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OUTLINE

• GEP and PGEP
• Derivation of the algorithms
• Convergence, global and asymptotic
• Stability and relative accuracy
• Block algorithms
• Global convergence of block algorithms

• We have restricted our attention to element-wise, two-sided
Jacobi-type methods for PGEP since they can be used standalone or
as kernel algorithms for the block methods.

This work has been fully supported by Croatian Science Foundation under the project
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GEP and PGEP

Let A = AT , B = BT .

We consider the Generalized Eigenvalue Problem (GEP)

Ax = λBx , x 6= 0.

If B � O, GEP is usually called Positive definite GEP or shorter PGEP.

For such a pair (A,B) there exists a nonsingular matrix F such that

FTAF = ΛA = diag(α1, . . . , αn) , FTBF = ΛB = diag(β1, . . . , βn) � O,

The eigenpairs of (A,B) are: (αi/βi ,Fei ), 1 ≤ i ≤ n;

where In = [e1, . . . , en].
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How to solve PGEP?

One can reduce PGEP to the standard EP for one symmetric matrix

(A,B) 7→ (L−1AL−T , I ), B = LLT .

If L has small singular value(s), then computed L−1AL−T will have
corrupt eigenvalues.

One can try to maximize the smallest eigenvalue of B by rotating the pair

(A,B) 7→ (Aϕ,Bϕ) = (A cosϕ+ B sinϕ,−A sinϕ+ B cosϕ),

or derive a method which works with the initial pair (A,B).

We follow the second path.
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Jacobi Methods for PGEP

So far we know of two diagonalization methods for PGEP

• Falk-Langemeyer method (shorter: FL method)
(Elektronische Datenverarbeitung, 1960)

• Hari-Zimmermann variant of the FL method (shorter: HZ method)
(Hari Ph.D. 1984)

The two methods are connected: the FL method can be viewed as the HZ
method with “fast scaled” transformations.

So, the FL method seems to be somewhat faster and the HZ method
seems to be more robust.
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Jacobi Methods for PGEP

V. Novaković, S. Singer, S. Singer (Parallel Comput., 2015):

Numerical tests on large matrices, on parallel machines, have confirmed
the advantage of the HZ approach.

When implemented as one-sided block algorithm for the GSVD, it
is almost perfectly parallelizable, so parallel shared memory versi-
ons of the algorithm are highly scalable, and their speedup almost
solely depends on the number of cores used.

Since the derivation of the HZ method has not yet been published, we
shall devote few slides to its derivation.
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Derivation of the HZ Method

Preliminary transformation: A(0) = D0AD0, B(0) = D0BD0

D0 = [diag(B)]−
1
2 , so that b

(0)
11 = b

(0)
22 = · · · = b

(0)
nn = 1.

This property of B(0) is maintained during the iteration process:

A(k+1) = ZT
k A(k)Zk , B(k+1) = ZT

k B(k)Zk , k ≥ 0.

Each Zk is a nonsingular elementary plane matrix

Zk =


I

ck −sk
I

s̃k c̃k
I


i(k)

j(k)
, c2k + s2k = c̃2k + s̃2k = 1/

√
1− b2

i(k)j(k)
,

The selection of pivot pairs (i(k), j(k)) defines pivot strategy.
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Derivation of the HZ Method

At step k we denote: A(k) 7→ A, A(k+1) 7→ A′, Zk 7→ Z ,

Â =

[
aii aij
aij ajj

]
, B̂ =

[
1 bij
bij 1

]
, Ẑ =

[
c −s
s̃ c̃

]
.

Â , B̂ , Ẑ are the pivot submatrices of A, B, Z .

Then A′ = ZTAZ , B ′ = ZTBZ implies

Â′ = ẐT ÂẐ , B̂ ′ = ẐT B̂Ẑ .

Ẑ is chosen to diagonalize Â′ and to make B̂ ′ identity matrix I2.

Ẑ is sought in the form of a product of two Jacobi rotations and one
diagonal matrix. We have two possibilities:
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Ẑ is sought in the form:

(a)

[ √
2
2 −

√
2
2√

2
2

√
2
2

] 1√
1+bij

0

0 1√
1−bij

[ cos(θ − π
4 ) − sin(θ − π

4 )
sin(θ − π

4 ) cos(θ − π
4 )

]

(b)

[ √
2
2

√
2
2

−
√
2
2

√
2
2

] 1√
1−bij

0

0 1√
1+bij

[ cos(θ + π
4 ) − sin(θ + π

4 )
sin(θ + π

4 ) cos(θ + π
4 )

]
↓ ↓ ↓

B̂ → diag B̂ → I2 Â → diag

The both approaches yield the same algorithm.
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Essential Part of the Algorithm

ξ =
bij√

1 + bij +
√

1− bij
, ρ =

1

2
(
√

1 + bij +
√

1− bij), ξ2 + ρ2 = 1,

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

, −π
4
≤ θ ≤ π

4
,

cosφ = ρ cos θ − ξ sin θ

sinφ = ρ sin θ + ξ cos θ

cosψ = ρ cos θ + ξ sin θ

sinψ = ρ sin θ − ξ cos θ

Ẑ =
1√

1− b2ij

[
cosφ − sinφ
cosψ sinψ

]
.

a′ii = aii +
1

1− b2ij

[
(b2ij − sin2 φ) aii + 2 cosφ sinψ aij + sin2 ψ ajj

]
a′jj = ajj −

1

1− b2ij

[
(sin2 ψ − b2ij) ajj + 2 cosψ sinφ aij + sin2 φ aii

]
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1− bij
, ρ =

1

2
(
√

1 + bij +
√

1− bij), ξ2 + ρ2 = 1,

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

, −π
4
≤ θ ≤ π

4
,

cosφ = ρ cos θ − ξ sin θ

sinφ = ρ sin θ + ξ cos θ

cosψ = ρ cos θ + ξ sin θ

sinψ = ρ sin θ − ξ cos θ

Ẑ =
1√

1− b2ij

[
cosφ − sinφ
cosψ sinψ

]
.

a′ii = aii +
1

1− b2ij

[
(b2ij − sin2 φ) aii + 2 cosφ sinψ aij + sin2 ψ ajj

]
a′jj = ajj −

1

1− b2ij

[
(sin2 ψ − b2ij) ajj + 2 cosψ sinφ aij + sin2 φ aii

]
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There are more formulas!

2ρξ = bij , |ξ| ≤
√

2/2 ≤ ρ ≤ 1.

cosφ sinψ = cos θ sin θ − ρξ = 0.5 (sin 2θ − bij),

cosψ sinφ = cos θ sin θ + ρξ = 0.5 (sin 2θ + bij),

cosφ cosψ = ρ2 cos2 θ − ξ2 sin2 θ,

sinφ sinψ = ρ2 sin2 θ − ξ2 cos2 θ.

min{cosφ , cosψ} ≥ ρ cos θ −
|bij |
2ρ
| sin θ| ≥ (ρ−

|bij |
2ρ

) cos θ > 0,

max{cosφ , cosψ} = ρ cos θ + |ξ sin θ| ≥ cos(θ) ≥
√

2

2
.

Hari (University of Zagreb) PGEP Jacobi Methods SIAM AM 2017 11 / 27



There are more formulas!

Let
sin γ = bij , cos γ =

√
1− b2ij .

Then we have

1

cos γ

[
aii aij
aij ajj

] [
cosφ − sinφ
sinψ cosψ

]
=

[
cosψ − sinψ
sinφ cosφ

] [
a′ii

a′jj

]
,

1

cos γ

[
1 bij
bij 1

] [
cosφ − sinφ
sinψ cosψ

]
=

[
cosψ − sinψ
sinφ cosφ

]
,

cos γ =
cosφ

cosψ
+ bij tanψ =

cosψ

cosφ
− bij tanφ,

2 cos(φ+ ψ)aij = aii sin(2φ)− ajj sin(2ψ).
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There are more formulas!

a′ii =
1

cos γ

(
aii

cosφ

cosψ
+ aij tanψ

)
=

aii + aij
sinψ
cosφ

1 + bij
sinψ
cosφ

,

a′jj =
1

cos γ

(
ajj

cosψ

cosφ
− aij tanφ

)
=

ajj − aij
sinφ
cosψ

1− bij
sinφ
cosψ

.

We also have

φ+ ψ = 2θ
φ− ψ = γ

, hence
φ = θ + γ/2
ψ = θ − γ/2

.

All these relations are used in the global convergence proof and in the
proof of high relative accuracy of the method.
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Algorithm HZ

select the pivot pair (i , j)

if aij 6= 0 or bij 6= 0 then

ρ = 0.5 (
√

1 + bij +
√

1− bij ); ξ = bij/(2ρ);

τ =
√

(1 + bij )(1− bij ); t2 = 2aij − (aii + ajj )bij;

if t2 = 0 then t = 0;

else

ct2 = τ (aii − ajj )/t2;

t = sign(ct2)/(abs(ct2) + (1 +
√
1 + ct22);

end

cs = 1/
√
1 + t2; sn = t/

√
1 + t2;

c1 = (ρ · cs − ξ · sn)/τ; s1 = (ρ · sn + ξ · cs)/τ;
c2 = (ρ · cs + ξ · sn)/τ; s2 = (ρ · sn − ξ · cs)/τ;
δi = (bij/τ − s1)(bij/τ + s1)aii + (2c1 aij + s2 ajj ) s2;

δj = (s2− bij/τ)(s2 + bij/τ) ajj + (2c2 aij − s1 aii ) s1;

a′ij = (c1 c2− s1 s2)aij + (c2 s2 ajj − c1 s1 aii ); a′ji = a′ij;

b′ij = 0; b′ji = b′ij; a′ii = aii + δi; a′jj = ajj − δj;
for k = 1, . . . , n, k 6= i , j do

a′ki = c1 · aki + s2 · akj ; b′ki = c1 · bki + s2 · bkj ; a′ik = a′ki ; b′ik = b′ki ;

a′kj = c2 · akj − s1 · aki ; b′kj = c2 · bkj − s1 · bki ; a′jk = a′kj ; b′jk = b′kj;

endfor

endif
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New Algorithms: Based on LLT and RRT Factorizations

Consider the Cholesky foctorization of B̂: B̂ = L̂L̂T ,

B̂ = L̂ L̂T[
1 bij
bij 1

]
=

[
1 0
a c

] [
1 a
0 c

]
=

[
1 a
a a2 + c2

]
.

Assuming c > 0, one obtains a = bij , c =
√

1− b2ij , hence

L̂ =

[
1 0

bij
√

1− b2ij

]
, L̂−1 =

 1 0

− bij√
1−b2ij

1√
1−b2ij

 .
Let the first transformation be

F̂1 = L̂−T , then F̂T
1 B̂F̂1 = I2
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The Algorithm Based on LLT Factorization

F̂T
1 ÂF̂1 =

 aii
aij−bijaii√

1−b2ij
aij−bijaii√

1−b2ij
ajj −

2aij−(aii+ajj )bij
1−b2ij

bij

 .

The final F̂ ,

F̂ = F̂1R̂, R̂ is Jacobi rotation which diagonalizes F̂T
1 ÂF̂1.

Its angle ϑ is determined by the formula
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The Algorithm Based on LLT Factorization

tan(2ϑ) =
2(aij − bijaii )

√
1− b2ij

aii − ajj + 2(aij − bijaii )bij
, −π

4
≤ ϑ ≤ π

4
.

The transformation formulas for the diagonal elements of A read

a′ii = aii + tanϑ ·
aij − aiibij√

1− b2ij

(1)

a′jj = ajj −
2aijbij − b2ij(aii + ajj)

1− b2ij
− tanϑ ·

aij − aiibij√
1− b2ij

(2)

If aii = ajj , aij = aiibij then ϑ is determined from 0/0, so we choose ϑ = 0.
In this case a′ii and a′jj reduce to aii and ajj , respectively.
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The Algorithm Based on LLT Factorization

This leads to a simpler matrix

Ẑ =
1√

1− b2ij

[ √
1− b2ij −bij

0 1

] [
cϑ −sϑ
sϑ cϑ

]

=
1√

1− b2ij

[
cϑ̃ −sϑ̃
sϑ cϑ

]
,

cϑ̃ = cϑ
√

1− b2ij − sϑbij ,

sϑ̃ = cϑbij + sϑ
√

1− b2ij .

It is easy to check that c2
ϑ̃

+ s2
ϑ̃

= 1.
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Algorithm LLTJ

select the pivot pair (i , j)
if aij 6= 0 or bij 6= 0 then

β = bij, τ = sqrt((1 + β)(1− β)); α = aij − βaii;
if α = 0 then t = 0;

else ct2 = (0.5 (aii − ajj ) + αβ)/(α τ);

t = sign(ct2)/(abs(ct2) + sqrt(1 + ct22));
endif

cs = 1/sqrt(1 + t2); sn = t/sqrt(1 + t2);

c1 = cs − sn β/τ; s1 = sn + cs β/τ; c2 = cs/τ; s2 = sn/τ;

δi = tα/τ; δj = ( tα+ (β/τ) · (2aij − (aii + ajj )β) )/τ;

a′ij = (c1 c2− s1 s2) aij + (c2 s2 ajj − c1 s1 aii ); a′ji = a′ij;

b′ij = (c1 c2− s1 s2)β + (c2 s2− c1 s1); b′ji = b′ij;

a′ii = aii + δi; a′j = ajj − δj;
for k = 1, . . . , n, k 6= i , j do

a′ki = c1 · aki + s2 · akj ; b′ki = c1 · bki + s2 · bkj ; a′ik = a′ki ; b′ik = b′ki
a′kj = c2 · akj − s1 · aki ; b′kj = c2 · bkj − s1 · bki ; a′jk = a′kj ; b′jk = b′kj;

endfor

endif
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The Algorithm Based on RRT Factorization

B̂ = R̂ R̂T[
1 bij
bij 1

]
=

[
c a
0 1

] [
c 0
a 1

]
=

[
a2 + c2 a

a 1

]
.

Assuming positive c , one obtains a = bij , c =
√

1− b2ij , hence

R̂ =

[ √
1− b2ij bij

0 1

]
and R̂−1 =

 1√
1−b2ij

− bij√
1−b2ij

0 1

 .

Let F̂2 = R̂−T , then F̂T
2 B̂F̂2 = I2
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The Algorithm Based on RRT Factorization

F̂T
2 ÂF̂2 =

 aii −
2aij−(aii+ajj )bij

1−b2ij
bij

aij−bijajj√
1−b2ij

aij−bijajj√
1−b2ij

ajj

 .
The final F̂ ,

F̂ = F̂2Ĵ, Ĵ is Jacobi rotation which diagonalizes F̂T
2 ÂF̂2.

Its angle ϑ is determined by the formula:

tan(2ϑ) =
2(aij − bijajj)

√
1− b2ij

aii − ajj − 2(aij − bijajj)bij
, −π

4
≤ ϑ ≤ π

4
.

Hari (University of Zagreb) PGEP Jacobi Methods SIAM AM 2017 21 / 27



The Algorithm Based on RRT Factorization

The transformation formulas for the diagonal elements of A:

a′ii = aii −
2aij − (aii + ajj)bij

1− b2ij
bij + tanϑ ·

aij − ajjbij√
1− b2ij

a′jj = ajj − tanϑ ·
aij − ajjbij√

1− b2ij

If aii = ajj , aij = ajjbij then we choose ϑ = 0 and then a′ii and a′jj reduce to
aii and ajj , respectively.
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The Algorithm Based on RRT Factorization

The transformation formulas for the diagonal elements of A:

a′ii = aii −
2aij − (aii + ajj)bij

1− b2ij
bij + tanϑ ·

aij − ajjbij√
1− b2ij

a′jj = ajj − tanϑ ·
aij − ajjbij√

1− b2ij

If aii = ajj , aij = ajjbij then we choose ϑ = 0 and then a′ii and a′jj reduce to
aii and ajj , respectively.
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The Algorithm Based on RRT Factorization

This leads to the transformation matrix

Ẑ =
1√

1− b2ij

[
1 0

−bij
√

1− b2ij

] [
cϑ −sϑ
sϑ cϑ

]

=
1√

1− b2ij

[
cϑ −sϑ
sϑ̃ cϑ̃

]
,

cϑ̃ = cϑ
√

1− b2ij + sϑbij ,

sϑ̃ = sϑ
√

1− b2ij − cϑbij .

It is easy to check that c2
ϑ̃

+ s2
ϑ̃

= 1.
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Algorithm RRTJ

select the pivot pair (i , j)

if aij 6= 0 or bij 6= 0 then

β = bij, τ = sqrt((1 + β)(1− β)); α = aij − βajj;
if α = 0 then t = 0;
else ct2 = (0.5 (aii − ajj )− αβ)/(α τ);

t = sign(ct2)/(abs(ct2) + sqrt(1 + ct22));
endif

cs = 1/sqrt(1 + t2); sn = t/sqrt(1 + t2);
c1 = cs/τ; s1 = sn/τ; c2 = cs + sn β/τ; s2 = sn − cs β/τ;
δj = tα/τ; δi = ( tα− (β/τ) · (2aij − (aii + ajj )β) )/τ;
a′ij = (c1 c2− s1 s2) aij + (c2 s2 ajj − c1 s1 aii ); a′ji = a′ij;

b′ij = (c1 c2− s1 s2)β + (c2 s2− c1 s1); b′ji = b′ij;

a′ii = aii + δi; a′j = ajj − δj;
for k = 1, . . . , n, k 6= i , j do

a′ki = c1 · aki + s2 · akj ; b′ki = c1 · bki + s2 · bkj ; a′ik = a′ki ; b′ik = b′ki
a′kj = c2 · akj − s1 · aki ; b′kj = c2 · bkj − s1 · bki ; a′jk = a′kj ; b′jk = b′kj;

endfor

endif
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Definition of a Hybrid and a General Method

Definition

Let H denote a collection of Jacobi methods for PGEP Ax = λBx which
satisfy the following two rules:

1 at step k , Â(k) is diagonalized and B̂(k) is transformed to I2,

2 at least one diagonal element of F̂k is not smaller than
√

2/2.

An element of H is called a general PGEP Jacobi method.
A hybrid Jacobi method is any method from H that uses at each step
either the HZ, LLT J or RRT J algorithm.

In this definition the pivot strategy is not specified, hence any can be used.
If a method uses only the HZ (LLT J, RRT J) algorithm, it will be called
the HZ (LLT J, RRT J) method.
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Some Remarks

• It is easy to show that HZ, LLT J and RRT J methods belong to H

• Algorithms based on LLT and RRT factorizations are called LLT J
and RRT J algorithm, because LLT and RRT factorizations are
followed by one step of the standard Jacobi method

• The general (PGEP) Jacobi method can use at each step any
conceivable algorithm which satisfies the above two rules. For
example, it can use the FL method combined with normalization of
the elements of B
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Some Remarks

• All real algorithms have the form

Ẑ =
1√

1− b2ij

[
cosφ − sinφ
cosψ sinψ

]
.

This follows from a result of Gose (ZAMM 59, 1979), who found the
general form of a matrix Ẑ which diagonalizes a B̂ � O via the
congruence transformation B̂ 7→ ẐT B̂Ẑ .

If we assume b11 = · · · = bnn)1 and the same for ẐT B̂Ẑ , then this
form of Ẑ is just the Gose’s theorem.

Thank you for your attention
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