
On Element-wise and Block-wise Jacobi Methods for
PGEP

Vjeran Hari

Faculty of Science, Department of Mathematics, University of Zagreb
hari@math.hr

Meeting of the International Linear Algebra Society
July 24–28, 2017, Ames, Iowa, USA



OUTLINE

• GEP and PGEP
• Known results, open problems
• Derivation of the algorithms
• Convergence, global and asymptotic
• Stability and relative accuracy
• Block algorithms
• Global convergence of block algorithms

• Since we consider theoretical aspects of the methods, we have
restricted our attention to element-wise, two-sided Jacobi-type
methods for PGEP. They can be used standalone or as kernel
algorithms for the block methods.

This work has been fully supported by Croatian Science Foundation under the project

IP-09-2014-3670.
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GEP and PGEP

Let A = A∗, B = B∗.

We consider the Generalized Eigenvalue Problem (GEP)

Ax = λBx , x 6= 0.

If B � O, GEP is usually called Positive definite GEP or shorter PGEP.

For such a pair (A,B) there exists a nonsingular matrix F such that

F ∗AF = ΛA = diag(α1, . . . , αn) , F ∗BF = ΛB = diag(β1, . . . , βn) � O,

The eigenpairs of (A,B) are: (αi/βi ,Fei ), 1 ≤ i ≤ n;

where In = [e1, . . . , en].
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How to Solve PGEP?

One can try with the transformation (A,B) 7→ (L−1AL−∗, I ), B = LL∗ and
reduce PGEP to the standard EP for one Hermitian matrix.

If L has small singular value(s), then the computed L−1AL−∗ will have
corrupt eigenvalues.

Then one can try to maximize the minimum
eigenvalue of B by rotating the pair

(A,B) 7→ (Aϕ,Bϕ) = (A cosϕ+ B sinϕ,−A sinϕ+ B cosϕ),

(ask Bart Vandereycken about it) and then derive a method which works
with the initial pair (A,B).
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Jacobi Methods for PGEP

We have two diagonalization methods for PGEP

• Falk-Langemeyer method (shorter: FL method)
(Elektronische Datenverarbeitung, 1960)

• Hari-Zimmermann variant of the FL method (shorter: HZ method)
(Hari, Ph.D. thesis 1984)

The two methods are connected: the FL method can be viewed as the HZ
method with “fast scaled” transformations.

So, the FL method seems to be somewhat faster and the HZ method
seems to be more robust.
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The FL Method (what is known, what is not known?)

• The method was derived for real symmetric matrices

• In SIAM J. MAA 12 (1991), I. Slapničar and V. Hari proved the
asymptotic quadratic convergence of the method in the case of simple
eigenvalues. They also proved that the method is well defined for
definite matrix pairs (αA + βB � O for some real α, β)

• In Numer. Algor. 68 (2015), J. Matejaš proved accuracy bounds for
one step of the method

• What is missing?

1 Some global convergence proof
2 Some proof of high relative accuracy of the method on well-behaved

matrix pairs
3 Complex algorithm for definite pairs of Hermitian matrices
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The HZ Method (what is known, what is not known?)

• Originally, the method was derived in 1984 for the pair (A,B) of
complex Hermitian matrices such that B � O

• In that thesis the asymptotic quadratic convergence has been proved
for the case of simple eigenvalues

• In the thesis, the real method was derived directly from the complex
one. It was also shown that the real FL method can be considered as
the real HZ method with fast-scaled transformations

• The method was named in the paper of V. Novaković, S. Singer, S.
Singer (Parallel Comput. 2015) where its block version was
numerically tested on parallel machines

• What is missing?

1 Some global convergence proof
2 Some proof of high relative accuracy of the method
3 Connection of the complex HZ method to the complex FL method
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New Results

• Complex Falk-Langemayer algorithm derived (work in progress)

• New real algorithms for PGEP derived (LLT J, RRT J and CJ algorithm).

• The global convergence has been proved for all those PGEP methods,
including some much more general PGEP methods which are called hybrid
and general PGEP Jacobi method. The new results hold for the large class
of generalized serial pivot strategies

• Matejaš and Hari have made a detailed rounding error analysis of one step
of the HZ method. This analysis sheds light to accuracy issues. Now it is
understood why the method shows high relative accuracy property on
well-behaved matrix pairs (work in progress)

• V. Hari and E. Begović Kovač have developed tools (block-Jacobi
annihilators and operators) for proving the global convergence of real and
complex block and element-wise Jacobi methods for PGEP and similar
problems under the class of generalized serial strategies (ETNA 46, 2017,
and one work in progress)
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Some Open Problems

• Asymptotic quadratic convergence of any of those methods in the
case of multiple or close eigenvalues of the pair (A,B).

We understand behavior of the algorithms when iteration matrices are
nearly diagonal: huge cancelation in the computation of certain
angles, asymptotic convergence slowdown, termination criteria
problems, . . .
However, we are confident that a robust algorithm with overall good
properties can be found

• To find the best possible candidate for the kernel algorithm for
one-sided block Jacobi methods for GSVD, in the real and in the
complex case

• To make sound global and asymptotic convergence proofs of the
block Jacobi methods for PGEP
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One Block Jacobi Method for PGEP

V. Novaković, S. Singer, S. Singer (Parallel Comput., 2015):

Numerical tests on large matrices, on parallel machines, have confirmed
the advantage of the HZ approach over the FL approach.

When implemented as one-sided block algorithm for the GSVD,
the HZ method is almost perfectly parallelizable, so parallel shared
memory versions of the algorithm are highly scalable, and their
speedup almost solely depends on the number of cores used.

That paper deals with real block HZ method.

The problem with block methods is that they need best possible kernel
algorithms: globally convergent, highly accurate and numerically fast.
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Returning to Element-wise PGEP Jacobi Methods

So, the primary theoretical and practical task in this area seems to be
finding an excellent kernel algorithm for the block methods.

In any block Jacobi method the pivot submatrices are most of the time
nearly diagonal. Hence the best choice for the kernel algorithm seems to
be an element-wise PGEP Jacobi method. Such methods are very fast and
accurate on pairs of nearly diagonal matrices.

The next slides are devoted to new element-wise PGEP Jacobi algorithms.
We start with the derivation of the real element-wise HZ method, since it
has not yet been properly disclosed. Then we shall derive the new real
algorithms.

For obvious reasons we shall try to escape derivation of complex
algorithms!!!
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Derivation of the Real HZ Method

Preliminary transformation: A(0) = D0AD0, B(0) = D0BD0

D0 = [diag(B)]−
1
2 , so that b

(0)
11 = b

(0)
22 = · · · = b

(0)
nn = 1.

This property of B(0) will be maintained during the iteration process:

A(k+1) = ZT
k A(k)Zk , B(k+1) = ZT

k B(k)Zk , k ≥ 0.

Each Zk is a nonsingular elementary plane matrix

Zk =


I

ck −sk
I

s̃k c̃k
I


i(k)

j(k)
, c2

k + s2
k = c̃2

k + s̃2
k = 1/

√
1− b2

i(k)j(k)
.

The selection of pivot pairs (i(k), j(k)) defines pivot strategy.
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Derivation of the HZ Method

At step k we denote: A(k) 7→ A, A(k+1) 7→ A′, Zk 7→ Z ,

Â =

[
aii aij
aij ajj

]
, B̂ =

[
1 bij
bij 1

]
, Ẑ =

[
c −s
s̃ c̃

]
.

Â , B̂ , Ẑ are the pivot submatrices of A, B, Z .

Then A′ = ZTAZ , B ′ = ZTBZ implies

Â′ = ẐT ÂẐ , B̂ ′ = ẐT B̂Ẑ .

Ẑ is chosen to diagonalize Â′ and to make B̂ ′ identity matrix I2.

Ẑ is sought in the form of a product of two Jacobi rotations and one
diagonal matrix. We have two possibilities:
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Ẑ is chosen to diagonalize Â′ and to make B̂ ′ identity matrix I2.
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Ẑ is sought in the form:

(a)

[ √
2

2 −
√

2
2√

2
2

√
2

2

] 1√
1+bij

0

0 1√
1−bij

[ cos(θ − π
4 ) − sin(θ − π

4 )
sin(θ − π

4 ) cos(θ − π
4 )

]

(b)

[ √
2

2

√
2

2

−
√

2
2

√
2

2

] 1√
1−bij

0

0 1√
1+bij

[ cos(θ + π
4 ) − sin(θ + π

4 )
sin(θ + π

4 ) cos(θ + π
4 )

]
↓ ↓ ↓

B̂ → diag B̂ → I2 Â → diag

The both approaches yield the same algorithm.
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Essential Part of the Algorithm

ξ =
bij√

1 + bij +
√

1− bij
, ρ =

1

2
(
√

1 + bij +
√

1− bij), ξ2 + ρ2 = 1,

tan(2θ) =
2aij − (aii + ajj) bij√
1− (bij)2 (aii − ajj)

, −π
4
≤ θ ≤ π

4
,

cosφ = ρ cos θ − ξ sin θ

sinφ = ρ sin θ + ξ cos θ

cosψ = ρ cos θ + ξ sin θ

sinψ = ρ sin θ − ξ cos θ

Ẑ =
1√

1− b2
ij

[
cosφ − sinφ
sinψ cosψ

]
.

a′ii = aii +
1

1− b2
ij

[
(b2

ij − sin2 φ) aii + 2 cosφ sinψ aij + sin2 ψ ajj
]

a′jj = ajj −
1

1− b2
ij

[
(sin2 ψ − b2

ij) ajj + 2 cosψ sinφ aij + sin2 φ aii
]
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There are more formulas!

2ρξ = bij , |ξ| ≤
√

2/2 ≤ ρ ≤ 1

cosφ sinψ = cos θ sin θ − ρξ = 0.5 (sin 2θ − bij)

cosψ sinφ = cos θ sin θ + ρξ = 0.5 (sin 2θ + bij)

cosφ cosψ = ρ2 cos2 θ − ξ2 sin2 θ

sinφ sinψ = ρ2 sin2 θ − ξ2 cos2 θ

min{cosφ , cosψ} ≥ ρ cos θ −
|bij |
2ρ
| sin θ| ≥ (ρ−

|bij |
2ρ

) cos θ > 0

max{cosφ , cosψ} = ρ cos θ + |ξ sin θ| ≥
√

2

2
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There are more formulas!

Let
sin γ = bij , cos γ =

√
1− b2

ij ,

then

1

cos γ

[
aii aij
aij ajj

] [
cosφ − sinφ
sinψ cosψ

]
=

[
cosψ − sinψ
sinφ cosφ

] [
a′ii

a′jj

]
1

cos γ

[
1 bij
bij 1

] [
cosφ − sinφ
sinψ cosψ

]
=

[
cosψ − sinψ
sinφ cosφ

]

cos γ =
cosφ

cosψ
+ bij tanψ =

cosψ

cosφ
− bij tanφ

2 cos(φ+ ψ)aij = aii sin(2φ)− ajj sin(2ψ)
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There are more formulas!

a′ii =
1

cos γ

(
aii

cosφ

cosψ
+ aij tanψ

)
=

aii + aij
sinψ
cosφ

1 + bij
sinψ
cosφ

a′jj =
1

cos γ

(
ajj

cosψ

cosφ
− aij tanφ

)
=

ajj − aij
sinφ
cosψ

1− bij
sinφ
cosψ

.

We also have

φ+ ψ = 2θ
φ− ψ = γ

, hence
φ = θ + γ/2
ψ = θ − γ/2

.

All these relations are used in the global convergence proof and in the
proof of high relative accuracy of the method.
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Algorithm HZ

select the pivot pair (i , j)

if aij 6= 0 or bij 6= 0 then

ρ = 0.5 (
√

1 + bij +
√

1− bij ); ξ = bij/(2ρ);

τ =
√

(1 + bij )(1− bij ); t2 = 2aij − (aii + ajj )bij;

if t2 = 0 then t = 0;

else

ct2 = τ (aii − ajj )/t2;

t = sign(ct2)/(abs(ct2) + (1 +
√

1 + ct22);
end

cs = 1/
√

1 + t2; sn = t/
√

1 + t2;

c1 = (ρ · cs − ξ · sn)/τ; s1 = (ρ · sn + ξ · cs)/τ;

c2 = (ρ · cs + ξ · sn)/τ; s2 = (ρ · sn − ξ · cs)/τ;

δi = (bij/τ − s1)(bij/τ + s1)aii + (2c1 aij + s2 ajj ) s2;

δj = (s2− bij/τ)(s2 + bij/τ) ajj + (2c2 aij − s1 aii ) s1;

a′ij = (c1 c2− s1 s2)aij + (c2 s2 ajj − c1 s1 aii ); a′ji = a′ij;

b′ij = 0; b′ji = b′ij; a′ii = aii + δi; a′jj = ajj − δj;
for k = 1, . . . , n, k 6= i , j do

a′ki = c1 · aki + s2 · akj ; b′ki = c1 · bki + s2 · bkj ; a′ik = a′ki ; b′ik = b′ki ;

a′kj = c2 · akj − s1 · aki ; b′kj = c2 · bkj − s1 · bki ; a′jk = a′kj ; b′jk = b′kj;

endfor

endif
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Digression: Complex Matrices

If A = A∗, B = B∗ � O are complex, with diag(B) = In, then one step of
the HZ method uses the transformation

A′ = Z ∗AZ , B ′ = Z ∗BZ .

Z is chosen to annihilate the pivot elements aij and bij and to maintain
ones on the diagonal of B ′.

It is proved that that pivot submatrix of Z has form

Ẑ =

[
c s̄
−s̃ c̃

]
.

Ẑ is sought in the form of a product of two complex Jacobi rotations and
two diagonal matrices.
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Ẑ is sought in the form:

B̂ → diag B̂ → I2

↑ ↑

Ẑ =

[ √
2

2 −
√

2
2 eı arg(bij )

√
2

2 e−ı arg(bij )
√

2
2

]
·

 1√
1+|bij |

0

0 1√
1−|bij |


·
[

cos(θ + π
4 ) eıα sin(θ + π

4 )
−e−ıα sin(θ + π

4 ) cos(θ + π
4 )

]
·
[
eıωi 0

0 eıωj

]
↓ ↓

Â→ diag diag(Ẑ ) � O
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Essential Part of the Algorithm

Let

b = |bij |, t =
√

1− b2, e = ajj − aii , ε =

{
1, e ≥ 0
−1, e < 0

,

u + ı v = e−ı arg(bij ) aij , tan γ = 2 v
|e| , −

π
2 < γ ≤ π

2

tan 2θ = ε
2u−(aii+ajj )b

t
√
e2+4v2

, −π
4 < θ ≤ π

4

2 cos2 φ = 1 + b sin 2θ + t cos 2θ cos γ, 0 ≤ φ ≤ π
2

2 cos2 ψ = 1− b sin 2θ + t cos 2θ cos γ, 0 ≤ ψ ≤ π
2

eıα sinφ = e
ı arg(bij )

2 cosψ [sin 2θ − b − ıt cos 2θ sin γ]

e−ıβ sinψ = e
−ı arg(bij )

2 cosφ [sin 2θ + b + ıt cos 2θ sin γ] .

Then

Ẑ =
1√

1− b2

[
cosφ eıα sinφ

−e−ıβ sinψ cosψ

]
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New Algorithms: Based on LLT and RRT Factorizations

Consider the Cholesky foctorization of B̂:[
1 bij
bij 1

]
= B̂ = L̂L̂T =

[
1 0
a c

] [
1 a
0 c

]
=

[
1 a
a a2 + c2

]
.

Assuming c > 0, one obtains a = bij , c =
√

1− b2
ij , hence

L̂ =

[
1 0

bij
√

1− b2
ij

]
, L̂−1 =

 1 0

− bij√
1−b2

ij

1√
1−b2

ij

 .
If we write

F̂1 = L̂−T , then F̂T
1 B̂F̂1 = I2

and
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The Algorithm Based on LLT Factorization

F̂T
1 ÂF̂1 =

 aii
aij−bijaii√

1−b2
ij

aij−bijaii√
1−b2

ij

ajj −
2aij−(aii+ajj )bij

1−b2
ij

bij

 .

The final F̂ has the form
F̂ = F̂1R̂,

where R̂ is the Jacobi transformation which diagonalizes F̂T
1 ÂF̂1. Its angle

ϑ is determined by the formula
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1 ÂF̂1. Its angle

ϑ is determined by the formula

Hari (University of Zagreb) PGEP Jacobi Methods ILAS 2017 24 / 60



The Algorithm Based on LLT Factorization

tan(2ϑ) =
2(aij − bijaii )

√
1− b2

ij

aii − ajj + 2(aij − bijaii )bij
, −π

4
≤ ϑ ≤ π

4
.

The transformation formulas for the diagonal elements of A read

a′ii = aii + tanϑ ·
aij − aiibij√

1− b2
ij

, (1)

a′jj = ajj −
2aijbij − b2

ij(aii + ajj)

1− b2
ij

− tanϑ ·
aij − aiibij√

1− b2
ij

. (2)

If aii = ajj , aij = aiibij then ϑ is determined from 0/0, so we choose ϑ = 0.
In this case a′ii and a′jj reduce to aii and ajj , respectively.
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The Algorithm Based on LLT Factorization

This leads to a simpler matrix

Ẑ =
1√

1− b2
ij

[ √
1− b2

ij −bij
0 1

] [
cϑ −sϑ
sϑ cϑ

]

=
1√

1− b2
ij

[
cϑ̃ −sϑ̃
sϑ cϑ

]
,

cϑ̃ = cϑ
√

1− b2
ij − sϑbij ,

sϑ̃ = cϑbij + sϑ
√

1− b2
ij .

It is easy to check that c2
ϑ̃

+ s2
ϑ̃

= 1.
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Algorithm LLTJ

select the pivot pair (i , j)
if aij 6= 0 or bij 6= 0 then

β = bij, τ = sqrt((1 + β)(1− β)); α = aij − βaii;
if α = 0 then t = 0;

else ct2 = (0.5 (aii − ajj ) + αβ)/(α τ);

t = sign(ct2)/(abs(ct2) + sqrt(1 + ct22));
endif

cs = 1/sqrt(1 + t2); sn = t/sqrt(1 + t2);

c1 = cs − sn β/τ; s1 = sn + cs β/τ; c2 = cs/τ; s2 = sn/τ;

δi = tα/τ; δj = ( tα+ (β/τ) · (2aij − (aii + ajj )β) )/τ;

a′ij = (c1 c2− s1 s2) aij + (c2 s2 ajj − c1 s1 aii ); a′ji = a′ij;

b′ij = (c1 c2− s1 s2)β + (c2 s2− c1 s1); b′ji = b′ij;

a′ii = aii + δi; a′j = ajj − δj;
for k = 1, . . . , n, k 6= i , j do

a′ki = c1 · aki + s2 · akj ; b′ki = c1 · bki + s2 · bkj ; a′ik = a′ki ; b′ik = b′ki
a′kj = c2 · akj − s1 · aki ; b′kj = c2 · bkj − s1 · bki ; a′jk = a′kj ; b′jk = b′kj;

endfor

endif
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The Algorithm Based on RRT Factorizations

Consider the RRT factorization of B̂:[
1 bij
bij 1

]
= B̂ = R̂R̂T =

[
c a
0 1

] [
c 0
a 1

]
=

[
a2 + c2 a

a 1

]
.

Assuming positive c , one obtains a = bij , c =
√

1− b2
ij , hence

R̂ =

[ √
1− b2

ij bij

0 1

]
and R̂−1 =

 1√
1−b2

ij

− bij√
1−b2

ij

0 1

 .

If we write F̂2 = R̂−T , then F̂T
2 B̂F̂2 = I2 and
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The Algorithm Based on RRT Factorization

F̂T
2 ÂF̂2 =

 aii −
2aij−(aii+ajj )bij

1−b2
ij

bij
aij−bijajj√

1−b2
ij

aij−bijajj√
1−b2

ij

ajj

 .
The final F̂ has the form F̂ = F̂2Ĵ, where Ĵ is the Jacobi transformation
which diagonalizes F̂T

2 ÂF̂2. Its angle ϑ is determined by the formula:

tan(2ϑ) =
2(aij − bijajj)

√
1− b2

ij

aii − ajj − 2(aij − bijajj)bij
, −π

4
≤ ϑ ≤ π

4
.
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The Algorithm Based on RRT Factorization

The transformation formulas for the diagonal elements of A read

a′ii = aii −
2aij − (aii + ajj)bij

1− b2
ij

bij + tanϑ ·
aij − ajjbij√

1− b2
ij

,

a′jj = ajj − tanϑ ·
aij − ajjbij√

1− b2
ij

.

If aii = ajj , aij = ajjbij then we choose ϑ = 0 and then a′ii and a′jj reduce to
aii and ajj , respectively.
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The Algorithm Based on RRT Factorization

This leads to the transformation matrix

Ẑ =
1√

1− b2
ij

[
1 0

−bij
√

1− b2
ij

] [
cϑ −sϑ
sϑ cϑ

]

=
1√

1− b2
ij

[
cϑ −sϑ
sϑ̃ cϑ̃

]
,

cϑ̃ = cϑ
√

1− b2
ij + sϑbij ,

sϑ̃ = sϑ
√

1− b2
ij − cϑbij .

It is easy to check that c2
ϑ̃

+ s2
ϑ̃

= 1.
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Algorithm RRTJ

select the pivot pair (i , j)

if aij 6= 0 or bij 6= 0 then

β = bij, τ = sqrt((1 + β)(1− β)); α = aij − βajj;
if α = 0 then t = 0;
else ct2 = (0.5 (aii − ajj )− αβ)/(α τ);

t = sign(ct2)/(abs(ct2) + sqrt(1 + ct22));
endif

cs = 1/sqrt(1 + t2); sn = t/sqrt(1 + t2);
c1 = cs/τ; s1 = sn/τ; c2 = cs + sn β/τ; s2 = sn − cs β/τ;
δj = tα/τ; δi = ( tα− (β/τ) · (2aij − (aii + ajj )β) )/τ;
a′ij = (c1 c2− s1 s2) aij + (c2 s2 ajj − c1 s1 aii ); a′ji = a′ij;

b′ij = (c1 c2− s1 s2)β + (c2 s2− c1 s1); b′ji = b′ij;

a′ii = aii + δi; a′j = ajj − δj;
for k = 1, . . . , n, k 6= i , j do

a′ki = c1 · aki + s2 · akj ; b′ki = c1 · bki + s2 · bkj ; a′ik = a′ki ; b′ik = b′ki
a′kj = c2 · akj − s1 · aki ; b′kj = c2 · bkj − s1 · bki ; a′jk = a′kj ; b′jk = b′kj;

endfor

endif
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Definition of a Hybrid and a General Method

Definition

Let H denote collection of Jacobi methods for PGEP Ax = λBx which
satisfy the following two rules:

1 at step k , Â(k) is diagonalized and B̂(k) is transformed to I2,

2 at least one diagonal element of F̂k is not smaller than
√

2/2.

An element of H is called a general PGEP Jacobi method.
A hybrid Jacobi method is any method from H that uses at each step
either the HZ, LLT J or RRT J algorithm.

In this definition the pivot strategy is not specified, hence any can be used.
If a method uses only the HZ (LLT J, RRT J) algorithm, it will be called
the HZ (LLT J, RRT J) method.

Hari (University of Zagreb) PGEP Jacobi Methods ILAS 2017 33 / 60



Definition of a Hybrid and a General Method

Definition

Let H denote collection of Jacobi methods for PGEP Ax = λBx which
satisfy the following two rules:
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Some Remarks

• It is easy to show that HZ, LLT J and RRT J methods belong to H

• Algorithms based on LLT and RRT factorizations are called LLT J
and RRT J algorithm, because LLT and RRT factorizations are
followed by one step of the standard Jacobi method

• The general (PGEP) Jacobi method can use at each step any
conceivable algorithm which satisfies the above two rules. For
example, it can use the FL method combined with normalization of
the elements of B
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Some Remarks

• All real algorithms have the form

Ẑ =
1√

1− b2
ij

[
cosφ − sinφ
cosψ sinψ

]
.

This follows from a result of Gose (ZAMM 59, 1979), who found the
general form of a matrix Ẑ which diagonalizes a B̂ � O via the
congruence transformation B̂ 7→ ẐT B̂Ẑ .

If we assume b11 = · · · = bnn and the same for ẐT B̂Ẑ , then this form
of Ẑ is just the Gose’s theorem.
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congruence transformation B̂ 7→ ẐT B̂Ẑ .

If we assume b11 = · · · = bnn and the same for ẐT B̂Ẑ , then this form
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Global Convergence of the General PGEP Jacobi Method

We have used the following measure in the convergence analysis:

S2(A) = ‖A− diag(A)‖2
F , S(A,B) =

[
S2(A) + S2(B)

]1/2
.

The general PGEP method is globally convergent if

A(k) → Λ = diag(λ1, . . . , λn), B(k) → In as k →∞,

holds for any initial pair of symmetric matrices (A,B) with B � O.

Actually, it is sufficient to show that S(A,B)→ 0 as k →∞.

We have proved the global convergence for the class of

• serial pivot strategies

• generalized serial strategies which includes all weakly wavefront
strategies and many others (Hari, Begović Kovač, ETNA 46 (2017) 107-147)
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Hari (University of Zagreb) PGEP Jacobi Methods ILAS 2017 36 / 60



Global Convergence of the General PGEP Jacobi Method

We have used the following measure in the convergence analysis:

S2(A) = ‖A− diag(A)‖2
F , S(A,B) =

[
S2(A) + S2(B)

]1/2
.

The general PGEP method is globally convergent if

A(k) → Λ = diag(λ1, . . . , λn), B(k) → In as k →∞,

holds for any initial pair of symmetric matrices (A,B) with B � O.

Actually, it is sufficient to show that S(A,B)→ 0 as k →∞.

We have proved the global convergence for the class of

• serial pivot strategies

• generalized serial strategies which includes all weakly wavefront
strategies and many others (Hari, Begović Kovač, ETNA 46 (2017) 107-147)
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Hari (University of Zagreb) PGEP Jacobi Methods ILAS 2017 36 / 60



Asymptotic Convergence for the HZ Method

Let (A,B) have simple eigenvalues:

λ1 > λ2 > · · · > λn, µ = max{|λ1| , |λn|},

3δi = min
1≤i≤n

j 6=i

| λi − λj |, 1 ≤ i ≤ n; δ = min
1≤i≤n

δi .

Theorem

If S(B(0)) <
1

n(n − 1)
and S(A(0),B(0)) <

δ

2
√

1 + µ2
,

then for the general cyclic and for the serial strategies it holds, respectively:

S(A(N),B(N)) ≤
√
N(1 + µ2)

S2(A(0),B(0))

δ
, N = n(n − 1)/2

S(A(N),B(N)) ≤
√

1 + µ2
S2(A(0),B(0))

δ
.

In the case of multiple eigenvalues, the method is not quadratically
convergent, but can be modified to be such.
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Stability and High Relative Accuracy

• We inspect high relative accuracy of HZ, LLT J and RRT J methods

• For that we need a detailed error analysis (J. Matejaš, V. Hari )

• We present here only the results of numerical tests
First theoretical background for the tests, and then the test results

• High relative accuracy of the methods can be obtained only for
well-behaved initial pairs (A,B)

• An example of such pairs are the pairs for which the condition
numbers κ2(∆AA∆A) and κ2(∆BB∆B) are small for some diagonal
matrices ∆A and ∆B .
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• We present here only the results of numerical tests

First theoretical background for the tests, and then the test results

• High relative accuracy of the methods can be obtained only for
well-behaved initial pairs (A,B)

• An example of such pairs are the pairs for which the condition
numbers κ2(∆AA∆A) and κ2(∆BB∆B) are small for some diagonal
matrices ∆A and ∆B .

Hari (University of Zagreb) PGEP Jacobi Methods ILAS 2017 38 / 60



Stability and High Relative Accuracy

• We inspect high relative accuracy of HZ, LLT J and RRT J methods

• For that we need a detailed error analysis (J. Matejaš, V. Hari )

• We present here only the results of numerical tests
First theoretical background for the tests, and then the test results

• High relative accuracy of the methods can be obtained only for
well-behaved initial pairs (A,B)

• An example of such pairs are the pairs for which the condition
numbers κ2(∆AA∆A) and κ2(∆BB∆B) are small for some diagonal
matrices ∆A and ∆B .

Hari (University of Zagreb) PGEP Jacobi Methods ILAS 2017 38 / 60



Stability and High Relative Accuracy

• We inspect high relative accuracy of HZ, LLT J and RRT J methods

• For that we need a detailed error analysis (J. Matejaš, V. Hari )
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Theoretical Background: Drmač Z., A Tangent Algorithm . . . SIAM J. NA 35 (1998)

Theorem

Let A = AT � O, B = BT � O and λ1 ≥ λ2 ≥ · · · ≥ λn, λi ∈ σ(A,B).

Let AS = D
−1/2
A AD

−1/2
A , BS = D

−1/2
B BD

−1/2
B , DA = diag(A), DB = diag(B)

Let δA, δB be symmetric perturbations and λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n the eigenvalues
of (A + δA,B + δB).

Let
εAS

= ‖(δA)S‖2/‖AS‖2, εBS
= ‖(δB)S‖2/‖BS‖2

where (δA)S = D
−1/2
A δAD

−1/2
A , (δB)S = D

−1/2
B δBD

−1/2
B .

If
εAS

κ2(AS) < 1 and εBS
κ2(BS) < 1,

then

max
1≤i≤n

|λ̃i − λi |
λi

≤ εAS
κ2(AS) + εBS

κ2(BS)

1− εBS
κ2(BS)

.
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Theoretical Background

• The initial normalization B 7→ BS = B(0), simplifies the algorithm.
Moreover, it has a stabilizing effect on the iterative process, because
it almost optimally reduces the condition of B and all B(k), k ≥ 1.
Van der Sluis, A. Numer. Math. 14 (1969)

• For those well-behaved pairs we have to find out what methods
generate at every step only tiny relative errors ε

A
(k)
S

, ε
B

(k)
S

and in the

same time matrices with small or modest κ2(A
(k)
S ) and κ2(B(k)).

Nonetheless, this is a demanding task, so we shall go for a shortcut.
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How to detect high relative accuracy of a method?

For all considered methods the starting matrix B(0) is just BS . Therefore

max
1≤i≤n

|λ̃i − λi |
λi

≤ εAS
κ2(AS) + εB(0)κ2(B(0))

1− εB(0)κ2(B(0))
, and it implies

%(A,B) ≡
max1≤i≤n

|λ̃i−λi |
λi√

κ2
2(A

(0)
S ) + κ2

2(B(0))
≤

√
ε2
AS

+ ε2
B(0)

1− εB(0)κ2(B(0))
≈ max{|εAS

|, |εB(0) |},

We can check numerically whether the inequality

%(A,B) ≤ f (n)u, (3)

holds for a larger sample Υ of pairs (A,B). Here

• λ̃i , 1 ≤ i ≤ n are computed eigenvalues of (A(0),B(0))

• f (n) is a slowly growing function of n and u is the unit round off

• The relation (3) should hold irrespectively of how large κ2(A(0)) is.
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How to detect whether a method has high relative accuracy?

Therefore, we are interested in how %(A,B) behaves with respect to χ(A,B),

χ(A,B) ≡ κ2(A(0),B(0)) =
√
κ2

2(A(0)) + κ2
2(B(0)).

• For the given sample of pairs Υ, and for each method, we shall
make its graph of relative errors:

E = {(χ(A,B) , %(A,B)) : (A,B) ∈ Υ}.

• Then we shall depict that graph E using the M-function
scatter(x,y,3)

• The method will be indicated high relative accurate if the ordinates
of the points on the graph are of order O(u) where u ≈ 2.2 · 10−16.
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How to generate matrix pairs?

The starting pair (A(0),B(0)) is generated by

• 4 the diagonal matrices : ∆A, ∆B , Σ, ∆ and

• 2 orthogonal matrices U, V of order n.

It is done in two steps:

1: F = UΣV T , A = FT∆AF , B = FT∆BF ,

2: B(0) = BS = D
−1/2
B BD

−1/2
B , A(0) = ∆AS∆, AS = D

−1/2
A AD

−1/2
A ,

where DA and DB are the diagonal parts of A and B. Then κ2(A
(0)
S ) and

κ2(B(0)) can be controlled by the diagonal elements of ∆A, ∆B , Σ, since

κ2(A
(0)
S ) ≤ nκ2

2(Σ)κ2(∆A) and κ2(B(0)) ≤ nκ2
2(Σ)κ2(∆B),

although most often κ2(A
(0)
S ) and κ2(B(0)) are much smaller than these

bounds.
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How to generate matrix pairs?

To simplify the construction we set ∆B = In.

If the method is high relative accurate, then %(A,B) from the relation (3)
should not depend on κ2(∆).

Note that
κ2(A(0)) ≤ κ2(A

(0)
S )κ2

2(∆).

If we set ∆ = In i (A(0),B(0)) = (D
−1/2
B AD

−1/2
B ,BS), then we know in

advance the eigenvalues of (A(0),B(0)) These are the quotients

(∆A)jj/(∆B)jj , 1 ≤ j ≤ n.

This way can be used when considering behavior of the methods on pairs
with multiple eigenvalues.
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More Details

• Diagonal matrices are constructed by help of the M-function diag(d)

• d is a vector, and vectors are constructed by the M-function
logspace(x1,x2,n). We use it for the diagonal matrices Σ and ∆A.

• For the construction of ∆ we use our m-function

scalvec(k1,k2,k3,n,k)

which generates vector of length n, d = [10k1, . . . , 10k2, . . . , 10k3] where k

determines the position of 10k2 within the components of d .

• To compute ∆, the function scalvec is used within triple loop controlled
by the indices k1, k2 and k3

• Orthogonal matrices U and V are computed by the command

[Q,∼]=qr(rand(n))

• We have generated the sample Υ of 18900 pairs of matrices of order 10.
As “exact eigenvalues” we have used the eigenvalues computed by the
M-function eig(A,B) in variable precision arithmetic (VPA) using 80
decimal digits.
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The Methods and Their Variants

For each of the methods, HZ, LLT J, RRT J, we have made two additional
variants. Let us explain it for the case of the HZ method.

We have used deRijk serial strategy. This is modified row-cyclic strategy:

• 1 2 3 4 5
◦ 6 7 8 9
◦ 10 11 12
◦ 13 14
◦ 15
◦



We call it descending HZ method or shorter HZD method, because the
diagonal elements tend to end in descending order. In the similar way is
defined ascending HZ method or HZA method.
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Matrix conditions
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Relative errors: MATLAB eig function
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Relative errors: HZ method
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Relative errors: HZD method
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Relative errors: HZA method
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Relative errors: LLTJ method

100 105 1010 1015 1020 1025 1030 1035
10-20

10-10

100

1010

1020
Relative errors,  LL

T
J method,  m-function dsyllt

Hari (University of Zagreb) PGEP Jacobi Methods ILAS 2017 53 / 60



Relative errors: Descending LLTJ method
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Relative errors: Ascending LLTJ method
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Relative errors: RRTJ method
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Relative errors: Descending RRTJ method
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Relative errors: Ascending RRTJ method
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How to define an accurate hybrid method?

We see that just one variant of LLT J method (LLT JA) and just one
variant of RRT J method (RRT JD) is indicated as relatively accurate.

This shows how to define a highly accurate hybrid method, call it
Cholesky-Jacobi method or shorter CJ method:

%%% Algorithm CJ

choose the pivot pair (i , j)

if aii ≥ ajj then select LLT J algorithm
else select RRT J algorithm

endif

Its global convergence is proved in an earlier theorem.

We end this presentation with the graph associated with the CJ method.
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Relative errors: CJ method
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Thank you for your time
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