On High Relative Accuracy and Convergence of the Real HZ Method for the PGEP

Vjeran Hari and Josip Matejaš

Faculty of Science, Department of Mathematics, University of Zagreb hari@math.hr

Faculty of Economics, University of Zagreb
jmatejas@efzg.hr
20th Conference of the International Linear Algebra Society (ILAS)
KU Leuven, Belgium

OUTLINE

OUTLINE

- GEP and PGEP

OUTLINE

- GEP and PGEP
- Derivation of the algorithm

OUTLINE

- GEP and PGEP
- Derivation of the algorithm
- Convergence, global and asymptotic

OUTLINE

- GEP and PGEP
- Derivation of the algorithm
- Convergence, global and asymptotic
- Stability and relative accuracy

GEP and PGEP

Let $A=A^{T}, \quad B=B^{T}$.

GEP and PGEP

Let $A=A^{T}, \quad B=B^{T}$.
We consider the Generalized Eigenvalue Problem (GEP)

$$
A x=\lambda B x, \quad x \neq 0 .
$$

If $B \succ O$, GEP is usually called Positive definite GEP or shorter PGEP.

GEP and PGEP

Let $A=A^{T}, \quad B=B^{T}$.
We consider the Generalized Eigenvalue Problem (GEP)

$$
A x=\lambda B x, \quad x \neq 0 .
$$

If $B \succ O$, GEP is usually called Positive definite GEP or shorter PGEP.
For such a pair there is a nonsingular matrix F such that

$$
F^{T} A F=\Lambda_{A}, \quad F^{T} B F=\Lambda_{B},
$$

$\Lambda_{A}=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right), \quad \Lambda_{B}=\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{n}\right) \succ O$.

GEP and PGEP

Let $A=A^{T}, \quad B=B^{T}$.
We consider the Generalized Eigenvalue Problem (GEP)

$$
A x=\lambda B x, \quad x \neq 0
$$

If $B \succ O$, GEP is usually called Positive definite GEP or shorter PGEP.
For such a pair there is a nonsingular matrix F such that

$$
F^{\top} A F=\Lambda_{A}, \quad F^{\top} B F=\Lambda_{B}
$$

$\Lambda_{A}=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right), \quad \Lambda_{B}=\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{n}\right) \succ O$.
The eigenpairs of (A, B) are: $\left(\alpha_{i} / \beta_{i}, F e_{i}\right), 1 \leq i \leq n ; \quad I_{n}=\left[e_{1}, \ldots, e_{n}\right]$.

How to solve PGEP?

One can try with the transformation $(A, B) \mapsto\left(L^{-1} A L^{-T}, I\right), B=L L^{T}$ and reduce PGEP to the standard EP for one symmetric matrix.

If L has small singular value(s), then the computed $L^{-1} A L^{-T}$ will have corrupt eigenvalues.

How to solve PGEP?

One can try with the transformation $(A, B) \mapsto\left(L^{-1} A L^{-T}, I\right), B=L L^{T}$ and reduce PGEP to the standard EP for one symmetric matrix.

If L has small singular value(s), then the computed $L^{-1} A L^{-T}$ will have corrupt eigenvalues. Then one can try to maximize the minimum eigenvalue of B by rotating the pair

$$
(A, B) \mapsto\left(A_{\varphi}, B_{\varphi}\right)=(A \cos \varphi+B \sin \varphi,-A \sin \varphi+B \cos \varphi),
$$

or derive a method which works with the initial pair (A, B).

How to solve PGEP?

One can try with the transformation $(A, B) \mapsto\left(L^{-1} A L^{-T}, I\right), B=L L^{T}$ and reduce PGEP to the standard EP for one symmetric matrix.

If L has small singular value(s), then the computed $L^{-1} A L^{-T}$ will have corrupt eigenvalues. Then one can try to maximize the minimum eigenvalue of B by rotating the pair

$$
(A, B) \mapsto\left(A_{\varphi}, B_{\varphi}\right)=(A \cos \varphi+B \sin \varphi,-A \sin \varphi+B \cos \varphi)
$$

or derive a method which works with the initial pair (A, B).
We follow the second path.

Jacobi methods for PGEP

We have two diagonalization methods for PGEP

Jacobi methods for PGEP

We have two diagonalization methods for PGEP

- Falk-Langemeyer method (shorter: FL method)
(Elektronische Datenverarbeitung, 1960)

Jacobi methods for PGEP

We have two diagonalization methods for PGEP

- Falk-Langemeyer method (shorter: FL method)
(Elektronische Datenverarbeitung, 1960)
- Hari-Zimmermann variant of the FL method (shorter: HZ method) (Hari Ph.D. 1984)

Jacobi methods for PGEP

We have two diagonalization methods for PGEP

- Falk-Langemeyer method (shorter: FL method)
(Elektronische Datenverarbeitung, 1960)
- Hari-Zimmermann variant of the FL method (shorter: HZ method) (Hari Ph.D. 1984)

The two methods are connected: the FL method can be viewed as the HZ method with "fast scaled" transformations. So, the FL method seems to be somewhat faster and the HZ method seems to be more robust.

Jacobi methods for PGEP

V. Novaković, S. Singer, S. Singer (Parallel Comput., 2015):

Jacobi methods for PGEP

V. Novaković, S. Singer, S. Singer (Parallel Comput., 2015):

Numerical tests on large matrices, on parallel machines, have confirmed the advantage of the HZ approach.

Jacobi methods for PGEP

V. Novaković, S. Singer, S. Singer (Parallel Comput., 2015):

Numerical tests on large matrices, on parallel machines, have confirmed the advantage of the HZ approach.

When implemented as one-sided block algorithm for the GSVD, it is almost perfectly parallelizable, so parallel shared memory versions of the algorithm are highly scalable, and their speedup almost solely depends on the number of cores used.

Derivation of the HZ Method

Preliminary transformation:

$$
A^{(0)}=D_{0} A D_{0}, B^{(0)}=D_{0} B D_{0}
$$

Derivation of the HZ Method

Preliminary transformation:
$D_{0}=[\operatorname{diag}(B)]^{-\frac{1}{2}}, \quad$ so that

$$
A^{(0)}=D_{0} A D_{0}, B^{(0)}=D_{0} B D_{0}
$$

$$
b_{11}^{(0)}=b_{22}^{(0)}=\cdots=b_{n n}^{(0)}=1
$$

Derivation of the HZ Method

Preliminary transformation:

$$
A^{(0)}=D_{0} A D_{0}, B^{(0)}=D_{0} B D_{0}
$$

$D_{0}=[\operatorname{diag}(B)]^{-\frac{1}{2}}, \quad$ so that $\quad b_{11}^{(0)}=b_{22}^{(0)}=\cdots=b_{n n}^{(0)}=1$.
This property of $B^{(0)}$ is maintained during the iteration process:

$$
A^{(k+1)}=Z_{k}^{T} A^{(k)} Z_{k}, \quad B^{(k+1)}=Z_{k}^{T} B^{(k)} Z_{k}, \quad k \geq 0
$$

Derivation of the HZ Method

Preliminary transformation:

$$
A^{(0)}=D_{0} A D_{0}, B^{(0)}=D_{0} B D_{0}
$$

$D_{0}=[\operatorname{diag}(B)]^{-\frac{1}{2}}, \quad$ so that $\quad b_{11}^{(0)}=b_{22}^{(0)}=\cdots=b_{n n}^{(0)}=1$.
This property of $B^{(0)}$ is maintained during the iteration process:

$$
A^{(k+1)}=Z_{k}^{T} A^{(k)} Z_{k}, \quad B^{(k+1)}=Z_{k}^{T} B^{(k)} Z_{k}, \quad k \geq 0
$$

Each Z_{k} is a nonsingular elementary plane matrix

Derivation of the HZ Method

Preliminary transformation:

$$
A^{(0)}=D_{0} A D_{0}, B^{(0)}=D_{0} B D_{0}
$$

$D_{0}=[\operatorname{diag}(B)]^{-\frac{1}{2}}, \quad$ so that $\quad b_{11}^{(0)}=b_{22}^{(0)}=\cdots=b_{n n}^{(0)}=1$.
This property of $B^{(0)}$ is maintained during the iteration process:

$$
A^{(k+1)}=Z_{k}^{T} A^{(k)} Z_{k}, \quad B^{(k+1)}=Z_{k}^{T} B^{(k)} Z_{k}, \quad k \geq 0
$$

Each Z_{k} is a nonsingular elementary plane matrix

$$
\begin{aligned}
Z_{k} & =\left[\begin{array}{ccccc}
l & & & & \\
& c_{k} & & -s_{k} & \\
& \tilde{s}_{k} & & \tilde{c}_{k} & \\
& & & \\
c_{k}^{2}+s_{k}^{2} & =\tilde{c}_{k}^{2}+\tilde{s}_{k}^{2}=1 /(k) \\
j(k)
\end{array}, \quad i(k)<j(k) \text { are pivot indices at step } k,\right. \\
1-b_{i(k) j(k)}^{2} & \text { (Gose 1979). }
\end{aligned}
$$

Derivation of the HZ Method

Preliminary transformation:

$$
A^{(0)}=D_{0} A D_{0}, B^{(0)}=D_{0} B D_{0}
$$

$D_{0}=[\operatorname{diag}(B)]^{-\frac{1}{2}}, \quad$ so that $\quad b_{11}^{(0)}=b_{22}^{(0)}=\cdots=b_{n n}^{(0)}=1$.
This property of $B^{(0)}$ is maintained during the iteration process:

$$
A^{(k+1)}=Z_{k}^{T} A^{(k)} Z_{k}, \quad B^{(k+1)}=Z_{k}^{T} B^{(k)} Z_{k}, \quad k \geq 0
$$

Each Z_{k} is a nonsingular elementary plane matrix

$$
Z_{k}=\left[\begin{array}{ccccc}
I & & & & \\
& c_{k} & & -s_{k} & \\
& \tilde{s}_{k} & & \tilde{c}_{k} & \\
& & & & I
\end{array}\right] \begin{gathered}
i(k) \\
j(k)
\end{gathered}, \quad i(k)<j(k) \text { are pivot indices at step } k,
$$

$c_{k}^{2}+s_{k}^{2}=\tilde{c}_{k}^{2}+\tilde{s}_{k}^{2}=1 / \sqrt{1-b_{i(k) j(k)}^{2}} \quad$ (Gose 1979).
The selection of pivot pairs $(i(k), j(k))$ defines pivot strategy.

Derivation of the HZ Method

To describe step k, we assume: $A=A^{(k)}, A^{\prime}=A^{(k+1)}, Z_{k}=Z$,

$$
\hat{Z}=\left[\begin{array}{cc}
c & -s \\
\tilde{s} & \tilde{c}
\end{array}\right] \quad \text { the pivot submatrix of } Z
$$

Derivation of the HZ Method

To describe step k, we assume: $\quad A=A^{(k)}, A^{\prime}=A^{(k+1)}, Z_{k}=Z$,

$$
\hat{Z}=\left[\begin{array}{cc}
c & -s \\
\tilde{s} & \tilde{c}
\end{array}\right] \quad \text { the pivot submatrix of } Z
$$

We have

$$
A^{\prime}=Z^{T} A Z, \quad B^{\prime}=Z^{T} B Z \quad\left(\hat{A}^{\prime}=\hat{Z}^{T} \hat{A} \hat{Z}, \quad \hat{B}^{\prime}=\hat{Z}^{T} \hat{B} \hat{Z}\right) .
$$

Derivation of the HZ Method

To describe step k, we assume: $\quad A=A^{(k)}, A^{\prime}=A^{(k+1)}, Z_{k}=Z$,

$$
\hat{Z}=\left[\begin{array}{cc}
c & -s \\
\tilde{s} & \tilde{c}
\end{array}\right] \quad \text { the pivot submatrix of } Z
$$

We have

$$
A^{\prime}=Z^{T} A Z, \quad B^{\prime}=Z^{T} B Z \quad\left(\hat{A}^{\prime}=\hat{Z}^{T} \hat{A} \hat{Z}, \quad \hat{B}^{\prime}=\hat{Z}^{T} \hat{B} \hat{Z}\right)
$$

Z is chosen to annihilate the pivot elements $a_{i j}$ and $b_{i j}$.

Derivation of the HZ Method

To describe step k, we assume: $\quad A=A^{(k)}, A^{\prime}=A^{(k+1)}, Z_{k}=Z$,

$$
\hat{Z}=\left[\begin{array}{cc}
c & -s \\
\tilde{s} & \tilde{c}
\end{array}\right] \quad \text { the pivot submatrix of } Z
$$

We have

$$
A^{\prime}=Z^{T} A Z, \quad B^{\prime}=Z^{T} B Z \quad\left(\hat{A}^{\prime}=\hat{Z}^{T} \hat{A} \hat{Z}, \quad \hat{B}^{\prime}=\hat{Z}^{T} \hat{B} \hat{Z}\right)
$$

Z is chosen to annihilate the pivot elements $a_{i j}$ and $b_{i j}$.
\hat{Z} is sought in the form of a product of two Jacobi rotations and one diagonal matrix. We have two possibilities:

\hat{Z} is sought in the form:

(a) $\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{1+b_{j}}} & 0 \\ 0 & \frac{1}{\sqrt{1-b_{j}}}\end{array}\right]\left[\begin{array}{cc}\cos \left(\theta-\frac{\pi}{4}\right) & -\sin \left(\theta-\frac{\pi}{4}\right) \\ \sin \left(\theta-\frac{\pi}{4}\right) & \cos \left(\theta-\frac{\pi}{4}\right)\end{array}\right]$
(b) $\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{1-b_{i j}}} & 0 \\ 0 & \frac{1}{\sqrt{1+b_{j}}}\end{array}\right]\left[\begin{array}{ll}\cos \left(\theta+\frac{\pi}{4}\right) & -\sin \left(\theta+\frac{\pi}{4}\right) \\ \sin \left(\theta+\frac{\pi}{4}\right) & \cos \left(\theta+\frac{\pi}{4}\right)\end{array}\right]$
$\hat{B} \rightarrow$ diag
$\hat{B} \rightarrow I_{2}$
$\hat{A} \rightarrow$ diag

Essential Part of the Algorithm

$$
\xi=\frac{b_{i j}}{\sqrt{1+b_{i j}}+\sqrt{1-b_{i j}}}, \quad \rho=\xi+\sqrt{1-b_{i j}}, \quad \xi^{2}+\rho^{2}=1,
$$

Essential Part of the Algorithm

$$
\begin{gathered}
\xi=\frac{b_{i j}}{\sqrt{1+b_{i j}}+\sqrt{1-b_{i j}}}, \quad \rho=\xi+\sqrt{1-b_{i j}}, \quad \xi^{2}+\rho^{2}=1, \\
\tan (2 \theta)=\frac{2 a_{i j}-\left(a_{i i}+a_{j j}\right) b_{i j}}{\sqrt{1-\left(b_{i j}\right)^{2}}\left(a_{i j}-a_{j j}\right)}, \quad-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4},
\end{gathered}
$$

Essential Part of the Algorithm

$$
\begin{aligned}
& \xi=\frac{b_{i j}}{\sqrt{1+b_{i j}}+\sqrt{1-b_{i j}}}, \quad \rho=\xi+\sqrt{1-b_{i j}}, \quad \xi^{2}+\rho^{2}=1, \\
& \tan (2 \theta)=\frac{2 a_{i j}-\left(a_{i i}+a_{j j}\right) b_{i j}}{\sqrt{1-\left(b_{i j}\right)^{2}}\left(a_{i i}-a_{j j}\right)}, \quad-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}, \\
& \cos \phi=\rho \cos \theta-\xi \sin \theta \\
& \sin \phi=\rho \sin \theta+\xi \cos \theta \\
& \cos \psi=\rho \cos \theta+\xi \sin \theta \\
& \sin \psi=\rho \sin \theta-\xi \cos \theta .
\end{aligned}
$$

Essential Part of the Algorithm

$$
\begin{aligned}
& \xi=\frac{b_{i j}}{\sqrt{1+b_{i j}}+\sqrt{1-b_{i j}}}, \quad \rho=\xi+\sqrt{1-b_{i j}}, \quad \xi^{2}+\rho^{2}=1, \\
& \tan (2 \theta)=\frac{2 a_{i j}-\left(a_{i i}+a_{j j}\right) b_{i j}}{\sqrt{1-\left(b_{i j}\right)^{2}}\left(a_{i j}-a_{j j}\right)}, \quad-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4} \\
& \cos \phi=\rho \cos \theta-\xi \sin \theta \\
& \sin \phi=\rho \sin \theta+\xi \cos \theta \\
& \cos \psi=\rho \cos \theta+\xi \sin \theta \\
& \sin \psi=\rho \sin \theta-\xi \cos \theta .
\end{aligned}
$$

Then

$$
\hat{Z}=\frac{1}{\sqrt{1-b_{i j}^{2}}}\left[\begin{array}{cc}
\cos \phi & \sin \phi \\
\cos \psi & \sin \psi
\end{array}\right]
$$

Digression: Complex Matrices

If $A=A^{*}$ and $B=B^{*}$ are complex, with $B \succ O$ and $\operatorname{diag}(B)=I_{n}$, then one step of the HZ method uses the transformation

Digression: Complex Matrices

If $A=A^{*}$ and $B=B^{*}$ are complex, with $B \succ O$ and $\operatorname{diag}(B)=I_{n}$, then one step of the HZ method uses the transformation

$$
A^{\prime}=Z^{*} A Z, \quad B^{\prime}=Z^{*} B Z
$$

Z is chosen to annihilate the pivot elements $a_{i j}$ and $b_{i j}$.

Digression: Complex Matrices

If $A=A^{*}$ and $B=B^{*}$ are complex, with $B \succ O$ and $\operatorname{diag}(B)=I_{n}$, then one step of the HZ method uses the transformation

$$
A^{\prime}=Z^{*} A Z, \quad B^{\prime}=Z^{*} B Z,
$$

Z is chosen to annihilate the pivot elements $a_{i j}$ and $b_{i j}$.
It is proved that that pivot submatrix of Z has form

$$
\hat{Z}=\left[\begin{array}{cc}
c & \bar{s} \\
-\tilde{s} & \tilde{c}
\end{array}\right]
$$

Digression: Complex Matrices

If $A=A^{*}$ and $B=B^{*}$ are complex, with $B \succ O$ and $\operatorname{diag}(B)=I_{n}$, then one step of the HZ method uses the transformation

$$
A^{\prime}=Z^{*} A Z, \quad B^{\prime}=Z^{*} B Z,
$$

Z is chosen to annihilate the pivot elements $a_{i j}$ and $b_{i j}$.
It is proved that that pivot submatrix of Z has form

$$
\hat{Z}=\left[\begin{array}{cc}
c & \bar{s} \\
-\tilde{s} & \tilde{c}
\end{array}\right] .
$$

We obtain $\quad \hat{A}^{\prime}=\hat{Z}^{*} \hat{A} \hat{Z}, \quad \hat{B}^{\prime}=\hat{Z}^{*} \hat{B} \hat{Z}$.

Digression: Complex Matrices

If $A=A^{*}$ and $B=B^{*}$ are complex, with $B \succ O$ and $\operatorname{diag}(B)=I_{n}$, then one step of the HZ method uses the transformation

$$
A^{\prime}=Z^{*} A Z, \quad B^{\prime}=Z^{*} B Z,
$$

Z is chosen to annihilate the pivot elements $a_{i j}$ and $b_{i j}$.
It is proved that that pivot submatrix of Z has form

$$
\hat{Z}=\left[\begin{array}{cc}
c & \bar{s} \\
-\tilde{s} & \tilde{c}
\end{array}\right] .
$$

We obtain $\quad \hat{A}^{\prime}=\hat{Z}^{*} \hat{A} \hat{Z}, \quad \hat{B}^{\prime}=\hat{Z}^{*} \hat{B} \hat{Z} . \quad \hat{Z}$ is sought as product of two complex Jacobi rotations and two diagonal matrices.

\hat{Z} is sought in the form:

$$
\begin{gathered}
\hat{B} \rightarrow \operatorname{diag} \\
\uparrow \\
\hat{Z}=\left[\begin{array}{c}
\hat{B} \rightarrow I_{2} \\
\uparrow \\
\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} e^{-\imath \arg \left(b_{i j}\right)} \\
-\frac{\sqrt{2}}{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
\frac{1}{\sqrt{1+\mid b_{i j}}} e^{\imath \arg \left(b_{i j}\right)} & 0 \\
0 & \frac{1}{\sqrt{1-\left|b_{i j}\right|}}
\end{array}\right] \\
\left.-\begin{array}{cc}
\cos \left(\theta+\frac{\pi}{4}\right) & e^{\imath \alpha} \sin \left(\theta+\frac{\pi}{4}\right) \\
-e^{-\imath \alpha} \sin \left(\theta+\frac{\pi}{4}\right) & \cos \left(\theta+\frac{\pi}{4}\right)
\end{array}\right] \cdot\left[\begin{array}{cc}
e^{\imath \omega_{i}} & 0 \\
0 & e^{\imath \omega_{j}}
\end{array}\right] \\
\downarrow \\
\hat{A} \rightarrow \operatorname{diag}
\end{gathered}
$$

Essential Part of the Algorithm

Let

$$
b=\left|b_{i j}\right|, \quad t=\sqrt{1-b^{2}}, \quad e=a_{j j}-a_{i i}, \quad \epsilon=\left\{\begin{array}{rl}
1, & e \geq 0 \\
-1, & e<0
\end{array},\right.
$$

Essential Part of the Algorithm

Let

$$
\begin{aligned}
b=\left|b_{i j}\right|, \quad t & =\sqrt{1-b^{2}}, \quad e=a_{j j}-a_{i i}, \quad \epsilon=\left\{\begin{array}{rl}
1, & e \geq 0 \\
-1, & e<0
\end{array},\right. \\
u+\imath v & =e^{-\imath \arg \left(b_{i j}\right)} a_{i j}, \quad \tan \gamma=2 \frac{v}{|e|}, \quad-\frac{\pi}{2}<\gamma \leq \frac{\pi}{2} \\
\tan 2 \theta & =\epsilon \frac{2 u-\left(a_{i i}+a_{j j}\right) b}{t \sqrt{e^{2}+4 v^{2}}}, \quad-\frac{\pi}{4}<\theta \leq \frac{\pi}{4} \\
2 \cos ^{2} \phi & =1+b \sin 2 \theta+t \cos 2 \theta \cos \gamma, \quad 0 \leq \phi \leq \frac{\pi}{2} \\
2 \cos ^{2} \psi & =1-b \sin 2 \theta+t \cos 2 \theta \cos \gamma, \quad 0 \leq \psi \leq \frac{\pi}{2} \\
e^{\imath \alpha} \sin \phi & =\frac{e^{2 \arg \left(b_{i j}\right)}}{2 \cos \psi}[\sin 2 \theta-b-\imath t \cos 2 \theta \sin \gamma] \\
e^{-\imath \beta} \sin \psi & =\frac{e^{-\imath \arg \left(b_{i j}\right)}}{2 \cos \phi}[\sin 2 \theta+b+\imath t \cos 2 \theta \sin \gamma] .
\end{aligned}
$$

Essential Part of the Algorithm

Let

$$
\begin{aligned}
b=\left|b_{i j}\right|, \quad t & =\sqrt{1-b^{2}}, \quad e=a_{j j}-a_{i i}, \quad \epsilon=\left\{\begin{array}{rl}
1, & e \geq 0 \\
-1, & e<0
\end{array},\right. \\
u+\imath v & =e^{-\imath \arg \left(b_{i j}\right)} a_{i j}, \quad \tan \gamma=2 \frac{v}{|e|}, \quad-\frac{\pi}{2}<\gamma \leq \frac{\pi}{2} \\
\tan 2 \theta & =\epsilon \frac{2 u-\left(a_{i i}+a_{j j}\right) b}{t \sqrt{e^{2}+4 v^{2}}}, \quad-\frac{\pi}{4}<\theta \leq \frac{\pi}{4} \\
2 \cos ^{2} \phi & =1+b \sin 2 \theta+t \cos 2 \theta \cos \gamma, \quad 0 \leq \phi \leq \frac{\pi}{2} \\
2 \cos ^{2} \psi & =1-b \sin 2 \theta+t \cos 2 \theta \cos \gamma, \quad 0 \leq \psi \leq \frac{\pi}{2} \\
e^{\imath \alpha} \sin \phi & =\frac{e^{2 \arg \left(b_{i j}\right)}}{2 \cos \psi}[\sin 2 \theta-b-\imath t \cos 2 \theta \sin \gamma] \\
e^{-\imath \beta} \sin \psi & =\frac{e^{-\imath \arg \left(b_{i j}\right)}}{2 \cos \phi}[\sin 2 \theta+b+\imath t \cos 2 \theta \sin \gamma] .
\end{aligned}
$$

Then

$$
\hat{Z}=\frac{1}{\sqrt{1-b^{2}}}\left[\begin{array}{cc}
\cos \phi & e^{\imath \alpha} \sin \phi \\
-e^{-\imath \beta} \sin \psi & \cos \psi
\end{array}\right]
$$

Global Convergence (Real and Complex Algorithm)

We have used the following measure in the convergence analysis:

$$
S^{2}(A)=\|A-\operatorname{diag}(A)\|_{F}^{2}, \quad S(A, B)=\left[S^{2}(A)+S^{2}(B)\right]^{\frac{1}{2}}
$$

The HZ method converges globally if

$$
A^{(k)} \rightarrow \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \quad B^{(k)} \rightarrow I_{n} \quad \text { as } \quad k \rightarrow \infty,
$$

holds for any initial pair of symmetric matrices (A, B) with $B \succ O$.

Global Convergence (Real and Complex Algorithm)

We have used the following measure in the convergence analysis:

$$
S^{2}(A)=\|A-\operatorname{diag}(A)\|_{F}^{2}, \quad S(A, B)=\left[S^{2}(A)+S^{2}(B)\right]^{\frac{1}{2}}
$$

The HZ method converges globally if

$$
A^{(k)} \rightarrow \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \quad B^{(k)} \rightarrow I_{n} \quad \text { as } \quad k \rightarrow \infty,
$$

holds for any initial pair of symmetric matrices (A, B) with $B \succ O$.
Actually, it is sufficient to show that $S(A, B) \rightarrow 0$ as $k \rightarrow \infty$.

Global Convergence (Real and Complex Algorithm)

We have used the following measure in the convergence analysis:

$$
S^{2}(A)=\|A-\operatorname{diag}(A)\|_{F}^{2}, \quad S(A, B)=\left[S^{2}(A)+S^{2}(B)\right]^{\frac{1}{2}}
$$

The HZ method converges globally if

$$
A^{(k)} \rightarrow \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \quad B^{(k)} \rightarrow I_{n} \quad \text { as } \quad k \rightarrow \infty,
$$

holds for any initial pair of symmetric matrices (A, B) with $B \succ O$.
Actually, it is sufficient to show that $S(A, B) \rightarrow 0$ as $k \rightarrow \infty$.
We have proved the global convergence for the serial pivot strategies.

Global Convergence (Real and Complex Algorithm)

We have used the following measure in the convergence analysis:

$$
S^{2}(A)=\|A-\operatorname{diag}(A)\|_{F}^{2}, \quad S(A, B)=\left[S^{2}(A)+S^{2}(B)\right]^{\frac{1}{2}}
$$

The HZ method converges globally if

$$
A^{(k)} \rightarrow \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \quad B^{(k)} \rightarrow I_{n} \quad \text { as } \quad k \rightarrow \infty,
$$

holds for any initial pair of symmetric matrices (A, B) with $B \succ O$.
Actually, it is sufficient to show that $S(A, B) \rightarrow 0$ as $k \rightarrow \infty$.
We have proved the global convergence for the serial pivot strategies.
We are adapting the proof to hold for a new much larger class of generalized serial strategies which includes the class of weak wavefront strategies.

Asymptotic Convergence (Real and Complex Algorithm)

Let (A, B) have simple eigenvalues:

$$
\begin{aligned}
& \lambda_{1}>\lambda_{2}>\cdots>\lambda_{n}, \quad \mu=\max \left\{\left|\lambda_{1}\right|,\left|\lambda_{n}\right|\right\}, \\
& 3 \delta_{i}=\min _{\substack{1 \leq i \leq n \\
j \neq i}}\left|\lambda_{i}-\lambda_{j}\right|, \quad 1 \leq i \leq n ; \quad \delta=\min _{1 \leq i \leq n} \delta_{i} .
\end{aligned}
$$

Asymptotic Convergence (Real and Complex Algorithm)

Let (A, B) have simple eigenvalues:

$$
\begin{aligned}
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{n}, \quad \mu & =\max \left\{\left|\lambda_{1}\right|,\left|\lambda_{n}\right|\right\}, \\
3 \delta_{i} & =\min _{\substack{1 \leq i \leq n \\
j \neq i}}\left|\lambda_{i}-\lambda_{j}\right|, \quad 1 \leq i \leq n ; \quad \delta=\min _{1 \leq i \leq n} \delta_{i} .
\end{aligned}
$$

Theorem

If $S\left(B^{(0)}\right)<\frac{1}{n(n-1)} \quad$ and $\quad S\left(A^{(0)}, B^{(0)}\right)<\frac{\delta}{2 \sqrt{1+\mu^{2}}}$,
then for the general cyclic and for the serial strategies it holds, respectively:

$$
\begin{aligned}
& S\left(A^{(N)}, B^{(N)}\right) \leq \sqrt{N\left(1+\mu^{2}\right)} \frac{S^{2}\left(A^{(0)}, B^{(0)}\right)}{\delta}, \quad N=n(n-1) / 2 \\
& S\left(A^{(N)}, B^{(N)}\right) \leq \sqrt{1+\mu^{2}} \frac{S^{2}\left(A^{(0)}, B^{(0)}\right)}{\delta}
\end{aligned}
$$

Asymptotic Convergence (Real and Complex Algorithm)

Let (A, B) have simple eigenvalues:

$$
\begin{aligned}
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{n}, \quad \mu & =\max \left\{\left|\lambda_{1}\right|,\left|\lambda_{n}\right|\right\}, \\
3 \delta_{i} & =\min _{\substack{1 \leq i \leq n \\
j \neq i}}\left|\lambda_{i}-\lambda_{j}\right|, \quad 1 \leq i \leq n ; \quad \delta=\min _{1 \leq i \leq n} \delta_{i} .
\end{aligned}
$$

Theorem

If $S\left(B^{(0)}\right)<\frac{1}{n(n-1)} \quad$ and $\quad S\left(A^{(0)}, B^{(0)}\right)<\frac{\delta}{2 \sqrt{1+\mu^{2}}}$,
then for the general cyclic and for the serial strategies it holds, respectively:

$$
\begin{aligned}
& S\left(A^{(N)}, B^{(N)}\right) \leq \sqrt{N\left(1+\mu^{2}\right)} \frac{S^{2}\left(A^{(0)}, B^{(0)}\right)}{\delta}, \quad N=n(n-1) / 2 \\
& S\left(A^{(N)}, B^{(N)}\right) \leq \sqrt{1+\mu^{2}} \frac{S^{2}\left(A^{(0)}, B^{(0)}\right)}{\delta}
\end{aligned}
$$

Multiple Eigenvalues

The situation complicates because the positive definite pair (A, B) of nearly diagonal matrices, with multiple eigenvalues, has special structure.

Multiple Eigenvalues

The situation complicates because the positive definite pair (A, B) of nearly diagonal matrices, with multiple eigenvalues, has special structure.

Let $\quad A=A^{*}$ with $a_{11} \geq a_{22} \geq \cdots \geq a_{n n}$,

$$
B=B^{*} \text { with } B \succ O, \operatorname{diag}(B)=I_{n}
$$

Multiple Eigenvalues

The situation complicates because the positive definite pair (A, B) of nearly diagonal matrices, with multiple eigenvalues, has special structure.
Let $\quad A=A^{*}$ with $a_{11} \geq a_{22} \geq \cdots \geq a_{n n}$,

$$
B=B^{*} \text { with } B \succ O, \operatorname{diag}(B)=I_{n} .
$$

Let

$$
\lambda_{1}=\cdots=\lambda_{s_{1}}>\lambda_{s_{1}+1}=\cdots=\lambda_{s_{2}}>\cdots>\lambda_{s_{p-1}+1}=\cdots=\lambda_{s_{p}}
$$

where $s_{p}=n$.

Multiple Eigenvalues

The situation complicates because the positive definite pair (A, B) of nearly diagonal matrices, with multiple eigenvalues, has special structure.
Let $\quad A=A^{*}$ with $a_{11} \geq a_{22} \geq \cdots \geq a_{n n}$,

$$
B=B^{*} \text { with } B \succ O, \operatorname{diag}(B)=I_{n} .
$$

Let

$$
\lambda_{1}=\cdots=\lambda_{s_{1}}>\lambda_{s_{1}+1}=\cdots=\lambda_{s_{2}}>\cdots>\lambda_{s_{p-1}+1}=\cdots=\lambda_{s_{p}}
$$

where $s_{p}=n$. Then

$$
n_{i}=s_{i}-s_{i-1}, \quad 1 \leq i \leq p \quad\left(s_{0}=0\right)
$$

n_{i} is the multiplicity of $\lambda_{s_{i}}$.

Multiple Eigenvalues

The minimum distance between two distinct eigenvalues plays special role in the analysis. Let δ_{i} be the absolute gap (separation) of $\lambda_{s_{i}}$ from other eigenvalues,

$$
\delta_{i}=\min _{\substack{1 \leq j \leq p \\ j \neq i}}\left|\lambda_{s_{i}}-\lambda_{s_{j}}\right|, \quad 1 \leq i \leq p
$$

Multiple Eigenvalues

The minimum distance between two distinct eigenvalues plays special role in the analysis. Let δ_{i} be the absolute gap (separation) of $\lambda_{s_{i}}$ from other eigenvalues,

$$
\delta_{i}=\min _{\substack{1 \leq j \leq p \\ j \neq i}}\left|\lambda_{s_{i}}-\lambda_{s_{j}}\right|, \quad 1 \leq i \leq p .
$$

The minimum absolute gap: $\quad \delta=\min _{1 \leq i \leq p} \delta_{i}$.

Multiple Eigenvalues

The minimum distance between two distinct eigenvalues plays special role in the analysis. Let δ_{i} be the absolute gap (separation) of $\lambda_{s_{i}}$ from other eigenvalues,

$$
\delta_{i}=\min _{\substack{1 \leq j \leq p \\ j \neq i}}\left|\lambda_{s_{i}}-\lambda_{s_{j}}\right|, \quad 1 \leq i \leq p
$$

The minimum absolute gap: $\quad \delta=\min _{1 \leq i \leq p} \delta_{i}$.
Closely connected with the multiplicities n_{1}, \ldots, n_{p} and with ordering of the diagonal elements, is the following block-matrix partition

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 p} \\
\vdots & \ddots & \vdots \\
A_{p 1} & \cdots & A_{p p}
\end{array}\right], \quad B=\left[\begin{array}{ccc}
B_{11} & \cdots & B_{1 p} \\
\vdots & \ddots & \vdots \\
B_{p 1} & \cdots & B_{p p}
\end{array}\right]
$$

$A_{r t}, B_{r t}$ are $n_{r} \times n_{t}$ blocks.

