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GEP and PGEP

Let A = AT , B = BT .

We consider the Generalized Eigenvalue Problem (GEP)

Ax = λBx , x 6= 0.

If B � O, GEP is usually called Positive definite GEP or shorter PGEP.

For such a pair there is a nonsingular matrix F such that

FTAF = ΛA , FTBF = ΛB ,

ΛA = diag(α1, . . . , αn), ΛB = diag(β1, . . . , βn) � O.

The eigenpairs of (A,B) are: (αi/βi ,Fei ), 1 ≤ i ≤ n; In = [e1, . . . , en].
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How to solve PGEP?

One can try with the transformation (A,B) 7→ (L−1AL−T , I ), B = LLT

and reduce PGEP to the standard EP for one symmetric matrix.

If L has small singular value(s), then the computed L−1AL−T will have
corrupt eigenvalues.

Then one can try to maximize the minimum
eigenvalue of B by rotating the pair

(A,B) 7→ (Aϕ,Bϕ) = (A cosϕ+ B sinϕ,−A sinϕ+ B cosϕ),

or derive a method which works with the initial pair (A,B).

We follow the second path.
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Jacobi methods for PGEP

We have two diagonalization methods for PGEP

• Falk-Langemeyer method (shorter: FL method)
(Elektronische Datenverarbeitung, 1960)

• Hari-Zimmermann variant of the FL method (shorter: HZ method)
(Hari Ph.D. 1984)

The two methods are connected: the FL method can be viewed as the HZ
method with “fast scaled” transformations. So, the FL method seems to
be somewhat faster and the HZ method seems to be more robust.
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Jacobi methods for PGEP

V. Novaković, S. Singer, S. Singer (Parallel Comput., 2015):

Numerical tests on large matrices, on parallel machines, have confirmed
the advantage of the HZ approach.

When implemented as one-sided block algorithm for the GSVD, it is
almost perfectly parallelizable, so parallel shared memory versions of the
algorithm are highly scalable, and their speedup almost solely depends on
the number of cores used.
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V. Novaković, S. Singer, S. Singer (Parallel Comput., 2015):

Numerical tests on large matrices, on parallel machines, have confirmed
the advantage of the HZ approach.

When implemented as one-sided block algorithm for the GSVD, it is
almost perfectly parallelizable, so parallel shared memory versions of the
algorithm are highly scalable, and their speedup almost solely depends on
the number of cores used.
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Derivation of the HZ Method

Preliminary transformation: A(0) = D0AD0, B
(0) = D0BD0

D0 = [diag(B)]−
1
2 , so that b

(0)
11 = b

(0)
22 = · · · = b

(0)
nn = 1.

This property of B(0) is maintained during the iteration process:

A(k+1) = ZT
k A(k)Zk , B(k+1) = ZT

k B(k)Zk , k ≥ 0.

Each Zk is a nonsingular elementary plane matrix

Zk =


I

ck −sk
I

s̃k c̃k
I


i(k)

j(k)
, i(k) < j(k) are pivot indices at step k,

c2
k + s2

k = c̃2
k + s̃2

k = 1/
√

1− b2
i(k)j(k) (Gose 1979).

The selection of pivot pairs (i(k), j(k)) defines pivot strategy.
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Hari, Matejaš (University of Zagreb) HZ Method July 11–15, 2016 7 / 17



Derivation of the HZ Method

Preliminary transformation: A(0) = D0AD0, B
(0) = D0BD0

D0 = [diag(B)]−
1
2 , so that b

(0)
11 = b

(0)
22 = · · · = b

(0)
nn = 1.

This property of B(0) is maintained during the iteration process:

A(k+1) = ZT
k A(k)Zk , B(k+1) = ZT

k B(k)Zk , k ≥ 0.

Each Zk is a nonsingular elementary plane matrix

Zk =


I

ck −sk
I

s̃k c̃k
I


i(k)

j(k)
, i(k) < j(k) are pivot indices at step k,

c2
k + s2

k = c̃2
k + s̃2

k = 1/
√

1− b2
i(k)j(k) (Gose 1979).

The selection of pivot pairs (i(k), j(k)) defines pivot strategy.
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Derivation of the HZ Method

To describe step k , we assume: A = A(k), A′ = A(k+1), Zk = Z ,

Ẑ =

[
c −s
s̃ c̃

]
the pivot submatrix of Z .

We have

A′ = ZTAZ , B ′ = ZTBZ
(
Â′ = ẐT ÂẐ , B̂ ′ = ẐT B̂Ẑ

)
.

Z is chosen to annihilate the pivot elements aij and bij .

Ẑ is sought in the form of a product of two Jacobi rotations and one
diagonal matrix. We have two possibilities:
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Ẑ is sought in the form:

(a)

[ √
2

2 −
√

2
2√

2
2

√
2

2

] 1√
1+bij

0

0 1√
1−bij

[ cos(θ − π
4 ) − sin(θ − π

4 )
sin(θ − π

4 ) cos(θ − π
4 )

]

(b)

[ √
2

2

√
2

2

−
√

2
2

√
2

2

] 1√
1−bij

0

0 1√
1+bij

[ cos(θ + π
4 ) − sin(θ + π

4 )
sin(θ + π

4 ) cos(θ + π
4 )

]
↓ ↓ ↓

B̂ → diag B̂ → I2 Â→ diag
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Essential Part of the Algorithm

ξ =
bij√

1 + bij +
√

1− bij
, ρ = ξ +

√
1− bij , ξ2 + ρ2 = 1,

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

, −π
4
≤ θ ≤ π

4
,

cosφ = ρ cos θ − ξ sin θ,

sinφ = ρ sin θ + ξ cos θ,

cosψ = ρ cos θ + ξ sin θ,

sinψ = ρ sin θ − ξ cos θ.

Then

Ẑ =
1√

1− b2
ij

[
cosφ sinφ
cosψ sinψ

]
.
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Digression: Complex Matrices

If A = A∗ and B = B∗ are complex, with B � O and diag(B) = In,
then one step of the HZ method uses the transformation

A′ = Z ∗AZ , B ′ = Z ∗BZ ,

Z is chosen to annihilate the pivot elements aij and bij .

It is proved that that pivot submatrix of Z has form

Ẑ =

[
c s̄
−s̃ c̃

]
.

We obtain Â′ = Ẑ ∗ÂẐ , B̂ ′ = Ẑ ∗B̂Ẑ . Ẑ is sought as product of two
complex Jacobi rotations and two diagonal matrices.
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Ẑ is sought as product of two
complex Jacobi rotations and two diagonal matrices.
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Ẑ is sought in the form:

B̂ → diag B̂ → I2

↑ ↑

Ẑ =

[ √
2

2 −
√

2
2 eı arg(bij )

√
2

2 e−ı arg(bij )
√

2
2

]
·

 1√
1+|bij |

0

0 1√
1−|bij |


·
[

cos(θ + π
4 ) eıα sin(θ + π

4 )
−e−ıα sin(θ + π

4 ) cos(θ + π
4 )

]
·
[
eıωi 0

0 eıωj

]
↓ ↓

Â→ diag diag(Ẑ ) � O
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Essential Part of the Algorithm

Let

b = |bij |, t =
√

1− b2, e = ajj − aii , ε =

{
1, e ≥ 0
−1, e < 0

,

u + ı v = e−ı arg(bij ) aij , tan γ = 2 v
|e| , −

π
2 < γ ≤ π

2

tan 2θ = ε
2u−(aii+ajj )b

t
√
e2+4v2

, −π
4 < θ ≤ π

4

2 cos2 φ = 1 + b sin 2θ + t cos 2θ cos γ, 0 ≤ φ ≤ π
2

2 cos2 ψ = 1− b sin 2θ + t cos 2θ cos γ, 0 ≤ ψ ≤ π
2

eıα sinφ = e
ı arg(bij )

2 cosψ [sin 2θ − b − ıt cos 2θ sin γ]

e−ıβ sinψ = e
−ı arg(bij )

2 cosφ [sin 2θ + b + ıt cos 2θ sin γ] .

Then

Ẑ =
1√

1− b2

[
cosφ eıα sinφ

−e−ıβ sinψ cosψ

]
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Global Convergence (Real and Complex Algorithm)

We have used the following measure in the convergence analysis:

S2(A) = ‖A− diag(A)‖2
F , S(A,B) =

[
S2(A) + S2(B)

] 1
2 .

The HZ method converges globally if

A(k) → Λ = diag(λ1, . . . , λn), B(k) → In as k →∞,

holds for any initial pair of symmetric matrices (A,B) with B � O.

Actually, it is sufficient to show that S(A,B)→ 0 as k →∞.

We have proved the global convergence for the serial pivot strategies.

We are adapting the proof to hold for a new much larger class of
generalized serial strategies which includes the class of weak wavefront
strategies.
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Asymptotic Convergence (Real and Complex Algorithm)

Let (A,B) have simple eigenvalues:

λ1 > λ2 > · · · > λn, µ = max{|λ1| , |λn|},

3δi = min
1≤i≤n

j 6=i

| λi − λj |, 1 ≤ i ≤ n; δ = min
1≤i≤n

δi .

Theorem

If S(B(0)) <
1

n(n − 1)
and S(A(0),B(0)) <

δ

2
√

1 + µ2
,

then for the general cyclic and for the serial strategies it holds, respectively:

S(A(N),B(N)) ≤
√
N(1 + µ2)

S2(A(0),B(0))

δ
, N = n(n − 1)/2

S(A(N),B(N)) ≤
√

1 + µ2
S2(A(0),B(0))

δ
.
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Multiple Eigenvalues

The situation complicates because the positive definite pair (A,B) of
nearly diagonal matrices, with multiple eigenvalues, has special structure.

Let A = A∗ with a11 ≥ a22 ≥ · · · ≥ ann,

B = B∗ with B � O, diag(B) = In.
Let

λ1 = · · · = λs1 > λs1+1 = · · · = λs2 > · · · > λsp−1+1 = · · · = λsp ,

where sp = n. Then

ni = si − si−1, 1 ≤ i ≤ p (s0 = 0),

ni is the multiplicity of λsi .
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Multiple Eigenvalues

The minimum distance between two distinct eigenvalues plays special role
in the analysis. Let δi be the absolute gap (separation) of λsi from other
eigenvalues,

δi = min
1≤j≤p

j 6=i

| λsi − λsj |, 1 ≤ i ≤ p.

The minimum absolute gap: δ = min
1≤i≤p

δi .

Closely connected with the multiplicities n1, . . . ,np and with ordering of
the diagonal elements, is the following block-matrix partition

A =

 A11 · · · A1p
...

. . .
...

Ap1 · · · App

 , B =

 B11 · · · B1p
...

. . .
...

Bp1 · · · Bpp

 ,
Art ,Brt are nr × nt blocks.
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Hari, Matejaš (University of Zagreb) HZ Method July 11–15, 2016 17 / 17



Multiple Eigenvalues

The minimum distance between two distinct eigenvalues plays special role
in the analysis. Let δi be the absolute gap (separation) of λsi from other
eigenvalues,

δi = min
1≤j≤p

j 6=i

| λsi − λsj |, 1 ≤ i ≤ p.

The minimum absolute gap: δ = min
1≤i≤p

δi .

Closely connected with the multiplicities n1, . . . ,np and with ordering of
the diagonal elements, is the following block-matrix partition

A =

 A11 · · · A1p
...

. . .
...

Ap1 · · · App

 , B =

 B11 · · · B1p
...

. . .
...

Bp1 · · · Bpp

 ,
Art ,Brt are nr × nt blocks.
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