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GEP and PGEP

Let A = A∗, B = B∗.

We consider the Generalized Eigenvalue Problem (GEP)

Ax = λBx , x 6= 0.

If B � O, GEP is called Positive definite GEP (PGEP)

If B � O, then the pair (A,B) is called positive definite pair

For each positive definite pair (A,B) there exists a nonsingular matrix F
such that

F ∗AF = ΛA = diag(α1, . . . , αn) , F ∗BF = ΛB = diag(β1, . . . , βn)

The eigenpairs of (A,B) are: (αi/βi ,Fei ), 1 ≤ i ≤ n,

here In = [e1, . . . , en]
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Well-behaved Pairs are Linked to High Relative Accuracy

There is a special class of pairs of Hermitian matrices that we briefly call

well-behaved pairs.

This class consists of pairs of

well-behaved Hermitian positive definite matrices.

B � O is well-behaved if it can be well-scaled, i.e. if

κ2(DBD) = ‖DBD‖2‖(DBD)−1‖2

is small for some diagonal matrix D.

To detect whether B is well-behaved, it is sufficient to check whether

κ2(BS), BS = [diag(B)]−1/2B[diag(B)]−1/2 is small.
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Why are Element-wise Methods Important

On contemporary GPU and CPU parallel computing machines, probably
the best methods for solving PGEP are block diagonalization methods.

They use kernel algorithms to perform an intrinsic job at each step -
solving PGEP with much smaller matrices (say, n = 32− 512).

The block method will function well only if the kernel algorithm if globally
convergent, fast and accurate.

Most of the time, the kernel algorithm will operate on nearly diagonal
matrices. On such matrices, the element-wise diagonalization methods are
fast and highly accurate.

Hence, probably the best choice for the kernel algorithm are element-wise
diagonalization methods.
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Why Element-wise, Two-sided Jacobi Methods

• they can be used standalone or as kernel algorithms in the block
methods

• as basic algorithms they can be “upgraded” to one-sided algorithms

• the theoretical aspects of one-sided methods can be better analysed
and understood if they are considered/imagined as two-sided methods

• One-sided methods have problem with terminating the process.
Stopping of the process can be costly, especially if the matrix
dimension n is large.

• Two sided methods can smoothly, timely and cost effectively stop the
process.
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What Jacobi Methods for PGEP are Known?

So far we know three“promising” real diagonalization methods:

• Falk-Langemeyer method (shorter: FL method)
(Elektronische Datenverarbeitung, 1960)

• Hari-Zimmermann method (shorter: HZ method)
(Numerical Algorithms, to appear)

• Cholesky-Jacobi method (shorter: CJ method)
(Numerical Algorithms, to appear)

The methods are connected: the FL method can be viewed as the HZ or
CJ method with “fast scaled” transformations.

We have recently derived their “equally promising” complex counterparts.
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The Main Characteristics of the FL Methods

• Very fast (SAXPY BLAS1 operations, Fused multiplyadd)

• Very accurate (HRA is indicated on pairs of well-behaved positive
definite matrices)

• Well defined for a larger class of pairs (they solve definite GEP)

• Problems with renormalizations (every Fk has unit diagonal, hence

‖A(k)‖ ↗ ∞, ‖B(k)‖ ↗ ∞, ‖F1F2 · · ·Fk‖ ↗ ∞ )

• Difficult and challenging for making a good numerical code (to many
freedoms, all we have αA + βB � O, when to stop the iterations?)

• Theoretical results are lacking (all we have is the quadratic
asymptotic convergence result)
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The Main Characteristics of the HZ Methods

• Fast (the quadratic asymptotic convergence has been proved)

• Very accurate (HRA indicated on well-behaved pairs (A,B))

• No Problem with renormalizations, easy to code

• Unit diagonal in B simplifies the algorithm and has a stabilizing effect
on the iterative process, because it almost optimally reduces the
condition of B and all B(k), k ≥ 1. Van der Sluis, A. Numer. Math. 14 (1969)

• Theoretical results exist (global and asymptotic convergence is
proved, much is known on the relative accuracy of the computed
eigenvalues)

• It requires B to be positive definite (it solves PGEP)
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proved, much is known on the relative accuracy of the computed
eigenvalues)
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What is Known for the Real CJ Method

• Theoretical results exist (the global convergence is proved)

• Fast (numerical tests indicate quadratic asymptotic convergence)

• Very accurate (numerical tests indicate HRA on pairs of well-behaved
positive definite matrices)

• No Problem with renormalizations, easy to code

• Unit diagonal in B has a stabilizing effect

• It requires B to be positive definite (it solves PGEP)
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Derivation of the Complex CJ Method

Starting with a positive definite pair (A,B), CJ first makes unit diagonal
in B:

(A(0),B(0)) = (DAD,DBD), D = [diag(B)]−1/2.

Then it generates a sequence of “congruent” matrix pairs

(A(0),B(0)), (A(1),B(1)), (A(2),B(2)), . . .

by the rule

A(k+1) = F ∗kA
(k)Fk , B(k+1) = F ∗kB

(k)Fk , k ≥ 0.

Here each Fk is elementary plane matrix defined by the pivot pair
(i(k), j(k)) and the pivot submatrix F̂k

Fk =


I
∗ ∗

I
∗ ∗

I


i(k)

j(k)
, F̂k =

[
∗ ∗
∗ ∗

]
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Derivation of the Complex CJ Algorithm

Let us fix k , k ≥ 1, and consider one step of the method.

By algorithm we mean one step of the method.

We simplify notation:

A = A(k), A′ = A(k+1), Fk = F , (i , j) = (i(k), j(k)).

Then we have

A′ = F ∗AF , B ′ = F ∗BF
(
Â′ = F̂ ∗ÂF̂ , B̂ ′ = F̂ ∗B̂F̂

)
.

The pivot submatrices Â, B̂, F̂ of A, B, F , resp. are 2× 2 principal
submatrices obtained on the intersection of pivot rows and columns i , j .

The goal is to compute F̂ that diagonalizes Â and reduces B̂ to I2.
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The Derivation of the Complex CJ Method

The complex CJ method is a

hybrid method.

At each step it uses

either LL∗J or RR∗J algorithm.

It chooses the algorithm which is for the given data (that is (Â, B̂))

more accurate.
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The Derivation of the LL∗J Algorithm

Consider the Cholesky foctorization of B̂: B̂ = L̂L̂∗,[
1 bij
b̄ij 1

]
= B̂ = L̂L̂∗ =

[
1 0
ā c̄

] [
1 a
0 c

]
=

[
1 a
ā |a|2 + |c |2

]

Assuming c > 0, one obtains a = bij , c = τ ≡
√

1− |bij |2.

L̂ =

[
1 0
b̄ij τ

]
, L̂−1 =

1

τ

[
τ 0
−b̄ij 1

]
, L̂−∗ =

1

τ

[
τ −bij
0 1

]
.

Let F̂1 = L̂−∗. Then F̂ ∗1 B̂F̂1 = I2 and

F̂ ∗1 ÂF̂1 =

[
aii (aij − bijaii )/τ

(āij − b̄ijaii )/τ ajj −
aij b̄ij+āijbij−(aii+ajj )|bij |2

1−|bij |2

]
.
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The Derivation of the LL∗J Algorithm

The final F̂ is obtained as product F̂ = F̂1R̂1 where

R̂1 is the complex Jacobi rotation which diagonalizes F̂ ∗1 ÂF̂1.

Let us assume

R̂1 =

[
cϑ1 −s+

ϑ1

s−ϑ1
cϑ1

]
, cϑ1 = cosϑ1, s±ϑ1

= e±ıε1 sinϑ1.

Then the angles ϑ1 and ε1 are determined by the formulas

ε1 = arg(aij − bijaii ),

tan(2ϑ1) =
2|aij − aiibij |

√
1− |bij |2

aii − ajj + aij b̄ij + āijbij − 2aii |bij |2
, −π

4
≤ ϑ1 ≤

π

4
.
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The Derivation of the LL∗J Algorithm

The transformation formulas for the diagonal elements of A read

a′ii = aii + tanϑ1 ·
|aij − aiibij |√

1− |bij |2
,

a′jj = ajj −
aij b̄ij + āijbij − (aii + ajj)|bij |2

1− |bij |2
− tanϑ1 ·

|aij − aiibij |√
1− |bij |2

.

In the case aii = ajj , aij = aiibij , tan(2ϑ1) has the form 0/0.

Then we choose ϑ1 = 0, so that a′ii = aii and a′jj = ajj .
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The Derivation of the LL∗J Algorithm

F̂ =
1√

1− |bij |2

[ √
1− |bij |2 −bij

0 1

][
cϑ1 −s+

ϑ1

s−ϑ1
cϑ1

]

=
1√

1− |bij |2

[
cϑ̃1

−sϑ̃1

s−ϑ1
cϑ1

]
=

[
c1 −s1
s2 c2

]
,

cϑ̃1
= cϑ1

√
1− |bij |2 − s−ϑ1

bij , sϑ̃1
= cϑ1bij + s+

ϑ1

√
1− |bij |2,

|cϑ̃1
|2 + |sϑ̃1

|2 = 1,

c1 = cϑ1 − s−ϑ1
bij/
√

1− |bij |2, c2 = cϑ1/
√

1− |bij |2,

s1 = cϑ1bij/
√

1− |bij |2 + s+
ϑ1
, s2 = s−ϑ1

/
√

1− |bij |2.

Hari (University of Zagreb) Complex Cholesky-Jacobi ICNAAM 2018, Rhodes 17 / 31



The Derivation of the LL∗J Algorithm

F̂ =
1√

1− |bij |2

[ √
1− |bij |2 −bij

0 1

][
cϑ1 −s+

ϑ1

s−ϑ1
cϑ1

]

=
1√

1− |bij |2

[
cϑ̃1

−sϑ̃1

s−ϑ1
cϑ1

]
=

[
c1 −s1
s2 c2

]
,

cϑ̃1
= cϑ1

√
1− |bij |2 − s−ϑ1

bij , sϑ̃1
= cϑ1bij + s+

ϑ1

√
1− |bij |2,

|cϑ̃1
|2 + |sϑ̃1

|2 = 1,

c1 = cϑ1 − s−ϑ1
bij/
√

1− |bij |2, c2 = cϑ1/
√

1− |bij |2,

s1 = cϑ1bij/
√

1− |bij |2 + s+
ϑ1
, s2 = s−ϑ1

/
√

1− |bij |2.

Hari (University of Zagreb) Complex Cholesky-Jacobi ICNAAM 2018, Rhodes 17 / 31



The Derivation of the LL∗J Algorithm

F̂ =
1√

1− |bij |2

[ √
1− |bij |2 −bij

0 1

][
cϑ1 −s+

ϑ1

s−ϑ1
cϑ1

]

=
1√

1− |bij |2

[
cϑ̃1

−sϑ̃1

s−ϑ1
cϑ1

]
=

[
c1 −s1
s2 c2

]
,

cϑ̃1
= cϑ1

√
1− |bij |2 − s−ϑ1

bij , sϑ̃1
= cϑ1bij + s+

ϑ1

√
1− |bij |2,

|cϑ̃1
|2 + |sϑ̃1

|2 = 1,

c1 = cϑ1 − s−ϑ1
bij/
√

1− |bij |2, c2 = cϑ1/
√

1− |bij |2,

s1 = cϑ1bij/
√

1− |bij |2 + s+
ϑ1
, s2 = s−ϑ1

/
√

1− |bij |2.

Hari (University of Zagreb) Complex Cholesky-Jacobi ICNAAM 2018, Rhodes 17 / 31



The Derivation of the LL∗J Algorithm

F̂ =

[
c1 −s1

s2 c2

]
,

c1 = cϑ1 − s−ϑ1
bij/
√

1− |bij |2, c2 = cϑ1/
√

1− |bij |2

s1 = cϑ1bij/
√

1− |bij |2 + s+
ϑ1
, s2 = s−ϑ1

/
√

1− |bij |2

This algorithm works well, but we can still reduce the number of floating
point operations per iteration step. This is accomplished by transforming
the complex element c1 into |c1|.

Formally, we postmultiply F̂ by the diagonal matrix diag(c̄ϑ̃1
/|cϑ̃1

| , 1),
provided that cϑ̃1

6= 0. That transforms s2 into s2 · c̄ϑ̃1
/|cϑ̃1

|.

The obtained algorithm we call LL∗J algorithm.
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The Derivation of the RR∗J Algorithm

Instead of LL∗, one can use RR∗ factorization of B̂. Then we have

[
1 bij
b̄ij 1

]
= B̂ = R̂R̂∗ =

[
c a
0 1

] [
c̄ 0
ā 1

]
=

[
|a|2 + |c |2 a

ā 1

]
.

Assuming positive c , one obtains a = bij , c =
√

1− |bij |2 = τ . Hence

R̂ =

[
τ bij
0 1

]
, R̂−1 =

1

τ

[
1 −bij
0 τ

]
, R̂−∗ =

1

τ

[
1 0
−b̄ij τ

]
.

If we write F̂2 = R̂−∗, then F̂ ∗2 B̂F̂2 = R̂−1B̂R̂−∗ = I2 and we have
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The Derivation of the RR∗J Algorithm

F̂ ∗2 ÂF̂2 =

[
aii −

aij b̄ij+āijbij−(aii+ajj )|bij |2
τ2 (aij − ajjbij)/τ

(āij − ajj b̄ij)/τ ajj

]
.

• The final transformation is F̂ = F̂2R̂2,

• R̂2 is the Jacobi rotation which annihilates (1, 2)-element of F̂ ∗2 ÂF̂2

• Let (1, 2)-element of R̂2 be −eıε2 sinϑ2

Then the parameters ε2 and ϑ2 are determined by the formulas

ε2 = arg(aij − bijajj),

tan(2ϑ2) =
2|aij − ajjbij |

√
1− |bij |2

aii − ajj − (aij b̄ij + āijbij) + 2ajj |bij |2
, −π

4
≤ ϑ2 ≤

π

4
.
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• Let (1, 2)-element of R̂2 be −eıε2 sinϑ2

Then the parameters ε2 and ϑ2 are determined by the formulas

ε2 = arg(aij − bijajj),

tan(2ϑ2) =
2|aij − ajjbij |

√
1− |bij |2

aii − ajj − (aij b̄ij + āijbij) + 2ajj |bij |2
, −π

4
≤ ϑ2 ≤

π

4
.

Hari (University of Zagreb) Complex Cholesky-Jacobi ICNAAM 2018, Rhodes 20 / 31



The Derivation of the RR∗J Algorithm

The transformation formulas for the diagonal elements of A:

a′ii = aii −
aij b̄ij + āijbij − (aii + ajj)|bij |2

1− |bij |2
+ tanϑ2 ·

|aij − ajjbij |√
1− |bij |2

,

a′jj = ajj − tanϑ2 ·
|aij − ajjbij |√

1− |bij |2
.

If aii = ajj , aij = ajjbij , ϑ2 is not well defined and we choose ϑ2 = 0.

In that case a′ii and a′jj reduce to aii and ajj , respectively.
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The Derivation of the RR∗J Algorithm

Let cϑ2 = cosϑ2, s±ϑ2
= e±ıε2 sinϑ2. Then

F̂ =
1√

1− |bij |2

[
1 0

−b̄ij
√

1− |bij |2

] [
cϑ2 −s+

ϑ2

s−ϑ2
cϑ2

]
=

1√
1− |bij |2

[
cϑ2 −s+

ϑ2

sϑ̃2
cϑ̃2

]
=

[
c1 −s1
s2 c2

]
,

cϑ̃2
= cϑ2

√
1− |bij |2+s+

ϑ2
b̄ij , sϑ̃2

= s−ϑ2

√
1− |bij |2−cϑ2 b̄ij , |cϑ̃|

2+|sϑ̃|
2 = 1,

c1 = cϑ2/
√

1− |bij |2, c2 = cϑ2 + s+
ϑ2
b̄ij/
√

1− |bij |2,
s1 = s+

ϑ2
/
√

1− |bij |2
+
, s2 = s−ϑ2

− cϑ2 b̄ij/
√

1− |bij |2.

We can postmultiply F̂ by diag(1 , c̄ϑ̃2
/|cϑ̃2

|) provided that cϑ̃2
6= 0. This

ensures that (the updated) F̂ has nonnegative diagonal elements.
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The Complex Cholesky-Jacobi Method

The CJ method can briefly be defined as follows:

1 select the pivot pair (i , j)

2 if aii ≤ ajj then employ the LL∗J algorithm

else employ the RR∗J algorithm

Our numerical tests show that neither LL∗J nor RR∗J is indicated as a
HRA algorithm on well-behaved pairs.

The same can be said for the hybrid algorithm that selects the LL∗J and
RR∗J algorithms in the opposite way, i.e. selects the RR∗J (LL∗J)
algorithm when aii ≤ ajj (aii > ajj).

Only the above definition warrants the HRA of the algorithm and it is in
complete agreement with the behavior of the real CJ method.
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The Main Characteristics of the Complex CJ Method

• Fast (numerical tests indicate the quadratic asymptotic convergence)

• Very accurate (numerical tests indicate HRA on well-behaved pairs)

• Unit diagonal in B simplifies the algorithm and has a stabilizing effect
on the iterative process, because it almost optimally reduces the
condition of B and all B(k), k ≥ 1. Van der Sluis, A. Numer. Math. 14 (1969)

• No Problem with renormalizations, easy to code

• Some theoretical results exist (the global convergence has been proved in:

E. Begović, V. Hari, Convergence of the Complex Cyclic Jacobi Methods

and Applications, preprint 2018)

• It requires B to be positive definite (it solves PGEP)
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Theoretical Background: Drmač Z., A Tangent Algorithm . . . SIAM J. NA 35 (1998)

Theorem

Let A = A∗ � O, B = B∗ � O and λ1 ≥ λ2 ≥ · · · ≥ λn, λi ∈ σ(A,B).

Let AS = D
−1/2
A AD

−1/2
A , BS = D

−1/2
B BD

−1/2
B , DA = diag(A), DB = diag(B)

Let δA, δB be Hermitian perturbations and λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n the eigenvalues
of (A + δA,B + δB).

Let
εAS

= ‖(δA)S‖2/‖AS‖2, εBS
= ‖(δB)S‖2/‖BS‖2

where (δA)S = D
−1/2
A δAD

−1/2
A , (δB)S = D

−1/2
B δBD

−1/2
B .

If
εAS

κ2(AS) < 1 and εBS
κ2(BS) < 1,

then

max
1≤i≤n

|λ̃i − λi |
λi

≤ εAS
κ2(AS) + εBS

κ2(BS)

1− εBS
κ2(BS)

≤

√
κ2(AS)2 + κ2(BS)2

√
ε2
AS

+ ε2
BS

1− εBS
κ2(BS)

.

Hari (University of Zagreb) Complex Cholesky-Jacobi ICNAAM 2018, Rhodes 25 / 31
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Relative Accuracy

%(A,B) = max
1≤i≤n

|λ̃i − λi |
λi

/
√
κ2

2(AS) + κ2
2(BS)

χ(A,B) =
√
κ2

2(A(0)) + κ2
2(B(0))

E = {(χ(A,B) , %(A,B)) : (A,B) ∈ Υ}.
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Relative Errors: CJ vs. MATLAB eig(A,B)
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Relative Errors: LL ∗ J
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Relative Errors: RR ∗ J
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Relative Errors: Opposite Choice Than in CJ
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