COSINE-SINE DECOMPOSITIONS

 Some Open Problems and Some Applications

 Some Open Problems and Some Applications}

Vjeran Hari
Faculty of Science
Department of
Mathematics

Josip Matejaš
Faculty of Economics
and Business

University of Zagreb, CROATIA

This work has been fully supported by Croatian Science Foundation under the project IP-2014-09-3670.

PART 1

How to efficiently diagonalize a symmetric matrix of small dimension ?
(draw attention to the topic)

PART 2
 CS decomposition

(why and where such diagonalizations are important ?)

PART 1

How to efficiently diagonalize a symmetric matrix of small dimension?

Spectral theorem (spectral decomposition).
Let A be a real symmetric matrix of order n.
Then, there exists an orthogonal matrix Q such that

$$
Q^{T} A Q=\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) .
$$

For the purpose of improvement and acceleration of diagonalization methods, it is important to have an efficient algorithm for diagonalizing the matrices of small dimensions ($n=2,3,4$).

$n=2$

$$
Q=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \text { or } \quad Q=\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
\sin \phi & -\cos \phi
\end{array}\right)
$$

$$
Q=S_{1}\left(\begin{array}{cc}
|\cos \phi| & -|\sin \phi| \\
|\sin \phi| & |\cos \phi|
\end{array}\right) S_{2}
$$

where S_{1}, S_{2} are diagonal matrices of signs.

$n=2$

If

$$
A=\left(\begin{array}{ll}
a & f \\
f & b
\end{array}\right)
$$

then

$$
Q^{\top} A Q=\Lambda \quad \Rightarrow \quad \tan 2 \phi=\frac{2 f}{a-b}, \phi \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right],
$$

where Q is Jacobi rotation and ϕ is rotation angle.

$$
\begin{gathered}
\boldsymbol{n}=\mathbf{3} \\
Q^{\top} A Q=\Lambda \\
Q=S_{1} R_{12}(\phi) R_{23}(\theta) R_{12}(\psi) S_{2},
\end{gathered}
$$

where $R_{i j}$ is rotation in the (i, j) plane.

Here ϕ, θ and ψ are the rotation, nutation and precession angles (Euler angles).

Euler angles

$n=3$

Let

$$
\begin{aligned}
& R_{12}(\phi) \\
& R_{12}(\psi) \\
& A_{k}=\left(\begin{array}{lll}
a_{k} & f_{k} & g_{k} \\
f_{k} & b_{k} & h_{k} \\
g_{k} & h_{k} & d_{k}
\end{array}\right)=R_{23}(\theta)
\end{aligned}
$$

be the matrix after k rotations ($k=0,1,2,3$) on A have been applied. Thus, $A_{0}=A, A_{3}=\Lambda$.

The rotation $R_{12}(\phi)$ prepares the ground to enable $R_{23}(\theta)$ to annihilate g_{1} and h_{1} simultaneously and then $R_{12}(\psi)$ annihilates f_{2}.

$n=3$

$R_{23}(\theta)$ is Jacobi rotation and

Givens rotation

$$
\tan 2 \theta=\frac{2 h_{1}}{b_{1}-d_{1}}
$$

$$
\tan \theta=\frac{g_{1}}{f_{1}}
$$

$$
h_{1}\left(f_{1}^{2}-g_{1}^{2}\right)=f_{1} g_{1}\left(b_{1}-d_{1}\right),
$$

or equivalently $\frac{f_{1}}{g_{1}}-\frac{g_{1}}{f_{1}}=\frac{b_{1}-d_{1}}{h_{1}}$ for $f_{1} g_{1} h_{1} \neq 0$.

$$
\Downarrow
$$

cubic equation for $\cot \phi$.

A.W. Bojanczyk, A. Lutoborski, Computation of the Euler angles of a symmetric 3×3 matrix, SIAM J. Matrix Anal. Appl. 12, N.1, 41-48 (1991).

$n=3$

The total cost of computing the Euler angles:
EXPLICITLY (by using trigonometric form of Cardano formulas):
≈ 90 flops +2 roots +6 trigonometric evaluations.

APPROXIMATELY

Newton method: ≈ 6 iterations for cubic equation +30 operations for nutation and precession angle,
or alternatively one can use eigenvalue methods:
QR method (standard shifts, starting with tridiagonal form): ≈ 3 iterations, Jacobi method (row-cyclic strategy): ≈ 3 sweeps,
with the error $\frac{\left\|A-\tilde{Q} \tilde{\Lambda} \tilde{Q}^{T}\right\|_{F}}{\|A\|_{F}}$ of the same order of magnitude.

$n=4$

Six rotations,

$$
A=\left(\begin{array}{cc|c|c}
\text { 1. } 5 . & 3 . \\
\downarrow & \downarrow & \downarrow \\
a & f & g & h \\
f & b & p & q
\end{array}\right) \leftarrow 4 .
$$

1. and 2. rotation prepare the ground for 3 . and 4. ones which annihilate the entire block.
\Downarrow
system of two cubic equations for 1. and 2. rotation angle

How to obtain an efficient eigensolver for $n=3$ and $n=4$?

- using one or more additional rotations as a preprocessing step (to annihilate or to make some suitable relations among certain matrix elements),
- using the theory of arrowhead matrices,

$$
\left(\begin{array}{ccc}
* & 0 & * \\
0 & * & * \\
* & * & *
\end{array}\right),\left(\begin{array}{cccc}
* & 0 & 0 & * \\
0 & * & 0 & * \\
0 & 0 & * & * \\
* & * & * & *
\end{array}\right), \quad \ldots
$$

Any idea or suggestion is welcome. Invitation for collaboration is open !!
Why these diagonalizations are important?

PART 2. CS decomposition to be continued ...

