
Diagonalization Methods for Solving Definite
Generalized Eigenvalue Problem

Vjeran Hari

Faculty of Science, Department of Mathematics, University of Zagreb
hari@math.hr

SIAM Annual Meeting
July 09–13, 2018, Portland, Oregon, USA



OUTLINE

• GEP (DGEP, PGEP)

• Derivation of Algorithms (real and complex)
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• Stability (HRA: High Relative Accuracy)

• Block algorithms

• Global convergence of block algorithms
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Why Element-wise, Two-sided Jacobi Methods?

• They can be used standalone or as kernel algorithms in block methods

• As basic algorithms they can be “upgraded” to one-sided algorithms

• The theoretical aspects of one-sided methods can be better analysed
and understood if they are considered/imagined as two-sided methods

• One-sided methods have problem with terminating the process.
Stopping of the process can be costly, especially if the matrix
dimension n is large.

• Two sided methods can smoothly, timely and cost effectively stop the
process.

Hari (University of Zagreb) Diagonalization Methods SIAM AM 2018 3 / 33



Why Element-wise, Two-sided Jacobi Methods?

• They can be used standalone or as kernel algorithms in block methods

• As basic algorithms they can be “upgraded” to one-sided algorithms

• The theoretical aspects of one-sided methods can be better analysed
and understood if they are considered/imagined as two-sided methods

• One-sided methods have problem with terminating the process.
Stopping of the process can be costly, especially if the matrix
dimension n is large.

• Two sided methods can smoothly, timely and cost effectively stop the
process.

Hari (University of Zagreb) Diagonalization Methods SIAM AM 2018 3 / 33



Why Element-wise, Two-sided Jacobi Methods?

• They can be used standalone or as kernel algorithms in block methods

• As basic algorithms they can be “upgraded” to one-sided algorithms

• The theoretical aspects of one-sided methods can be better analysed
and understood if they are considered/imagined as two-sided methods

• One-sided methods have problem with terminating the process.
Stopping of the process can be costly, especially if the matrix
dimension n is large.

• Two sided methods can smoothly, timely and cost effectively stop the
process.

Hari (University of Zagreb) Diagonalization Methods SIAM AM 2018 3 / 33



Why Element-wise, Two-sided Jacobi Methods?

• They can be used standalone or as kernel algorithms in block methods

• As basic algorithms they can be “upgraded” to one-sided algorithms

• The theoretical aspects of one-sided methods can be better analysed
and understood if they are considered/imagined as two-sided methods

• One-sided methods have problem with terminating the process.
Stopping of the process can be costly, especially if the matrix
dimension n is large.

• Two sided methods can smoothly, timely and cost effectively stop the
process.

Hari (University of Zagreb) Diagonalization Methods SIAM AM 2018 3 / 33



Why Element-wise, Two-sided Jacobi Methods?

• They can be used standalone or as kernel algorithms in block methods

• As basic algorithms they can be “upgraded” to one-sided algorithms

• The theoretical aspects of one-sided methods can be better analysed
and understood if they are considered/imagined as two-sided methods

• One-sided methods have problem with terminating the process.
Stopping of the process can be costly, especially if the matrix
dimension n is large.

• Two sided methods can smoothly, timely and cost effectively stop the
process.

Hari (University of Zagreb) Diagonalization Methods SIAM AM 2018 3 / 33



Why Element-wise, Two-sided Jacobi Methods?

• They can be used standalone or as kernel algorithms in block methods

• As basic algorithms they can be “upgraded” to one-sided algorithms

• The theoretical aspects of one-sided methods can be better analysed
and understood if they are considered/imagined as two-sided methods

• One-sided methods have problem with terminating the process.
Stopping of the process can be costly, especially if the matrix
dimension n is large.

• Two sided methods can smoothly, timely and cost effectively stop the
process.

Hari (University of Zagreb) Diagonalization Methods SIAM AM 2018 3 / 33



GEP, DGEP and PGEP

Let A = A∗, B = B∗.

We consider the Generalized Eigenvalue Problem (GEP)

Ax = λBx , x 6= 0.

If B � O, GEP is usually called Positive definite GEP (PGEP).

If αA + βB � O, α, β ∈ R, GEP is called Definite GEP(DGEP)

then (A,B) is called definite pair

For a definite pair (A,B) there exists a nonsingular matrix F such that

F ∗AF = ΛA = diag(α1, . . . , αn) , F ∗BF = ΛB = diag(β1, . . . , βn),

The eigenpairs of (A,B) are: (αi/βi ,Fei ), 1 ≤ i ≤ n;

here In = [e1, . . . , en].
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Why are Element-wise Methods Important?

On contemporary GPU and CPU parallel computing machines, probably
the best methods for solving full DGEP and PGEP are block
diagonalization methods.

They use kernel algorithms to perform at each step an intrinsic job -
solving PGEP or DGEP with much smaller matrices (say, n = 32− 512)

The block method will function well only if the kernel algorithm if globally
convergent, fast and accurate.

Most of the time, the kernel algorithm will operate on nearly diagonal
matrices. On such matrices, the element-wise diagonalization methods are
fast and highly accurate.

Hence, probably the best choice for the kernel algorithm is some
element-wise diagonalization method.
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Jacobi Methods for DGEP and PGEP

So far, we know three“promising” real diagonalization methods:

• Falk-Langemeyer method (shorter: FL method)
(Elektronische Datenverarbeitung, 1960)

• Hari-Zimmermann method (shorter: HZ method)
(Numerical Algorithms, to appear)

• Cholesky-Jacobi method (shorter: CJ method)
(Numerical Algorithms, to appear)

The methods are connected: the FL method can be viewed as the HZ or
CJ method with “fast scaled” transformations.

We have also derived their “equally promising” complex counterparts.
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The Real and Complex FL Method

Starting with a definite pair (A,B) of Hermitian matrices, FL generates a
sequence of “congruent” matrix pairs

(A,B) = (A(0),B(0)), (A(1),B(1)), . . .

by the rule

A(k+1) = F ∗kA
(k)Fk , B(k+1) = F ∗kB

(k)Fk , k ≥ 0.

Here Fk is an elementary plane matrix defined by the pivot pair (i(k), j(k))

Fk =


I

1 αk

I
βk 1

I


i(k)

j(k)
, αk , βk ∈ C,
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Derivation of the Complex FL Method

The goal is to compute complex numbers αk , βk such that the pivot

elements a
(k)
ij , b

(k)
ij of A(k), B(k) are annihilated.

We simplify notation: A = A(k), A′ = A(k+1), F = Fk , (i , j) = (i(k), j(k)).

Pivot submatrices Â, B̂, F̂ of A, B, F are 2× 2 principal submatrices
obtained on the intersection of pivot rows and columns i and j .

We have

A′ = F ∗AF , B ′ = F ∗BF
(
Â′ = F̂ ∗ÂF̂ , B̂ ′ = F̂ ∗B̂F̂

)
and F is chosen to obtain a′ij = 0 and b′ij = 0.
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Derivation of the Complex FL Method (n = 2)

The goal is to compute α and β which satisfy the matrix equations[
1 β̄
ᾱ 1

] [
aii aij
āij ajj

] [
1 α
β 1

]
=

[
a′ii 0
0 a′jj

]
[

1 β̄
ᾱ 1

] [
bii bij
b̄ij bjj

] [
1 α
β 1

]
=

[
b′ii 0
0 b′jj

]
.

This leads us to solving a system of two nonlinear equations

e1 = aiiα + ajj β̄ + āijαβ̄ + aij = 0

e2 = biiα + bjj β̄ + b̄ijαβ̄ + bij = 0.
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Solution if Matrices are Real and Symmetric

=ii = aiibij − aijbii =

∣∣∣∣ aii bii
aij bij

∣∣∣∣
=jj = ajjbij − aijbjj =

∣∣∣∣ ajj bjj
aij bij

∣∣∣∣
=ij = aiibjj − ajjbii =

∣∣∣∣ aii bii
ajj bjj

∣∣∣∣
= = =2

ij + 4=ii=jj

ν = (=ij + sgn(=ij)
√
=)/2

α = =j/ν, β = −=i/ν

If
[

aii aij
āij ajj

]
and

[
bii bij
b̄ij bjj

]
are proportional, all =ii , =jj , =ij , = and ν are

zero and a special algorithm is required. This is the real FL algorithm.
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The Complex FL Algorithm

=ii = aiibij − aijbii =

∣∣∣∣ aii bii
aij bij

∣∣∣∣
=jj = ajjbij − aijbjj =

∣∣∣∣ ajj bjj
aij bij

∣∣∣∣
=′ij = aiibjj − ajjbii =

∣∣∣∣ aii bii
ajj bjj

∣∣∣∣
ı=′′ij = aij b̄ij − āijbij =

∣∣∣∣ aij bij
āij b̄ij

∣∣∣∣ = −2ı

∣∣∣∣ Re(aij) Re(bij)
Im(aij) Im(bij)

∣∣∣∣
=ij = =′ij + ı=′′ij
= = =2

ij + 4=̄ii=jj = (=′ij)2 − (=′′ij)2 + 2ı=′ij=′′ij + 4=̄ii=jj

ν = (=ij + sgn(=′ij)
√
=)/2,

α = =j/ν, β = −=̄i/ν
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The Main Characteristics of the FL Algorithms

• Very fast (SAXPY BLAS1 operations, Fused multiplyadd)

• Very accurate (HRA on well-behaved positive definite matrices)

• Well defined for general definite GEP

• Problems with renormalizations (‖A(k)‖ ↗ ∞, ‖B(k)‖ ↗ ∞,
‖F1F2 · · ·Fk‖ ↗ ∞)

• Difficult and challenging for making a good numerical code (to many
freedoms, all we have αA + βB � O, when to stop iterations?)

• Theoretical results are lacking (all we have is quadratic asymptotic
convergence result)
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Derivation of the Real and Complex HZ Method, B � O

Preliminary transformation: A(0) = D0AD0, B(0) = D0BD0

D0 = [diag(B)]−
1
2 , so that b

(0)
11 = b

(0)
22 = · · · = b

(0)
nn = 1.

This property of B(0) is maintained during the iteration process:

A(k+1) = Z ∗kA
(k)Zk , B(k+1) = Z ∗kB

(k)Zk , k ≥ 0.

Each Zk is nonsingular elementary plane matrix

Zk =


I
∗ ∗

I
∗ ∗

I


i(k)

j(k)

The selection of pivot pairs (i(k), j(k)) defines pivot strategy.
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Derivation of the Real and Complex HZ Method, B � O

At step k we denote: A(k) 7→ A, A(k+1) 7→ A′, Zk 7→ Z ,

Â =

[
aii aij
āij ajj

]
, B̂ =

[
1 bij
b̄ij 1

]
, Ẑ =

[
c −s
s̃ c̃

]
.

Â , B̂ , Ẑ are pivot submatrices of A, B, Z .

Then A′ = Z ∗AZ , B ′ = Z ∗BZ implies Â′ = Ẑ ∗ÂẐ , B̂ ′ = Ẑ ∗B̂Ẑ .

Ẑ is chosen to diagonalize Â′ and to make B̂ ′ identity matrix I2.

Ẑ is sought in the form of a product of two Jacobi rotations and one or
two diagonal matrices.
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Real Algorithm: Ẑ is sought in the form:

(a)

[ √
2

2 −
√

2
2√

2
2

√
2

2

] 1√
1+bij

0

0 1√
1−bij

[ cos(θ − π
4 ) − sin(θ − π

4 )
sin(θ − π

4 ) cos(θ − π
4 )

]

(b)

[ √
2

2

√
2

2

−
√

2
2

√
2

2

] 1√
1−bij

0

0 1√
1+bij

[ cos(θ + π
4 ) − sin(θ + π

4 )
sin(θ + π

4 ) cos(θ + π
4 )

]
↓ ↓ ↓

B̂ → diag B̂ → I2 Â → diag

Both approaches yield the same algorithm.
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2
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√
2
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Essential Part of the Real Algorithm

ξ =
bij√

1 + bij +
√

1− bij
, ρ =

1

2
(
√

1 + bij +
√

1− bij), ξ2 + ρ2 = 1,

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

, −π
4
≤ θ ≤ π

4
,

cosφ = ρ cos θ − ξ sin θ

sinφ = ρ sin θ + ξ cos θ

cosψ = ρ cos θ + ξ sin θ

sinψ = ρ sin θ − ξ cos θ

Ẑ =
1√

1− b2
ij

[
cosφ − sinφ
cosψ sinψ

]
.

a′ii = aii +
1

1− b2
ij

[
(b2

ij − sin2 φ) aii + 2 cosφ sinψ aij + sin2 ψ ajj
]

a′jj = ajj −
1

1− b2
ij

[
(sin2 ψ − b2

ij) ajj + 2 cosψ sinφ aij + sin2 φ aii
]

Hari (University of Zagreb) Diagonalization Methods SIAM AM 2018 16 / 33



Essential Part of the Real Algorithm

ξ =
bij√

1 + bij +
√

1− bij
, ρ =

1

2
(
√

1 + bij +
√

1− bij), ξ2 + ρ2 = 1,

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

, −π
4
≤ θ ≤ π

4
,

cosφ = ρ cos θ − ξ sin θ

sinφ = ρ sin θ + ξ cos θ

cosψ = ρ cos θ + ξ sin θ

sinψ = ρ sin θ − ξ cos θ
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Complex Algorithm: Ẑ is sought in the form:

B̂ → diag B̂ → I2

↑ ↑

Ẑ =

[ √
2

2 −
√

2
2 eı arg(bij )

√
2

2 e−ı arg(bij )
√

2
2

]
·

 1√
1+|bij |

0

0 1√
1−|bij |


·
[

cos(θ − π
4 ) −eıα sin(θ − π

4 )
e−ıα sin(θ − π

4 ) cos(θ − π
4 )

]
·
[
eıωi 0

0 eıωj

]
↓ ↓

Â→ diag diag(Ẑ ) � O
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Essential Part of the Complex Algorithm

Let

b = |bij |, t =
√

1− b2, e = ajj − aii , ε =

{
1, e ≥ 0
−1, e < 0

,

u + ı v = e−ı arg(bij ) aij , tan γ = 2 v
e , −

π
2 < γ ≤ π

2

tan 2θ = ε
2u−(aii+ajj )b

t
√
e2+4v2

, −π
4 < θ ≤ π

4

2 cos2 φ = 1 + b sin 2θ + t cos 2θ cos γ, 0 ≤ φ ≤ π
2

2 cos2 ψ = 1− b sin 2θ + t cos 2θ cos γ, 0 ≤ ψ ≤ π
2

eıα sinφ = e
ı arg(bij )

2 cosψ [sin 2θ − b − ıt cos 2θ sin γ]

e−ıβ sinψ = e
−ı arg(bij )

2 cosφ [sin 2θ + b + ıt cos 2θ sin γ] .

Then

Ẑ =
1√

1− b2

[
cosφ eıα sinφ

−e−ıβ sinψ cosψ

]
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The Main Characteristics of the HZ Algorithms

• Fast (Quadratic asymptotic convergence)

• Very accurate (HRA on well-behaved positive definite matrices)

• No problem with renormalizations, easy to code

• Unit diagonal in B has a stabilizing effect

• Theoretical results exist (Global and asymptotic convergence is
proved, much is known on the relative accuracy of the computed
eigenvalues)

• It requires B to be positive definite (it solves PGEP)
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Derivation of Complex CJ Method, B � O

• Cholesky-Jacobi is a hybrid algorithm

• It is composed of two algorithms: LL∗J and RR∗J algorithms

• In each step it chooses one which is more accurate for the given data

• We derive the complex CJ algorithm

• The real CJ algorithm is obtained by simplifying the complex one
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Derivation of Complex LL∗J Algorithm, B � O

Consider the Cholesky foctorization of B̂: B̂ = L̂L̂∗,[
1 bij
b̄ij 1

]
= B̂ = L̂L̂∗ =

[
1 0
ā c̄

] [
1 a
0 c

]
=

[
1 a
ā |a|2 + |c |2

]

Assuming c > 0, one obtains a = bij , c = τ ≡
√

1− |bij |2.

L̂ =

[
1 0
b̄ij τ

]
, L̂−1 =

1

τ

[
τ 0
−b̄ij 1

]
, L̂−∗ =

1

τ

[
τ −bij
0 1

]
.

Let F̂1 = L̂−∗. Then F̂ ∗1 B̂F̂1 = I2 and

F̂ ∗1 ÂF̂1 =

[
aii (aij − bijaii )/τ

(āij − b̄ijaii )/τ ajj −
aij b̄ij+āijbij−(aii+ajj )|bij |2

1−|bij |2

]
.
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F̂ ∗1 ÂF̂1 =

[
aii (aij − bijaii )/τ
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Derivation of Complex LL∗J Algorithm, B � O

The final F̂ is obtained as product F̂ = F̂1R̂1 where

R̂1 is the complex Jacobi rotation which diagonalizes F̂ ∗1 ÂF̂1.

Let us assume that the (1, 2)-element of R̂1 is −eıε1 sinϑ1. Then the
angles ϑ1 and ε1 are determined by the formulas

ε1 = arg(aij − bijaii ),

tan(2ϑ1) =
2|aij − aiibij |

√
1− |bij |2

aii − ajj + aij b̄ij + āijbij − 2aii |bij |2
, −π

4
≤ ϑ1 ≤

π

4
.
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Derivation of Complex LL∗J Algorithm, B � O

The transformation formulas for the diagonal elements of A read

a′ii = aii + tanϑ1 ·
|aij − aiibij |√

1− b2
ij

a′jj = ajj −
aij b̄ij + āijbij − (aii + ajj)|bij |2

1− |bij |2
− tanϑ1 ·

|aij − aiibij |√
1− b2

ij

.

In the case aii = ajj , aij = aiibij , tan(2ϑ1) has the form 0/0.

Then we choose ϑ1 = 0, so that a′ii = aii and a′jj = ajj .
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Derivation of Complex LL∗J Algorithm, B � O

Let cϑ1 = cosϑ1, s±ϑ1
= e±ıε1 sinϑ1. Then

F̂ =
1√

1− |bij |2

[ √
1− |bij |2 −bij

0 1

][
cϑ1 −s+

ϑ1

s−ϑ1
cϑ1

]

=
1√

1− |bij |2

[
cϑ̃1

−sϑ̃1

s−ϑ1
cϑ1

]
cϑ̃1

= cϑ1

√
1− |bij |2 − s−ϑ1

bij

sϑ̃1
= cϑ1bij + s+

ϑ1

√
1− |bij |2

=

[
c1 −s1
s2 c2

]
,

c1 = cϑ1 − s−ϑ1
bij/
√

1− |bij |2, c2 = cϑ1/
√

1− |bij |2,

s1 = cϑ1bij/
√

1− |bij |2 + s+
ϑ1
, s2 = s−ϑ1

/
√

1− |bij |2.
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Derivation of Complex RR∗J Algorithm, B � O

Instead of LL∗, one can use RR∗ factorization of B̂. Then we have

[
1 bij
b̄ij 1

]
= B̂ = R̂R̂∗ =

[
c a
0 1

] [
c̄ 0
ā 1

]
=

[
|a|2 + |c |2 a

ā 1

]
.

Assuming positive c , one obtains a = bij , c =
√

1− |bij |2 = τ . Hence

R̂ =

[
τ bij
0 1

]
, R̂−1 =

1

τ

[
1 −bij
0 τ

]
, R̂−∗ =

1

τ

[
1 0
−b̄ij τ

]
.

If we write F̂2 = R̂−∗, then F̂ ∗2 B̂F̂2 = R̂−1B̂R̂−∗ = I2 and we have
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The Algorithm RR∗J

F̂ ∗2 ÂF̂2 =

[
aii −

aij b̄ij+āijbij−(aii+ajj )|bij |2
τ2 (aij − ajjbij)/τ

(āij − ajj b̄ij)/τ ajj

]
.

• The final transformation is F̂ = F̂2R̂2,

• R̂2 is the Jacobi rotation which annihilates (1, 2)-element of F̂ ∗2 ÂF̂2

• Let (1, 2)-element of R̂2 be −eıε2 sinϑ2

Then the parameters ε2 and ϑ2 are determined by the formulas

ε2 = arg(aij − bijajj),

tan(2ϑ2) =
2|aij − ajjbij |

√
1− |bij |2

aii − ajj − (aij b̄ij + āijbij) + 2ajj |bij |2
, −π

4
≤ ϑ2 ≤

π

4
.
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The Algorithm RR∗J

The transformation formulas for the diagonal elements of A:

a′ii = aii −
aij b̄ij + āijbij − (aii + ajj)|bij |2

1− |bij |2
+ tanϑ2 ·

|aij − ajjbij |√
1− b2

ij

,

a′jj = ajj − tanϑ2 ·
|aij − ajjbij |√

1− b2
ij

.

If aii = ajj , aij = ajjbij , ϑ2 is not well defined and we choose ϑ2 = 0.

In that case a′ii and a′jj reduce to aii and ajj , respectively.
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The Algorithm RR∗J

Let cϑ2 = cosϑ2, s±ϑ2
= e±ıε2 sinϑ2. Then

F̂ =
1√

1− |bij |2

[
1 0

−b̄ij
√

1− |bij |2

] [
cϑ2 −s+

ϑ2

s−ϑ2
cϑ2

]

=
1√

1− |bij |2

[
cϑ2 −s+

ϑ2

sϑ̃2
cϑ̃2

]
,

cϑ̃2
= cϑ2

√
1− |bij |2 + s+

ϑ2
b̄ij

sϑ̃2
= s−ϑ2

√
1− b2

ij − cϑ2 b̄ij

=

[
c1 −s1
s2 c2

]
, It is easy to check that c2

ϑ̃
+ s2

ϑ̃
= 1.

c1 = cϑ2/
√

1− b2
ij , c2 = cϑ2 + s+

ϑ2
b̄ij/
√

1− b2
ij ,

s1 = s+
ϑ2
/
√

1− b2
ij

+
, s2 = s−ϑ2

− cϑ2 b̄ij/
√

1− b2
ij .

We can postmultiply F̂ by diag(1 , c̄ϑ̃2
/|cϑ̃2

|) provided that cϑ̃2
6= 0. This

ensures that (the updated) F̂ has nonnegative diagonal elements.
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The Cholesky-Jacobi Algorithm

The CJ is a hybrid algorithm which can be briefly defined as follows:

1 select the pivot pair (i , j)

2 if aii ≤ ajj then employ the LL∗J algorithm

else employ the RR∗J algorithm

Our numerical tests show that neither LL∗J nor RR∗J is indicated as a
high relative accurate algorithm on pairs of well-behaved positive definite
matrices.
The same can be said for the hybrid algorithm that selects the LL∗J and
RR∗J algorithms in the opposite way, i.e. selects the RR∗J (LL∗J)
algorithm when aii ≤ ajj (aii > ajj).
Only the above definition warrants the high relative accuracy of the
algorithm and it is in complete agreement with the behavior of the real CJ
method.
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The Main Characteristics of the CJ Method

• Fast (Quadratic asymptotic convergence)

• Very accurate (HRA on well-behaved positive definite matrices)

• No problem with renormalizations, easy to code

• Unit diagonal in B has a stabilizing effect

• Theoretical results exist (Global convergence is proved, much is
known on the asymptotic convergence and on the relative accuracy of
the computed eigenvalues)

• It requires B to be positive definite (it solves PGEP)
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Relative Accuracy, Assume: A � O, B � O

AS = [diag(A)]−1/2A[diag(A)]−1/2, BS = [diag(B)]−1/2B[diag(B)]−1/2

%(A,B) = max
1≤i≤n

|λ̃i − λi |
λi

/
√
κ2

2(AS) + κ2
2(BS)

χ(A,B) =
√
κ2

2(A(0)) + κ2
2(B(0))

E = {(χ(A,B) , %(A,B)) : (A,B) ∈ Υ}.
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Relative errors: CFL vs. MATLAB eig(A,B)
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