557684717e+00 1.637578961322106e-15 −2.775557561562891e-16

−2.664535259100376e-15 1.221245327087672e-15 −8.041989626268715e-01 −8.221629404815349e-01

6.661338147750939e-15 −2.498001805406602e-16 −8.221629404815352e-01 −1.049988410279928e+00



R5 =


9.732572143939268e − 01 2.297180764114445e − 01 0 0

−2.297180764114445e − 01 9.732572143939268e − 01 0 0

0 0 1 0

0 0 0 1


A(5) = RT

5 A(4)R5


1.751525068292106e+01 4.440892098500626e-16 −3.833885707535341e-15 6.040258585524866e-16

5.412337245047638e-16 3.389366899857359e-01 7.776629859117751e-16 −1.426139932733765e-16

−2.873820291291477e-15 5.764939108819395e-16 −8.041989626268715e-01 −8.221629404815349e-01

7.057031579426399e-16 −9.009684930535088e-17 −8.221629404815352e-01 −1.049988410279928e+00


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Step 6, A(6) = RT
6 A(5)R6

A(5)


1.751525068292106e+01 4.440892098500626e-16 −3.833885707535341e-15 6.040258585524866e-16

5.412337245047638e-16 3.389366899857359e-01 7.776629859117751e-16 −1.426139932733765e-16

−2.873820291291477e-15 5.764939108819395e-16 −8.041989626268715e-01 −8.221629404815349e-01

7.057031579426399e-16 −9.009684930535088e-17 −8.221629404815352e-01 −1.049988410279928e+00



R6 =


1 0 0 0

0 1 0 0

0 0 7.575733907232336e-01 6.527499962988148e-01

0 0 −6.527499962988148e-01 7.575733907232336e-01


A(6) = RT

6 A(5)R6


1.751525068292106e+01 4.440892098500626e-16 −3.298727672037416e-15 −2.044974963655654e-15

5.412337245047638e-16 3.389366899857359e-01 6.822280686584934e-16 3.995789447269441e-16

−2.637777516138035e-15 4.955471648487312e-16 −9.579649901340658e-02 1.526556658859590e-16

−1.341264250297271e-15 3.080514225727404e-16 −2.220446049250313e-16 −1.758390873893392e + 00



Hari (University of Zagreb) CSD Open Problems ApplMath 18, Šibenik 33 / 33


