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GEP and PGEP

Let A = AT , B = BT .

We consider the Generalized Eigenvalue Problem (GEP)

Ax = λBx , x 6= 0.

If B � O, GEP is usually called Positive definite GEP or shorter PGEP.

For such a pair there is a nonsingular matrix F such that

FTAF = ΛA , FTBF = ΛB ,

ΛA = diag(α1, . . . , αn), ΛB = diag(β1, . . . , βn) � O.

The eigenpairs of (A,B) are: (αi/βi ,Fei ), 1 ≤ i ≤ n; In = [e1, . . . , en].
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How to solve PGEP?

One can try with the transformation (A,B) 7→ (L−1AL−T , I ), B = LLT

and reduce PGEP to the standard EP for one symmetric matrix.

If L has small singular value(s), then the computed L−1AL−T will have
corrupt eigenvalues.

Then one can try to maximize the minimum
eigenvalue of B by rotating the pair

(A,B) 7→ (Aϕ,Bϕ) = (A cosϕ+ B sinϕ,−A sinϕ+ B cosϕ),

or derive a method which works with the initial pair (A,B).

We follow the second path.
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Jacobi methods for PGEP

We have two diagonalization methods for PGEP

• Falk-Langemeyer method (shorter: FL method)
(Elektronische Datenverarbeitung, 1960)

• Hari-Zimmermann variant of the FL method (shorter: HZ method)
(Hari Ph.D. 1984)

The two methods are connected: the FL method can be viewed as the HZ
method with “fast scaled” transformations. So, the FL method seems to
be somewhat faster and the HZ method seems to be more robust.
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Jacobi methods for PGEP

V. Novaković, S. Singer, S. Singer (Parallel Comput., 2015):

Numerical tests on large matrices, on parallel machines, have confirmed
the advantage of the HZ approach.

When implemented as one-sided block algorithm for the GSVD, it is
almost perfectly parallelizable, so parallel shared memory versions of the
algorithm are highly scalable, and their speedup almost solely depends on
the number of cores used.
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Derivation of the HZ Method

Preliminary transformation: A(0) = D0AD0, B
(0) = D0BD0

D0 = [diag(B)]−
1
2 , so that b

(0)
11 = b

(0)
22 = · · · = b

(0)
nn = 1.

This property of B(0) is maintained during the iteration process:

A(k+1) = ZT
k A(k)Zk , B(k+1) = ZT

k B(k)Zk , k ≥ 0.

Each Zk is a nonsingular elementary plane matrix

Zk =


I

ck −sk
I

s̃k c̃k
I


i(k)

j(k)
, i(k) < j(k) are pivot indices at step k,

c2k + s2k = c̃2k + s̃2k = 1/
√

1− b2i(k)j(k) (Gose 1979).

The selection of pivot pairs (i(k), j(k)) defines pivot strategy.

Hari (University of Zagreb) PGEP Jacobi Methods September 9–11, 2016 7 / 39



Derivation of the HZ Method

Preliminary transformation: A(0) = D0AD0, B
(0) = D0BD0

D0 = [diag(B)]−
1
2 , so that b

(0)
11 = b

(0)
22 = · · · = b

(0)
nn = 1.

This property of B(0) is maintained during the iteration process:

A(k+1) = ZT
k A(k)Zk , B(k+1) = ZT

k B(k)Zk , k ≥ 0.

Each Zk is a nonsingular elementary plane matrix

Zk =


I

ck −sk
I

s̃k c̃k
I


i(k)

j(k)
, i(k) < j(k) are pivot indices at step k,

c2k + s2k = c̃2k + s̃2k = 1/
√

1− b2i(k)j(k) (Gose 1979).

The selection of pivot pairs (i(k), j(k)) defines pivot strategy.

Hari (University of Zagreb) PGEP Jacobi Methods September 9–11, 2016 7 / 39



Derivation of the HZ Method

Preliminary transformation: A(0) = D0AD0, B
(0) = D0BD0

D0 = [diag(B)]−
1
2 , so that b

(0)
11 = b

(0)
22 = · · · = b

(0)
nn = 1.

This property of B(0) is maintained during the iteration process:

A(k+1) = ZT
k A(k)Zk , B(k+1) = ZT

k B(k)Zk , k ≥ 0.

Each Zk is a nonsingular elementary plane matrix

Zk =


I

ck −sk
I

s̃k c̃k
I


i(k)

j(k)
, i(k) < j(k) are pivot indices at step k,

c2k + s2k = c̃2k + s̃2k = 1/
√

1− b2i(k)j(k) (Gose 1979).

The selection of pivot pairs (i(k), j(k)) defines pivot strategy.

Hari (University of Zagreb) PGEP Jacobi Methods September 9–11, 2016 7 / 39



Derivation of the HZ Method

Preliminary transformation: A(0) = D0AD0, B
(0) = D0BD0

D0 = [diag(B)]−
1
2 , so that b

(0)
11 = b

(0)
22 = · · · = b

(0)
nn = 1.

This property of B(0) is maintained during the iteration process:

A(k+1) = ZT
k A(k)Zk , B(k+1) = ZT

k B(k)Zk , k ≥ 0.

Each Zk is a nonsingular elementary plane matrix

Zk =


I

ck −sk
I

s̃k c̃k
I


i(k)

j(k)
, i(k) < j(k) are pivot indices at step k,

c2k + s2k = c̃2k + s̃2k = 1/
√

1− b2i(k)j(k) (Gose 1979).

The selection of pivot pairs (i(k), j(k)) defines pivot strategy.

Hari (University of Zagreb) PGEP Jacobi Methods September 9–11, 2016 7 / 39



Derivation of the HZ Method

Preliminary transformation: A(0) = D0AD0, B
(0) = D0BD0

D0 = [diag(B)]−
1
2 , so that b

(0)
11 = b

(0)
22 = · · · = b

(0)
nn = 1.

This property of B(0) is maintained during the iteration process:

A(k+1) = ZT
k A(k)Zk , B(k+1) = ZT

k B(k)Zk , k ≥ 0.

Each Zk is a nonsingular elementary plane matrix

Zk =


I

ck −sk
I

s̃k c̃k
I


i(k)

j(k)
, i(k) < j(k) are pivot indices at step k,

c2k + s2k = c̃2k + s̃2k = 1/
√

1− b2i(k)j(k) (Gose 1979).

The selection of pivot pairs (i(k), j(k)) defines pivot strategy.

Hari (University of Zagreb) PGEP Jacobi Methods September 9–11, 2016 7 / 39



Derivation of the HZ Method

Preliminary transformation: A(0) = D0AD0, B
(0) = D0BD0

D0 = [diag(B)]−
1
2 , so that b

(0)
11 = b

(0)
22 = · · · = b

(0)
nn = 1.

This property of B(0) is maintained during the iteration process:

A(k+1) = ZT
k A(k)Zk , B(k+1) = ZT

k B(k)Zk , k ≥ 0.

Each Zk is a nonsingular elementary plane matrix

Zk =


I

ck −sk
I

s̃k c̃k
I


i(k)

j(k)
, i(k) < j(k) are pivot indices at step k,

c2k + s2k = c̃2k + s̃2k = 1/
√

1− b2i(k)j(k) (Gose 1979).

The selection of pivot pairs (i(k), j(k)) defines pivot strategy.

Hari (University of Zagreb) PGEP Jacobi Methods September 9–11, 2016 7 / 39



Derivation of the HZ Method

To describe step k , we assume: A = A(k), A′ = A(k+1), Zk = Z ,

Ẑ =

[
c −s
s̃ c̃

]
the pivot submatrix of Z .

We have

A′ = ZTAZ , B ′ = ZTBZ
(
Â′ = ẐT ÂẐ , B̂ ′ = ẐT B̂Ẑ

)
.

Z is chosen to annihilate the pivot elements aij and bij .

Ẑ is sought in the form of a product of two Jacobi rotations and one
diagonal matrix. We have two possibilities:
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)
.

Z is chosen to annihilate the pivot elements aij and bij .
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Ẑ is sought in the form:

(a)

[ √
2
2 −

√
2
2√

2
2

√
2
2

] 1√
1+bij

0

0 1√
1−bij

[ cos(θ − π
4 ) − sin(θ − π

4 )
sin(θ − π

4 ) cos(θ − π
4 )

]

(b)

[ √
2
2

√
2
2

−
√
2
2

√
2
2

] 1√
1−bij

0

0 1√
1+bij

[ cos(θ + π
4 ) − sin(θ + π

4 )
sin(θ + π

4 ) cos(θ + π
4 )

]
↓ ↓ ↓

B̂ → diag B̂ → I2 Â→ diag

The both possibilities yield the same algorithm.
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The both possibilities yield the same algorithm.

Hari (University of Zagreb) PGEP Jacobi Methods September 9–11, 2016 9 / 39



Essential Part of the Algorithm

ξ =
bij√

1 + bij +
√

1− bij
, ρ = ξ +

√
1− bij , ξ2 + ρ2 = 1,

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

, −π
4
≤ θ ≤ π

4
,

cosφ = ρ cos θ − ξ sin θ

sinφ = ρ sin θ + ξ cos θ

cosψ = ρ cos θ + ξ sin θ

sinψ = ρ sin θ − ξ cos θ

Ẑ =
1√

1− b2ij

[
cosφ − sinφ
cosψ sinψ

]
.

a′ii = aii +
1

1− b2ij

[
(b2ij − sin2 φ) aii + 2 cosφ sinψ aij + sin2 ψ ajj

]
a′jj = ajj −

1

1− b2ij

[
(sin2 ψ − b2ij) ajj + 2 cosψ sinφ aij + sin2 φ aii

]
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Ẑ =
1√

1− b2ij

[
cosφ − sinφ
cosψ sinψ

]
.

a′ii = aii +
1

1− b2ij

[
(b2ij − sin2 φ) aii + 2 cosφ sinψ aij + sin2 ψ ajj

]
a′jj = ajj −

1

1− b2ij

[
(sin2 ψ − b2ij) ajj + 2 cosψ sinφ aij + sin2 φ aii

]

Hari (University of Zagreb) PGEP Jacobi Methods September 9–11, 2016 10 / 39



Essential Part of the Algorithm

ξ =
bij√

1 + bij +
√

1− bij
, ρ = ξ +

√
1− bij , ξ2 + ρ2 = 1,

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

, −π
4
≤ θ ≤ π

4
,

cosφ = ρ cos θ − ξ sin θ

sinφ = ρ sin θ + ξ cos θ

cosψ = ρ cos θ + ξ sin θ

sinψ = ρ sin θ − ξ cos θ
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Digression: Complex Matrices

If A = A∗ and B = B∗ are complex, with B � O and diag(B) = In,
then one step of the HZ method uses the transformation

A′ = Z ∗AZ , B ′ = Z ∗BZ ,

Z is chosen to annihilate the pivot elements aij and bij .

It is proved that that pivot submatrix of Z has form

Ẑ =

[
c s̄
−s̃ c̃

]
.

We obtain Â′ = Ẑ ∗ÂẐ , B̂ ′ = Ẑ ∗B̂Ẑ . Ẑ is sought as product of two
complex Jacobi rotations and two diagonal matrices.
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Ẑ is sought in the form:

B̂ → diag B̂ → I2

↑ ↑

Ẑ =

[ √
2
2 −

√
2
2 eı arg(bij )√

2
2 e−ı arg(bij )

√
2
2

]
·

 1√
1+|bij |

0

0 1√
1−|bij |


·
[

cos(θ + π
4 ) eıα sin(θ + π

4 )
−e−ıα sin(θ + π

4 ) cos(θ + π
4 )

]
·
[
eıωi 0

0 eıωj

]
↓ ↓

Â→ diag diag(Ẑ ) � O
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Essential Part of the Algorithm

Let

b = |bij |, t =
√

1− b2, e = ajj − aii , ε =

{
1, e ≥ 0
−1, e < 0

,

u + ı v = e−ı arg(bij ) aij , tan γ = 2 v
|e| , −

π
2 < γ ≤ π

2

tan 2θ = ε
2u−(aii+ajj )b

t
√
e2+4v2

, −π
4 < θ ≤ π

4

2 cos2 φ = 1 + b sin 2θ + t cos 2θ cos γ, 0 ≤ φ ≤ π
2

2 cos2 ψ = 1− b sin 2θ + t cos 2θ cos γ, 0 ≤ ψ ≤ π
2

eıα sinφ = e
ı arg(bij )

2 cosψ [sin 2θ − b − ıt cos 2θ sin γ]

e−ıβ sinψ = e
−ı arg(bij )

2 cosφ [sin 2θ + b + ıt cos 2θ sin γ] .

Then

Ẑ =
1√

1− b2

[
cosφ eıα sinφ

−e−ıβ sinψ cosψ

]
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New Algorithms: Based on LLT and RRT Factorizations

Consider the Cholesky foctorization of B̂:[
1 bij
bij 1

]
= B̂ = L̂L̂T =

[
1 0
a c

] [
1 a
0 c

]
=

[
1 a
a a2 + c2

]
.

Assuming c > 0, one obtains a = bij , c =
√

1− b2ij , hence

L̂ =

[
1 0

bij
√

1− b2ij

]
, L̂−1 =

 1 0

− bij√
1−b2ij

1√
1−b2ij

 .
If we write F̂1 = L̂−T , then F̂T

1 B̂F̂1 = I2 and
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The Algorithm Based on LLT Factorization

F̂T
1 ÂF̂1 =

[
1 0
fij fjj

] [
aii aij
aij ajj

] [
1 fij
0 fjj

]
=

[
aii fijaii + fjjaij

fijaii + fjjaij f 2ij aii + 2fij fjjaij + f 2jj ajj

]

=

 aii
aij−bijaii√

1−b2ij
aij−bijaii√

1−b2ij
ajj −

2aij−(aii+ajj )bij
1−b2ij

bij

 , (1)

where we have used fij = −bij/
√

1− b2ij , fjj = 1/
√

1− b2ij .

The final F̂ has the form F̂ = F̂1R̂, where R̂ is the Jacobi transformation
which diagonalizes F̂T

1 ÂF̂1. Its angle ϑ is determined by the formula
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The Algorithm Based on LLT Factorization

tan(2ϑ) =
2(aij − bijaii )

√
1− b2ij

aii − ajj + 2(aij − bijaii )bij
, −π

4
≤ ϑ ≤ π

4
.

The transformation formulas for the diagonal elements of A read

a′ii = aii + tanϑ ·
aij − aiibij√

1− b2ij

(2)

a′jj = ajj −
2aijbij − b2ij(aii + ajj)

1− b2ij
− tanϑ ·

aij − aiibij√
1− b2ij

(3)

If aii = ajj , aij = aiibij then ϑ is determined from expression 0/0, so we
choose ϑ = 0. In this case a′ii and a′jj reduce to aii and ajj , respectively.
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The Algorithm Based on LLT Factorization

This leads to a simpler matrix

Ẑ =
1√

1− b2ij

[ √
1− b2ij −bij

0 1

] [
cϑ −sϑ
sϑ cϑ

]

=
1√

1− b2ij

[
cϑ̃ −sϑ̃
sϑ cϑ

]
,

cϑ̃ = cϑ
√

1− b2ij − sϑbij ,

sϑ̃ = cϑbij + sϑ
√

1− b2ij .

It is easy to check that c2
ϑ̃

+ s2
ϑ̃

= 1.
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The Algorithm Based on RRT Factorizations

Consider the RRT factorization of B̂:[
1 bij
bij 1

]
= B̂ = R̂R̂T =

[
c a
0 1

] [
c 0
a 1

]
=

[
a2 + c2 a

a 1

]
.

Assuming positive c , one obtains a = bij , c =
√

1− b2ij , hence

R̂ =

[ √
1− b2ij bij

0 1

]
and R̂−1 =

 1√
1−b2ij

− bij√
1−b2ij

0 1

 .

If we write F̂2 = R̂−T , then F̂T
2 B̂F̂2 = I2 and
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The Algorithm Based on RRT Factorization

F̂T
2 ÂF̂2 =

[
fii fji
0 1

] [
aii aij
aij ajj

] [
fii 0
fji 1

]
=

[
f 2ii aii + 2fii fjiaij + f 2ji ajj fiiaij + fjiajj

fiiaij + fjiajj ajj

]

=

 aii −
2aij−(aii+ajj )bij

1−b2ij
bij

aij−bijajj√
1−b2ij

aij−bijajj√
1−b2ij

ajj

 , (4)

where we have used fii = 1/
√

1− b2ij , fji = −bij/
√

1− b2ij .

The final F̂ has the form F̂ = F̂2Ĵ, where Ĵ is the Jacobi transformation
which diagonalizes F̂T

2 ÂF̂2. Its angle ϑ is determined by the formula

Hari (University of Zagreb) PGEP Jacobi Methods September 9–11, 2016 19 / 39



The Algorithm Based on RRT Factorization

F̂T
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The Algorithm Based on RRT Factorization

tan(2ϑ) =
2(aij − bijajj)

√
1− b2ij

aii − ajj − 2(aij − bijajj)bij
, −π

4
≤ ϑ ≤ π

4
.

The transformation formulas for the diagonal elements of A read

a′ii = aii −
2aij − (aii + ajj)bij

1− b2ij
bij + tanϑ ·

aij − ajjbij√
1− b2ij

a′jj = ajj − tanϑ ·
aij − ajjbij√

1− b2ij

If aii = ajj , aij = ajjbij then ϑ is determined from expression 0/0, so we
choose ϑ = 0. In this case a′ii and a′jj reduce to aii and ajj , respectively.
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The Algorithm Based on RRT Factorization

This leads to a simpler matrix

Ẑ =
1√

1− b2ij

[
1 0

−bij
√

1− b2ij

] [
cϑ −sϑ
sϑ cϑ

]

=
1√

1− b2ij

[
cϑ −sϑ
sϑ̃ cϑ̃

]
,

cϑ̃ = cϑ
√

1− b2ij + sϑbij ,

sϑ̃ = sϑ
√

1− b2ij − cϑbij .

It is easy to check that c2
ϑ̃

+ s2
ϑ̃

= 1.
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Some Remarks

• The algorithms based on LLT and RRT factorizations can be
generalized to work with complex matrices

• All real algorithms have the form

Ẑ =
1√

1− b2ij

[
cosφ − sinφ
cosψ sinψ

]
.

This follows from a result of Gose (ZAMM 59, 1979), who found the
general form of a matrix Ẑ which diagonalizes a positive definite
symmetric matrix B̂ of order 2 via the congruence transformation
B̂ 7→ ẐT B̂Ẑ .
If we assume b11 = · · · = bnn and the same condition for ẐT B̂Ẑ ,
then this form of Ẑ is just the Gose’s theorem. Later Hari generalized
that result to complex matrices.
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general form of a matrix Ẑ which diagonalizes a positive definite
symmetric matrix B̂ of order 2 via the congruence transformation
B̂ 7→ ẐT B̂Ẑ .
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Global Convergence (Real and Complex Algorithm)

We have used the following measure in the convergence analysis:

S2(A) = ‖A− diag(A)‖2F , S(A,B) =
[
S2(A) + S2(B)

]1/2
.

The HZ method converges globally if

A(k) → Λ = diag(λ1, . . . , λn), B(k) → In as k →∞,

holds for any initial pair of symmetric matrices (A,B) with B � O.

Actually, it is sufficient to show that S(A,B)→ 0 as k →∞.

We have proved the global convergence for the serial pivot strategies.

We are adapting the proof to hold for a new much larger class of
generalized serial strategies which includes the class of weak wavefront
strategies.
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Asymptotic Convergence (Real and Complex Algorithm)

Let (A,B) have simple eigenvalues:

λ1 > λ2 > · · · > λn, µ = max{|λ1| , |λn|},

3δi = min
1≤i≤n

j 6=i

| λi − λj |, 1 ≤ i ≤ n; δ = min
1≤i≤n

δi .

Theorem

If S(B(0)) <
1

n(n − 1)
and S(A(0),B(0)) <

δ

2
√

1 + µ2
,

then for the general cyclic and for the serial strategies it holds, respectively:

S(A(N),B(N)) ≤
√
N(1 + µ2)

S2(A(0),B(0))

δ
, N = n(n − 1)/2

S(A(N),B(N)) ≤
√

1 + µ2
S2(A(0),B(0))

δ
.
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Multiple Eigenvalues

The situation complicates because the positive definite pair (A,B) with
multiple eigenvalues, and with nearly diagonal matrices, has special
structure.

Let A = A∗ with a11 ≥ a22 ≥ · · · ≥ ann,

B = B∗ with B � O, diag(B) = In.
Let

λ1 = · · · = λs1 > λs1+1 = · · · = λs2 > · · · > λsp−1+1 = · · · = λsp ,

where sp = n. Then

ni = si − si−1, 1 ≤ i ≤ p (s0 = 0),

ni is the multiplicity of λsi . Again, let µ = max{|λs1 | , |λsp |}.
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Multiple Eigenvalues

The minimum distance between two distinct eigenvalues plays special role
in the analysis. Let δr be the absolute gap (separation) of λsr from other
eigenvalues,

3δr = min
1≤t≤p

t 6=r

| λsr − λst |, 1 ≤ r ≤ p.

Then δ = min
1≤r≤p

δr is the minimum absolute gap.
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Multiple Eigenvalues

Next we consider the following matrix block-partition

A =

 A11 · · · A1p
...

. . .
...

Ap1 · · · App

 , B =

 B11 · · · B1p
...

. . .
...

Bp1 · · · Bpp

 ,
Art ,Brt are nr × nt blocks.
For a square matrix X = (Xrt) partitioned according to n1, . . . , np, let

τ(X ) = ‖X − diag(X11, . . . ,Xpp)‖F .

For our positive definite pair (A,B), let

τ(A,B) =
[
τ2(A) + τ2(B)

]1/2
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Multiple Eigenvalues

Theorem (Hari 91)

Let Dr + Er = A− λsrB, diag(Er ) = 0, 1 ≤ r ≤ p. If

‖Er‖2 < δr , 1 ≤ r ≤ p,

then

‖Arr − λsrBrr‖F ≤
1

δr

p∑
t=1
t 6=r

‖Art − λsrBrt‖2F , 1 ≤ r ≤ p

and

n∑
s=1

∣∣∣∣assbss
− λs

∣∣∣∣2 ≤ p∑
r=1

‖Arr − λsrBrr‖2F ≤
[

(1 + µ2)τ2(A,B)

δ

]2
.
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Multiple Eigenvalues

Let us return to the method.

Let (A,B) be obtained at step k. Suppose
that k is large enough, so that the last theorem holds for (A,B). Let
τ = τ(A,B), ε = S(A,B). Note that τ ≤ ε.
Then the theorem implies

Arr = λsrBrr + Frr , ‖Fr‖F = O(τ2), 1 ≤ r ≤ p.

If the pivot element aij (bij) is within the diagonal block Arr (Brr ), then we
shall have:

• Huge cancelations in the numerator and denominator when computing

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

=
O(τ2)

O(τ2)

• Possibly large θ when ε and τ are tiny.

This impacts asymptotic convergence and accuracy of the algorithm.
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Multiple Eigenvalues

N =
n(n − 1)

2
, M = N −

p∑
r=1

nr (nr − 1)

2
, nmax = max

1≤r≤p
nr

Let εN and τN denote ε and τ for the pair obtained after applying one
sweep of the column-cyclic HZ method. If (A,B) satisfies n ≥ 3, p ≥ 2,

S(B) <
1

n(n − 1)
,
√

1 + µ2ε < min

{
1

2
,

√
δ

µ+ 1

}
δ,

then

• τN ≤
3

2

√
2.31M · nmax(1 + µ2)

ε

δ
τ

• τN ≤
3

2

√
nmax(1 + µ2)

ε2

δ

• if nmax = 2 then εN ≤
18

17

√
1 + µ2

ε2

δ
.
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Goals

• To solve relative accuracy and quadratic convergence issues/problems

• To derive a sound quadratically convergent method

• To prove high relative accuracy of such a method when the both
matrices A and B are positive definite

• To prove the global convergence of such a method under the large
class of generalized serial strategies

• To derive a block method for PGEP

• To prove at least the global convergence of the block method
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Block-Matrix Partition

To define a block method for PGEP we start from a partition π of n

π = (n1, n2, . . . , nm), n1 + n2 + · · · + nm = n, ni ≥ 1.

The partition π defines block-matrix partition of any square matrix A of
order n:

A =


A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

Am1 Am2 · · · Amm


n1
n2

nm

, Aij ∈ Ri×j
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Elementary Block Matrix

Elementary block matrix Eij is a nonsingular n × n matrix

Eij =


I

Eii Eij

I
Eji Ejj

I


ni

nj

,

which carries the block-matrix partition defined by π.

Hari (University of Zagreb) PGEP Jacobi Methods September 9–11, 2016 33 / 39



Block Jacobi Method for PGEP

Block Jacobi method for PGEP is iterative process of the form

A(k+1) = FT
k A(k)Fk , B(k+1) = FT

k B(k)Fk , k ≥ 0;

where
A(0) = A, B(0) = B

and Fk , k ≥ 0, are elementary block matrices.

Here (A,B) is the initial positive definite pair of symmetric matrices:

A = AT , B = BT , B � O

All matrices carry block-matrix partition defined by π: A(k) = (A
(k)
rs ),

B(k) = (B
(k)
rs ), Fk = (F

(k)
rs ), k ≥ 0.
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Block Jacobi Method for PGEP

At step k , the pivot pair (i , j), i < j is selected according to a given pivot
strategy. Note that i = i(k), j = j(k).

The pivot pair selects the pivot submatrices Â
(k)
ij , B̂

(k)
ij which are to be

diagonalized:[
A
(k+1)
ii 0

0 A
(k+1)
jj

]
=

[
F
(k)
ii F

(k)
ij

F
(k)
ji F

(k)
jj

]T [
A
(k)
ii A

(k)
ij

(A
(k)
ij )T A

(k)
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Preliminary Transformation

Recall: element-wise methods maintained: b11 = · · · = bnn = 1.

At each step of the block method a much smaller PGEP has to be solved:

Â(k)x = λB̂(k)x i. e. (Â(k), B̂(k)) 7→ (diag, Ini+nj ).

To simplify the algorithm we need a preliminary transformation which
makes both:

• transforms the diagonal elements of B to ones and

• diagonalizes all diagonal blocks of A and B.
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Preliminary Transformation

• Set: D(0) = diag(
1√
b11

, . . . ,
1√
bnn

) (i.e. diag(D(0)BD(0)) = In).

• Let D(0) = diag(D
(0)
11 ,D

(0)
22 , . . . ,D

(0)
mm) and

Ãrr = D
(0)
rr ArrD

(0)
rr , B̃rr = D

(0)
rr BrrD

(0)
rr , 1 ≤ r ≤ m.

Apply to each pair (Ãrr , B̃rr ) the HZ (or similar) method to obtain Frr :

FT
rr ÃrrFrr = A

(0)
rr = diag, FT

rr B̃rrFrr = Inr , 1 ≤ r ≤ m.

Set: F0 = diag(F11,F22, . . . ,Fmm).

• Perform: A(0) = FT
0 D0AD0F0, B(0) = FT

0 D0BD0F0.
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Apply to each pair (Ãrr , B̃rr ) the HZ (or similar) method to obtain Frr :

FT
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Preliminary Transformation

The preliminary transformation ensures that

(Â(k), B̂(k)) =

([
A
(k)
ii A

(k)
ij

A
(k)
ji A

(k)
jj

]
,

[
Ini B

(k)
ij

B
(k)
ji Inj

])
, k ≥ 0,

with diagonal blocks A
(k)
ii and A

(k)
jj . This form makes it easier to apply the

element-wise HZ (or similar) algorithm which we call here the kernel
algorithm.

For the complete description of the block HZ method one has to specify
the pivot strategy and the stopping criterion.

For the latter, one can try with S(A,B) ≤ ‖A‖F ε or with S(AS ,B) ≤ ε
where AS = ∆A∆ with diagonal ∆ which makes diag(|AS |) = In.
However, these are yet open problems as are all those concerning the
global and asymptotic convergence and high relative accuracy.
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THANK YOU.
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