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OUTLINE
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GEP and PGEP

Let A = A∗, B = B∗. We consider the

Generalized Eigenvalue Problem (GEP): Ax = λBx , x 6= 0.

• If B � O, GEP is usually called positive definite GEP or shorter PGEP

• If sA + tB � O, for some real s, t, we have definite GEP and also
definite matrix pair (A,B)

• For a definite pair (A,B) there is a nonsingular matrix F such that

F ∗AF = ΛA , F ∗BF = ΛB ,

ΛA = diag(α1, . . . , αn), ΛB = diag(β1, . . . , βn) are real matrices

• The eigenpairs are: (αi/βi ,Fei ), 1 ≤ i ≤ n; In = [e1, . . . , en].
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How to Solve Definite GEP?

• If B � O, use the transformation: (A,B) 7→ (L−1AL−∗, I ), B = LL∗.

This reduces PGEP to the EP for one Hermitian matrix. However, if
L has small singular value(s), then the computed L−1AL−T will have
corrupt eigenvalues

• If A � O, apply the same procedure to (B,A)

• A � O and B � O apply one of the above procedures (take care
which matrix has smaller condition number). Or employ the methods
for the GSVD problem LAL

∗
Ax = σ2LBL

∗
Bx .

• If neither A nor B is definite,one can try to maximize the minimum
eigenvalue of Bϕ by rotating the pair

(A,B) 7→ (Aϕ,Bϕ) = (A cosϕ+ B sinϕ,−A sinϕ+ B cosϕ),
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How to Solve Definite GEP?

If neither A nor B is definite, one can:

• use the indefinte Cholesky factorization to reduce the problem to the
J-Hermitian EP

Hx = λJx , J is a matrix of signs

• employ the QZ method, which is complicated, slow and inaccurate

• generalize the Falk-Langemeyer method to work with complex
matrices

We follow the last choice!
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Jacobi Methods for PGEP

We have at disposal several diagonalization methods for PGEP with real
matrices:

• Falk-Langemeyer method (shorter: FL method)
(Elektronische Datenverarbeitung, 1960)

• HZ (Hari-Zimmermann) method
Numerical Algorithms, 2018 (to appear)

• CJ (Cholesky-Jacobi) method
Numerical Algorithms, 2018 (to appear)

All three methods have excellent numerical properties, in particular they
are indicated as high relative accurate on well-behaved positive definite
matrices.
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Jacobi Methods on Contemporary Computing Machines

• Element-wise Jacobi methods (two-sided or one-sided) are often
used as kernel algorithms inside the corresponding block methods

• One-sided block Jacobi methods are nicely adaptable to work with
modern CPU and GPU parallel computing machines

A quote from V. Novaković, S. Singer, S. Singer (Parallel Comput., 2015):

Numerical tests on large matrices, on parallel machines, have confir-

med the advantage of the HZ approach. When implemented as one-sided

block algorithm for the GSVD, it is almost perfectly parallelizable, so pa-

rallel shared memory versions of the algorithm are highly scalable, and

their speedup almost solely depends on the number of cores used.

The same can be said for the CJ and FL method.
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Few Facts about Real FL method

• FL method is well defined for any definite matrix pair

(Slapničar, Hari: SIMAX, 1991)

• Quadratic convergence proved in the case of simple eigenvalues

(Slapničar, Hari: SIMAX, 1991)

• Relative accuracy investigated, general bounds obtained

(Matejaš, Numerical Algorithms, 2015)

• Global convergence not yet proved

(the proof will be similar to the one in Hari, Num. Algor., 2018)

• High relative accuracy (HRA) of the FL method not yet proved

(numerical tests indicate HRA of the method)
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(Slapničar, Hari: SIMAX, 1991)

• Quadratic convergence proved in the case of simple eigenvalues
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Derivation of the CFL Method

Starting with a definite pair (A,B) of complex Hermitian matrices, CFL
generates a sequence of “congruent” matrix pairs

(A,B) = (A(0),B(0)), (A(1),B(1)), (A(2),B(2)) . . .

by the rule

A(k+1) = F ∗kA
(k)Fk , B(k+1) = F ∗kB

(k)Fk , k ≥ 0.

Here Fk is an elementary plane matrix defined by the pivot pair (i(k), j(k))

Fk =


I

1 αk

I
βk 1

I


i(k)

j(k)
, αk , βk ∈ C,
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Derivation of the CFL Method

The goal is to compute complex numbers αk , βk such that the pivot

elements a
(k)
ij , b

(k)
ij of A(k), B(k) are annihilated.

We simplify notation: A← A(k), A′ ← A(k+1), F ← Fk , (i , j)← (i(k), j(k)).

Pivot submatrices Â, B̂, F̂ of A, B, F are 2× 2 principal submatrices
obtained on the intersection of pivot rows and columns i and j .

We have

A′ = F ∗AF , B ′ = F ∗BF
(
Â′ = F̂ ∗ÂF̂ , B̂ ′ = F̂ ∗B̂F̂

)
and F is chosen to obtain a′ij = 0, b′ij = 0.
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Derivation of the CFL Method (n = 2)

Further simplification: (1, 2)← (i , j), a1 ← aii , a2 ← aij , a3 ← ajj , a
′
1 ← a′ii ,

. . .

The goal is to compute α and β which satisfy the matrix equations[
1 β̄
ᾱ 1

] [
a1 a2
ā2 a3

] [
1 α
β 1

]
=

[
a′1 0
0 a′3

]
[

1 β̄
ᾱ 1

] [
b1 b2
b̄2 b3

] [
1 α
β 1

]
=

[
b′1 0
0 b′3

]
.

This leads us to solving a system of two nonlinear equations:

e1 = a1α + a3β̄ + ā2αβ̄ + a2 = 0, (1)

e2 = b1α + b3β̄ + b̄2αβ̄ + b2 = 0. (2)
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Derivation of the CFL Method

To solve the obtained system of equation, we use the following quantities:

=1 = a1b2 − a2b1 =

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣
=3 = a3b2 − a2b3 =

∣∣∣∣ a3 b3
a2 b2

∣∣∣∣
=2 = =′2 + i=′′2, =′2, =′2 real

=′2 = a1b3 − a3b1 =

∣∣∣∣ a1 b1
a3 b3

∣∣∣∣
i=′′2 = a2b̄2 − ā2b2 =

∣∣∣∣ a2 b2
ā2 b̄2

∣∣∣∣ = i

(
−2

∣∣∣∣ Re(a2) Re(b2)
Im(a2) Im(b2)

∣∣∣∣)
= = =2

2 + 4=̄1=3.
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The First Result

Recall, = = =2
2 + 4=̄1=3.

Lemma

Suppose the pair (Â, B̂) is definite. Then

(i) = ≥ 0

(ii) The following statements are equivalent

(a) = = 0
(b) =1 = =2 = =3 = 0
(c) σÂ + ωB̂ = 0 for some real σ, ω, |σ|+ |ω| > 0.
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The Second Result

Lemma

Let (Â, B̂) be definite and = > 0. Then

(i) α = 0 iff =3 = 0

(ii) β = 0 iff =1 = 0

(iii) α = β = 0 iff =1 = =3 = 0.
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The Third Result

Lemma

Suppose (Â , B̂) is definite and = > 0. Then the solution (α , β) of the
system e1 – e2 is given by

α =
=3

ν
, β = −=̄1

ν
, (3)

where ν is any nonzero solution of the equation

ν2 −=2ν − =̄1=3 = 0. (4)
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The General Solution

Theorem

Let the pair (Â, B̂) be definite.

(i) If = > 0 then α =
=3

ν
, β = −=̄1

ν
,

where ν is any nonzero solution of ν2 −=2ν − =̄1=3 = 0

(ii) If = = 0 then the equations in the system e1–e2 are
proportional and there is infinite number of solutions.

(a) Let Â 6= 0. If |a1|+ |a2| > 0 then

α = − γ̄a3 + a2
a1 + γ̄ā2

, β = γ, γ ∈ {z ∈ C; a1 + z̄a2 6= 0}.

If |a2|+ |a3| > 0 then

α = γ, β = − γ̄a1 + ā2
γ̄a2 + a3

, γ ∈ {c ∈ C; a3 + z̄a2 6= 0}.

(b) Let B̂ 6= 0. Then the solutions are as in the case (a)
provided that a1, a2, a3 are replaced by b1, b2, b3, resp.
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Designing CFL Algorithm

Some natural criteria that should be observed, especially when = ≈ 0:

1 |α|+ |β| → min

2 α · β = 0 (= = 0)

3 (α, β) is determined from the pivot submatrix of larger norm
(= = 0)

The first criterion ensures the smallest norm of the transformation matrix
F̂ . It is important for the faster asymptotic convergence.

The second criterion ensures the smallest flop count per step of the
method.

The third criterion ensures that (α, β) is determined by a more reliable set
of input data.
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The Case = > 0: The Standard Solution

The theorem gives the solution:

α =
=3

ν
, β = −=̄1

ν

where ν is any nonzero solution of the equation

ν2 −=2ν − =̄1=3 = 0.

Respecting the first criterion we choose larger (by absolute value) ν:

ν =
=′2 + ı=′′2 + sgn(=′2)

√
=

2
.

This is referred to as the standard solution.
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The Case = = 0

We have =1 = =2 = =3 = 0 and sÂ + tB̂ = 0, real s, t, |s|+ |t| > 0.

The standard solution does not exists.

The theorem and the three criteria imply the following solution:

if |a1|+ |b1| ≥ |a3|+ |b3| then β = 0, α = −a2
a1

(
= −b2

b1

)
,

else α = 0, β = − ā2
a3

(
= − b̄2

b3

)
end

The probability for = = 0 is zero. We have to consider the case = ≈ 0.
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The Case = ≈ 0

Let =1 = =′1 + ı=′′1, =3 = =′3 + ı=′′3, a2 = a′2 + ıa′′2 , b2 = b′2 + ıb′′2 .

|=| = |(=′2 −=′′2)(=′2 + =′′2) + 4Re(=̄1=3)|
≤ max{(=′2)2 , (=′′2)2}+ 4|=′1=′3 + =′′1=′′3|
≤ max{(|a1b3|+ |b1a3|)2, 4(|a′2b′′2 |+ |a′′2b′2|)2}+

4[|a1a3||b2|2 + |b1b3||a2|2 + (|a1b3|+ |b1a3|)(|a′2b′2|+ |a′′2b′′2 |)|]
≡ %.

• % is a reasonable upper bound for |fl(=)|
• Let ε be a modest multiple of u (say of u ≤ ε ≤ 10u).

• If fl(=) < −%ε we consider (A,B) not definite and abort comput.

• If %ε2 ≤ fl(=), we employ the standard solution for α, β.
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The Case = ≈ 0, fl(=) ∈ (−%ε2, %ε2)

If fl(=) ∈ (0, %ε2), then severe cancelations take place and the computed
ν, α and β will have large relative errors.

If fl(=) ∈ (−%ε2, 0) we can still speculate that the rounding errors have
caused fl(=) to be negative. How to compute the solution (α, β)?

We can assume αβ = 0. Let β = 0. Then the equations

e1 = a1α + a3β̄ + ā2αβ̄ + a2 = 0

e2 = b1α + b3β̄ + b̄2αβ̄ + b2 = 0

become

e1 = a1α + a2 = 0

e2 = b1α + b2 = 0

and we can look for the least square (LS) solution.
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The Case = ≈ 0, β = 0

Let ã1 =
√
a21 + b21, c1 = a1/ã1, s1 = b1/ã1. We obtain

‖
[

a1
b1

]
α +

[
a2
b2

]
‖22 = ‖

[
ã1
0

]
α +

[
c1 s1
−s1 c1

] [
a2
b2

]
‖22

=

∣∣∣∣ã1α +
a1a2 + b1b2

ã1

∣∣∣∣2 +
|=1|2

a21 + b21
,

where ‖ · ‖2 stands for the Euclidean vector norm. The solution is

α = −a1a2 + b1b2
a21 + b21

with the residual error
|=1|√
a21 + b21

.
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The Case = ≈ 0, the LS solution

The case α = 0 is treated in the similar way. We obtain

β = −a3ā2 + b3b̄2
a23 + b23

with the residual error
|=3|√
a23 + b23

,

This leads us to the following algorithm:

if
|=1|√
a21 + b21

≤ |=3|√
a23 + b23

then α = −a1a2 + b1b2
a21 + b21

, β = 0

else α = 0, β = −a3ā2 + b3b̄2
a23 + b23

endif

Since (Â, B̂) is definite, we should have a21 + b21 > 0 and a23 + b23 > 0.
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Toward the Complex Falk-Langemeyer Algorithm

Moving from 2× 2 to n× n GEP. We are dealing with an iterative process.

Notation: k numbers iterations (k = 0, 1, 2, . . .)

(1, 2) −→ (i , j) = (i(k), j(k)) pivot pair in step k(
Â, B̂

)
−→

(
Â
(k)
ij , B̂

(k)
ij

)
a1, a2, a3 −→ a

(k)
ii , a

(k)
ij , a

(k)
jj , b1, b2, b3 −→ b

(k)
ii , b

(k)
ij , b

(k)
jj

=1, =3 −→ =(k)
i , =(k)

j ,

=2 = =′2 + ı=′′2 −→ =(k)
ij = Re(=(k)

ij ) + ıIm(=(k)
ij )

Pivot strategy: assume the serial one, say, the row-cyclic one
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The Complex Falk-Langemeyer Method

Input data: A = A∗, B = B∗ of order n and the logical variable eivec

Output data: the diagonal matrices A and B obtained by the method and,
if eivec = true, the matrix F of the eigenvectors of (A,B).

1 Set k = 0, A(k) = A, B(k) = B. If eivec then set F (k) = In

2 Repeat

(a) Choose the pivot pair (i , j) = (i(k), j(k))
(b) Compute the parameters (αk , βk) of Fk
(c) Compute A(k+1) = F ∗kA

(k)Fk , B(k+1) = F ∗kB
(k)Fk

if eivec then compute F (k+1) = F (k)Fk .

Until convergence
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One Step of the CFL Method: 2(b)-part

The superscipt (k) is omitted, u is the unit round-off

job = −1 indicates that the computation should be terminated
Notation: a′ij = Re(aij), a′′ij = Im(aij), b′ij = Re(bij), b′′ij = Im(bij)

if |aij |+ |bij | = 0 then α = β = 0 else

(i) Renormalize Â, B̂ and compute:

=′ij = aiibjj − ajj bii ; =′′ij = −2 (a′ij b
′′
ij − b′ij a

′′
ij); =ij = =′ij + ı=′′ij ;

=i = aii bij − aij bii ; =j = ajj bij − aij bjj ;

= = (=′ij −=′′ij) (=′ij + =′′ij) + 4 Re(=̄1=3);

% = max{(|aiibjj |+ |biiajj |)2, 4(|a′ijb′′ij |+ |a′′ijb′ij |)2}+

4
[
|aiiajj ||bij |2 + |biibjj ||aij |2 + (|aiibjj |+ |biiajj |)(|a′ijb′ij |+ |a′′ijb′′ij |)

]
;
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(i) Renormalize Â, B̂ and compute:

=′ij = aiibjj − ajj bii ; =′′ij = −2 (a′ij b
′′
ij − b′ij a

′′
ij); =ij = =′ij + ı=′′ij ;

=i = aii bij − aij bii ; =j = ajj bij − aij bjj ;

= = (=′ij −=′′ij) (=′ij + =′′ij) + 4 Re(=̄1=3);

% = max{(|aiibjj |+ |biiajj |)2, 4(|a′ijb′′ij |+ |a′′ijb′ij |)2}+

4
[
|aiiajj ||bij |2 + |biibjj ||aij |2 + (|aiibjj |+ |biiajj |)(|a′ijb′ij |+ |a′′ijb′′ij |)

]
;

Hari (University of Zagreb) CFL Method March 21, 2018 26 / 38



One Step of the CFL Method: 2(b)-part

The superscipt (k) is omitted, u is the unit round-off
job = −1 indicates that the computation should be terminated

Notation: a′ij = Re(aij), a′′ij = Im(aij), b′ij = Re(bij), b′′ij = Im(bij)

if |aij |+ |bij | = 0 then α = β = 0 else

(i) Renormalize Â, B̂ and compute:
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One Step of the CFL Method: (b)-part

(ii) Set job = 0;

If = > %u2 then ν =
1

2
(=ij + sgn(=′ij)

√
=), α =

=j

ν
, β = −=̄i

ν

elseif = < −%u then job = −1

else if |=i |
√

a2jj + b2jj ≤ |=j |
√
a2ii + b2ii

then α = −
aii aij + bii bij

a2ii + b2ii
, β = 0

else α = 0, β = −
ajj āij + bjj b̄ij

a2jj + b2jj

endif

endif
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Properties of the CFL Method

Theorem

Let (A,B) be a definite pair of Hermitian matrices and let
(A(k),B(k)), k ≥ 0 be the sequence of pairs generated by applying the CFL
algorithm to (A,B). Then for each k the following assertions hold:

(i) Fk is nonsingular

(ii) |αkβk | ≤ 1

(iii) |αkβk | = 1 iff Re(=(k)
ij ) = 0 and |a(k)ij |+ |b

(k)
ij | > 0.

We also have αkβk = −1 iff =(k)
ij = 0.

Next we consider high relative accuracy (HRA) of the method!
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Relative errors: CFL vs. MATLAB eig(A,B)
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Theoretical Background: Drmač Z., A Tangent Algorithm . . . SIAM J. NA 35 (1998)

Theorem

Let A = AT � O, B = BT � O and λ1 ≥ λ2 ≥ · · · ≥ λn, λi ∈ σ(A,B).

Let AS = D
−1/2
A AD

−1/2
A , BS = D

−1/2
B BD

−1/2
B , DA = diag(A), DB = diag(B)

Let δA, δB be symmetric perturbations and λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n the eigenvalues
of (A + δA,B + δB).

Let
εAS

= ‖(δA)S‖2/‖AS‖2, εBS
= ‖(δB)S‖2/‖BS‖2

where (δA)S = D
−1/2
A δAD

−1/2
A , (δB)S = D

−1/2
B δBD

−1/2
B .

If
εAS

κ2(AS) < 1 and εBS
κ2(BS) < 1,

then

max
1≤i≤n

|λ̃i − λi |
λi

≤ εAS
κ2(AS) + εBS

κ2(BS)

1− εBS
κ2(BS)

.
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Theoretical Background

• From the theorem we see that one class of “well-behaved matrix
pairs” is made ofpairs of Hermitian positive definite matrices that can
be well-scaled, i.e. for which κ2(AS) and κ2(BS) are small.

• For a well-behaved pair, the perturbations also have to be special, i.e.
the numbers εAS

and εBS
have to be small. Then we shall have tiny

relative errors.

• For those well-behaved pairs we have to find out what methods
generate at every step only tiny relative errors ε

A
(k)
S

, ε
B

(k)
S

and in the

same time matrices with small or modest κ2(A
(k)
S ) and κ2(B(k)).

Nonetheless, this is a demanding task, so we shall go for a shortcut.
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How to detect high relative accuracy of a method?

Recall the assertion of the theorem

max
1≤i≤n

|λ̃i − λi |
λi

≤ εAS
κ2(AS) + εBS

κ2(BS)

1− εBS
κ2(BS)

, it implies

%(A,B) ≡
max1≤i≤n

|λ̃i−λi |
λi√

κ22(AS) + κ22(BS)
≤

√
ε2AS

+ ε2BS

1− εBS
κ2(BS)

≈ max{|εAS
|, |εBS

|},

We can check numerically whether the inequality

%(A,B) ≤ f (n)u, (5)

holds for a larger sample Υ of well-behaved pairs (A,B)! Here

• λ̃i are the computed eigenvalues of (A,B)

• f (n) is a slowly growing function of n and u is the round off unit

• Rel. (5) should not depend on κ2(A(0)) and κ2(B(0)).
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How to detect if a method has high relative accuracy?

Therefore, we are interested in how %(A,B) behaves with respect to χ(A,B),

χ(A,B) ≡ κ2(A(0),B(0)) =
√
κ22(A(0)) + κ22(B(0)).

• For the given sample of well behaved pairs Υ, and for each
method, we shall make its graph of relative errors: E ,

E = {(χ(A,B) , %(A,B)) : (A,B) ∈ Υ}.

• Then we shall depict that graph E using the M-function
scatter(x,y,3)

• The method will be indicated high relative accurate if the ordinates
of the points on the graph are of order O(u) where u ≈ 2.2 · 10−16.
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How to generate matrix pairs?

The starting pair (A(0),B(0)) is generated by

• 4 the diagonal matrices : ∆A, ∆B , Σ, ∆ and

• 2 orthogonal matrices U, V of order n.

It is done in two steps:

1: F = UΣV T , A = FT∆AF , B = FT∆BF ,

2: B(0) = BS = D
−1/2
B BD

−1/2
B , A(0) = ∆AS∆, AS = D

−1/2
A AD

−1/2
A ,

where DA and DB are the diagonal parts of A and B. Then κ2(A
(0)
S ) and

κ2(B(0)) can be controlled by the diagonal elements of ∆A, ∆B , Σ, since

κ2(A
(0)
S ) ≤ nκ22(Σ)κ2(∆A) and κ2(B(0)) ≤ nκ22(Σ)κ2(∆B),

although most often κ2(A
(0)
S ) and κ2(B(0)) are much smaller than these

bounds.
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It is done in two steps:

1: F = UΣV T , A = FT∆AF , B = FT∆BF ,

2: B(0) = BS = D
−1/2
B BD

−1/2
B , A(0) = ∆AS∆, AS = D

−1/2
A AD

−1/2
A ,

where DA and DB are the diagonal parts of A and B.

Then κ2(A
(0)
S ) and

κ2(B(0)) can be controlled by the diagonal elements of ∆A, ∆B , Σ, since

κ2(A
(0)
S ) ≤ nκ22(Σ)κ2(∆A) and κ2(B(0)) ≤ nκ22(Σ)κ2(∆B),

although most often κ2(A
(0)
S ) and κ2(B(0)) are much smaller than these

bounds.
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How to generate matrix pairs?

To simplify the construction we set ∆B = In.

If the method is high relative accurate, then %(A,B) from the relation (5)
should not depend on κ2(∆).

Note that
κ2(A(0)) ≤ κ2(A

(0)
S )κ22(∆).

If we set ∆ = In i (A(0),B(0)) = (D
−1/2
B AD

−1/2
B ,BS), then we know in

advance the eigenvalues of (A(0),B(0)) These are the quotients

(∆A)jj/(∆B)jj , 1 ≤ j ≤ n.

This way can be used when considering behavior of the methods on pairs
with multiple eigenvalues.

Hari (University of Zagreb) CFL Method March 21, 2018 35 / 38



More Details

• Diagonal matrices are constructed by help of the M-function diag(d)

• d is a vector, and vectors are constructed by the M-function
logspace(x1,x2,n). We use it for the diagonal matrices Σ and ∆A.

• For the construction of ∆ we use our m-function

scalvec(k1,k2,k3,n,k)

which generates vector of length n, d = [10k1, . . . , 10k2, . . . , 10k3] where k

determines the position of 10k2 within the components of d .

• To compute ∆, the function scalvec is used within triple loop controlled
by the indices k1, k2 and k3

• Orthogonal matrices U and V are computed by the command

[Q,∼]=qr(rand(n))

• We have generated the sample Υ of 18900 pairs of matrices of order 10.
As “exact eigenvalues” we have used the eigenvalues computed by the
M-function eig(A,B) in variable precision arithmetic (VPA) using 80
decimal digits.
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Relative Accuracy

%(A,B) = max
1≤i≤n

|λ̃i − λi |
λi

/
√
κ22(AS) + κ22(BS) ≤

√
ε2AS

+ ε2BS

1− εBS
κ2(BS)

.

χ(A,B) =
√
κ22(A(0)) + κ22(B(0)) .

E = {(χ(A,B) , %(A,B)) : (A,B) ∈ Υ}.
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Relative errors: CFL vs. MATLAB eig(A,B)
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