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Abstract. In this lecture, we introduce Krylov’s Lp-theory for stochastic
partial differential equations. More precisely, we prove that there exists a
unique solution u to the following stochastic heat equation

du(t, x) =
(
aij(t)uxixj (t, x) + f(t, x)

)
dt+ g(t, x)dwt, (t, x) ∈ [0, T ]×Rd

u(0, x) = u0(x), (0.1)

where wt is Brownian motion (Wiener process), aij(t) = aij(ω, t) is pre-

dictable, symmetric, and satisfy

κ−1|ξ|2 ≥ aij(t)ξiξj ≥ κ|ξ|2 ∀(ω, t, ξ) ∈ Ω× [0, T ]×Rd (0.2)

with κ > 0,
f, g ∈ Lp (Ω× [0, T ],P, dP × dt) ,

T ∈ (0,∞), p ∈ [2,∞), P is the predictable σ-algebra, and Einstein’s summa-

tion convention is used.

1. Cauchy’s problem

The problem solving equations with initial conditions or boundary conditions
such as (0.1) is usually called Cauchy’s problem, which is named after Augustin
Louis Cauchy. Solvability of equation (0.1) heavily depends on conditions of free
terms such as u0, f and g. In other words, u varies depending on u0, f , and g and
it is even possible that we cannot solve (0.1) if they are too bad. Therefore the
fundamental questions related to (0.1) are the following :

• “Can we solve (0.1)? What conditions should be given on u0, f , and g to
solve (0.1)?”

• “If we can solve it, is a solution unique?”

• “What is the meaning of solutions? What is an appropriate function space
to handle solutions ?”.

Answering these questions is called “well-posed problem”, which stems from a def-
inition given by Jacques Hadamard. Especially, we focus on answering these ques-
tions when f and g are contained in appropriate Lp-classes.

2. A Deterministic L2-theory

Assume g = 0 and consider the deterministic equation first. In other words, we
investigate the solvability of the equation

ut(t, x) = aij(t)uxixj (t, x) + f(t, x) (t, x) ∈ [0, T ]×Rd

u(0, x) = u0(x). (2.1)
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For a while, assume that f ∈ C∞
c

(
(0, T )×Rd

)
, u0 ∈ C∞

c (Rd), and a very good
solution u exists. Recall the definition of the Fourier transform and the inverse
Fourier transform. For a very nice function f , we define its Fourier transform and
inverse Fourier transform as

F [f ](ξ) =

∫
Rd

e−iξ·xf(x)dx

and

F−1[f ](x) =
1

(2π)d

∫
Rd

eix·ξf(ξ)dξ,

respectively. If f has a decay |x| → ∞, then for all j, k ∈ {1, . . . , d},

F [fxjxk ](ξ) =

∫
Rd

e−iξ·xfxjxk(x)dx

= (iξj)(iξk)

∫
Rd

e−iξ·xf(x)dx

= −ξjξkF [f ](ξ)

due to the integration by parts. It is well-known that if f is a very nice function,
then

F−1 [F [f ]] (x) = f(x).

Taking the Fourier transform to both sides of (2.1) with respect to x, we have

(F [u(t, ·)](ξ))t = −ξiξjaij(t)F [u(t, ·)](ξ) + F [f(t, ·)](ξ).
Solving the above ordinary differential equations, we have

F [u(t, ·)](ξ) = e−
∫ t
0
aij(r)drξiξjF [u0](ξ) +

∫ t

0

e−
∫ t
s
aij(r)drξiξjF [f(s, ·)](ξ)ds.

Therefore by the inverse Fourier transform,

u(t, x) = F−1
[
e−

∫ t
0
aij(r)drξiξjF [u0](ξ)

]
(x)

+ F−1

[∫ t

0

e−
∫ t
s
aij(r)drξiξjF [f(s, ·)](ξ)ds

]
(x)

= p(t, ·) ∗ u0(x) +

∫ t

0

p(s, t, ·) ∗ f(s, ·)(x)ds, (2.2)

where

p(s, t, x) := F−1
[
e−

∫ t
s
aij(r)drξiξj

]
(x)

and

p(t, x) :=

{
p(0, t, x) if t > 0

δ0(x),

where δ0(x) is the Dirac delta function concentrated at 0. Moreover, one can easily
check that u defined by (2.2) is indeed a solution to (2.1). Let σij(t) be a matrix-
valued function on [0, T ] such that

1

2
σik(t)σkj(t) = aij(t)

For a d-dimensional Wiener process Wt and t ∈ [0,∞), we define

Xi
t :=

∫ t

0

σik(s)dW k
t .



AN INTRODUCTION TO KRYLOV’S Lp-THEORY 3

and

Xt = (Xi
t) (i = 1, . . . , d).

Then p(t, x) is the probability density function of Xt and p(s, t, x) is the probability
density function of Xt −Xs. Thus one can easily check that a solution u is given
by

u(t, x) = E[u0(x−Xt)] +

∫ t

0

E[f(s, x+Xt −Xs]ds.

Before going to next step, we introduce Banach space-valued function spaces.
For a Banach space F with the norm ∥ · ∥F , C ([0, T ];F ) denotes the space of all
functions u such that

∥u∥C([0,T ];F ) := sup
t

∥u(t, ·)∥F < ∞

and ∥u(t, ·)∥F is continuous with respect to t on [0, T ].
For p ∈ [1,∞), a Banach space F , and a measure space (X,M, µ), by Lp(X,M, µ;F ),

we denote the space of all F -valued Mµ-measurable functions u so that

∥u∥Lp(X,M,µ;F ) :=

(∫
X

∥u(x)∥pF µ(dx)

)1/p

< ∞,

where Mµ denotes the completion of M with respect to the measure µ. If there
is no confusion for the given measure and σ-algebra, we usually omit the mea-
sure and the σ-algebra. In particular, we set L2(R

d) := L2(R
d,L, ℓ;R) and

L2

(
(0, T );L2(R

d)
)
:= L2

(
[0, T ],L, ℓ;L2(R

d)
)
, where L and ℓ denote the Lebesgue

measurable sets and Lebesgue measure, respectively.

Lemma 2.1. Let p ∈ [1,∞), K(s, t, x) be integrable function on [0, T ]× [0, T ]×Rd,
f ∈ Lp

(
(0, T );Lp(R

d)
)
, and

v(t, x) :=

∫ t

0

K(s, t, ·) ∗ f(s, ·)(x)ds :=
∫ t

0

∫
Rd

K(s, t, y)f(s.x− y)dyds.

Then∫ T

0

∥v(t, ·)∥p
Lp(Rd)

dt ≤

(∫ T

0

sup
t≤T

∥K(t− s, t, ·)∥L1(Rd)ds

)p ∫ T

0

∥f(t, ·)∥p
Lp(Rd)

dt.

(2.3)

In particular, if f is a constant with respect to t, i.e. f(t, x) = f(x) for all t ∈ [0, T ],
then∫ T

0

∥v(t, ·)∥p
Lp(Rd)

dt ≤ T

(∫ T

0

sup
t∈[0,T ]

∥K(t− s, t, ·)∥L1(Rd)ds

)p

∥f(·)∥p
Lp(Rd)

dt.

Proof.∥∥∥∥∫
Rd

K(s, t, y)f(s. · −y)dy

∥∥∥∥
Lp(Rd)

≤
∫
Rd

|K(s, t, y)| ∥f(s. · −y)∥Lp(Rd) dy

= ∥f(s, ·)∥Lp(Rd)

∫
Rd

|K(s, t, y)|dy

= ∥K(s, t, ·)∥L1(Rd) ∥f(s, ·)∥Lp(Rd) .
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Thus by applying generalized Minkowski’s inequality,

∥v(t, ·)∥Lp ≤
∫ t

0

∥K(t− s, t, ·)∥L1(Rd) ∥f(t− s, ·)∥Lp(Rd) ds.

Finally, by generalized Minkowski’s inequality and Hölder’s inequality ,∫ T

0

∥v(t, ·)∥pLp
dt

≤

(∫ T

0

(∫ T

0

10<t−s∥K(t− s, t, ·)∥L1(Rd) ∥f(t− s, ·)∥Lp(Rd) ds

)p

dt

)p/p

≤

∫ T

0

sup
t∈[0,T ]

∥K(t− s, t, ·)∥L1(Rd)

(∫ T

0

∥10<t−sf(t− s, ·)∥pLp(Rd) dt

)1/p

ds

p

≤

(∫ T

0

sup
t∈[0,T ]

∥K(t− s, t, ·)∥L1(Rd)ds

)p ∫ T

0

∥f(t, ·)∥pLp(Rd) dt.

□

Since p(s, t, x) is the probability density function of Xt −Xs,

sup
t∈[0,T ]

∥p(t− s, t, ·)∥L1(Rd) = 1,

by Lemma 2.1, we have∫ T

0

∥u(t, ·)∥p
Lp(Rd)

dt ≤ T 1+p∥u∥p
Lp(Rd)

+ T

∫ T

0

∥f(t, ·)∥p
Lp(Rd)

dt.

Our next questions are that can we have∫ T

0

∫
Rd

|uxi(s, x)|p dxds+
∫ T

0

∫
Rd

|uxixj (s, x)|p dxds

≤ N(p, T )

(∫ T

0

∫
Rd

|u0(x)|p dxds+
∫ T

0

∫
Rd

|f(s, ·)(x)|p dxds

)
?

Here i, j ∈ (1, . . . , d). Similarly to estimating u, we can easily check that∫ T

0

∥uxi(t, ·)∥p
Lp(Rd)

dt

≤

(∫ T

0

sup
t∈[0,T ]

∥pxi(t− s, t, ·)∥L1(Rd)dt

)p(
T∥u0∥Lp(Rd) +

∫ T

0

∥f(t, ·)∥p
Lp(Rd)

dt

)
and∫ T

0

∥uxixj (t, ·)∥p
Lp(Rd)

dt

≤

(∫ T

0

sup
t∈[0,T ]

∥pxixj (s, t, ·)∥L1(Rd)dt

)p(
T∥u0∥Lp(Rd) +

∫ T

0

∥f(t, ·)∥p
Lp(Rd)

dt

)
.
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Exercise 2.2. Show that there exists a positive constant c > 0 such that for all
0 < s < t

c ≤ (t− s)−1/2 ≤
∫
Rd

|pxi(s, t, x)|dx ≤ c−1(t− s)−1/2

and

c ≤ (t− s)−1

∫
Rd

|pxixj (t, x)|dt ≤ c−1t−1.

Thus we can control the Lp-norm of uxi . But we do know that the Lp-norm of
uxixj also can be controlled by Lp-norms of u0 and f yet. Since we want handle
non-smooth u0 and f , it is needed to introduce the concept of weak-derivatives.

Definition 2.3 (Weak-derivative). Let f be a locally integrable function on Rd. We
say that a locally integrable function fxi is the i-th weak-derivative of f (i = 1, . . . , d)
iff for all ϕ ∈ C∞

c (Rd) the following equality holds:∫
Rd

fxi(x)ϕ(x)ds = (−1)

∫
Rd

f(x)ϕxi(x)dx.

Moreover generally, for any multi-index α, a locally integrable function Dαf is
called the α-th weak-derivative of f if for all ϕ ∈ C∞

c (Rd)∫
Rd

Dαf(x)ϕ(x)dx = (−1)|α|
∫
Rd

f(x)Dαϕ(x)dx.

Definition 2.4 (Sobolev space). Let p ∈ [1,∞) and n ∈ N. We define the Sobolev
space with the exponent p and order k as

Hn
p (R

d) := {f ∈ Lp(R
d) : ∥Dαf∥Lp(Rd) < ∞ ∀|α| ≤ n},

where Dαf is the α-th weak-derivative of f .

Remark 2.5. It is well-known that Hn
p (R

d) is complete with the norm

∥f∥Hn
p (Rd) :=

∑
|α|≤n

∥Dαf∥Lp(Rd).

Definition 2.6 (Weak solution). We say that a function u ∈ Lp

(
[0, T ];Lp(R

d)
)

is a solution to (2.1) iff for all ϕ ∈ C∞
c and t ∈ [0, T ]

(u(t, ·), ϕ)L2(Rd)

= (u0, ϕ)L2(Rd) +

∫ t

0

(
u(s, ·), aij(s)ϕxixj

)
L2(Rd)

ds+

∫ t

0

(f(s, ·), ϕ)L2(Rd) ds.

(2.4)

Theorem 2.7 (L2-theory). Let T ∈ (0,∞). Assume that aij(t) is measurable and
satisfy the ellipticity condition that

κ|ξ|2 ≤ aij(t)ξiξj ≤ κ−1|ξ|2 ∀(t, ξ) ∈ [0, T ]×Rd. (2.5)

Then for all f ∈ L2((0, T );L2(R
d)) and u0 ∈ H1

2 (R
d), there exists a unique solution

u ∈ C
(
[0, T ];L2(R

d)
)
∩ L2

(
[0, T ];H2

2 (R
d)
)
to equation (0.1) such that

sup
t∈[0,T ]

∥u(t, ·)∥2H1
2 (R

d) +

∫ T

0

∥uxx(t, ·)∥2L2(Rd)dt

≤ N

(∫ T

0

∥f(t, ·)∥2L2(Rd)dt+ ∥u0∥2H1
2 (R

d)

)
, (2.6)
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where N depends only on p and T .

Proof. Part I. (A priori estimate)

First we show that any solution u ∈ C
(
[0, T ];H1

2 (R
d)
)
∩ L2

(
[0, T ];H2

2 (R
d)
)
to

equation (2.1) satisfies (2.6). We use Sobolev mollifiers. Fix a nonnegative φ ∈ C∞
c

with the unit integral and for ε > 0, denote φε(x) = e−dφ(x/ε), uε
0(x) = u0 ∗φε(x),

fε(s, x) = f(s, ·)∗φε(x), and uε(t, x) = u(t, ·)∗φε(·)(x). Putting φε(x−·) in (2.4),
for all (t, x) ∈ (0, T )×Rd, we have

uε(t, x) = uε
0(t, x) +

∫ t

0

aij(s)uε
xixj (s, x)ds+

∫ t

0

fε(s, x)ds.

By the chain rule, Fubini’s theorem, and the integration by parts,∫
Rd

|uε(t, x)|2dx =

∫
Rd

|uε
0(x)|2dx−

∫ t

0

∫
Rd

2uε
xj (s, x)aij(s)uε

xi(s, x)dsdx

+ 2

∫ t

0

∫
Rd

uε(s, x)fε(s, x)dxds.

Therefore, by the ellipticity condition (0.2), the Cauchy-Bunyakovsky-Schwarz in-
equality and arithmetic-geometric mean inequality, for all t ∈ [0, T ] and δ ∈ (0,∞),∫

Rd

|uε(t, x)|2dx+ 2κ

∫ t

0

∫
Rd

|uε
x(s, x)|

2
dsdx

≤
∫
Rd

|uε(t, x)|2dx+ 2

∫ t

0

∫
Rd

aij(s)uε
xi(s, x)uε

xjdsdx

≤
∫
Rd

|uε
0(x)|2dx+ 2

∫ T

0

∫
Rd

uε(s, x)fε(s, x)dxds

≤
∫
Rd

|uε
0(x)|2dx+ δ

∫ T

0

∫
Rd

|uε(s, x)|2dxds+ δ−1

∫ T

0

∫
Rd

|fε(s, x)|2dxds. (2.7)

Taking δ = 1/(2T ), we have

sup
t∈[0,T ]

∫
Rd

|uε(t, x)|2dx+

∫ T

0

∫
Rd

|uε
xi(s, x)|2 dsdx

≤ N(T, κ)

(∫
Rd

|uε
0(x)|2dx+

∫ T

0

∫
Rd

|fε(s, x)|2dxds

)
. (2.8)

Set vk(t, x) = uxk for (k = 1, . . . , d). Then vk satisfies

(vk)ε(t, x) = (u0)
ε
xk(t, x) +

∫ t

0

aij(s)(vk)εxixj (s, x)ds+

∫ t

0

fε
xk(s, x)ds.

By the integration by parts and the ellipticity condition, we have∫
Rd

|(vk)ε(t, x)|2dx+ κ

∫ t

0

∫
Rd

∣∣(vkx)ε(s, x)∣∣2 dsdx
≤
∫
Rd

|(u0)
ε
xk(x)|2dx+ 2

∫ t

0

∫
Rd

(
vkxk

)ε
(s, x)fε(s, x)dxds.
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Therefore following (2.7) and (2.8), we have

sup
t∈[0,T ]

∫
Rd

|uε
xk(t, x)|2 dx+

∫ T

0

∫
Rd

|uε
xixk(s, x)|2 dsdx

≤ N

(∫
Rd

|(u0)
ε
xk(x)|2dx+

∫ T

0

∫
Rd

|fε(s, x)|2dxds

)
, (2.9)

Applying the same idea to uε1 − uε2 with ε1, ε2 > 0, we have

sup
t∈[0,T ]

(∫
Rd

|(uε1 − uε2) (t, x)|2 dx+

∫ T

0

∫
Rd

|(uε1
x − uε2

x ) (s, x)|2 dxds

)

+

∫
Rd

∣∣(uε1
xixj − uε2

xixj

)
(t, x)

∣∣2 dx
≤ N(d, T )

(∫
Rd

| (uε1
0 − uε2

0 ) (x)|2dx+

∫
Rd

|((u0)
ε1
x − (u0)

ε2
x ) (x)|2 dx

+

∫ T

0

∫
Rd

| (fε1 − fε2) (s, x)|2dxds
)
,

which implies that uε converges to

v ∈ C
(
[0, T ];H1

2 (R
d)
)
∩ L2

(
[0, T ];H2

2 (R
d)
)

as ε ↓ 0. Since for each t > 0, uε(t, x) → u(t, x) for almost every x, we conclude
u = v as an element of

C
(
[0, T ];L2(R

d)
)
∩ L2

(
[0, T ];H2

2 (R
d)
)
.

Observing (∫
Rd

|uε
0(x)|pdx+

∫ T

0

∫
Rd

|fε(s, x)|pdxds

)

≤

(∫
Rd

|u0(x)|pdx+

∫ T

0

∫
Rd

|f(s, x)|pdxds

)
and taking ε ↓ 0 in (2.8) and (2.9), we finally get (2.6).

Part II. (Existence)

We already show that u(t, x) is a solution to equation (0.1) if u0 ∈ C∞
c (Rd) and

f ∈ C∞
c

(
[0, T ]×Rd

)
. Thus it only remains to weaken the conditions on u0 and f .

Choose sequences un
0 ∈ C∞

c (Rd) and fn ∈ C∞
c ((0, T )×Rd) so that

un
0 → u0 in L2 and fn → f in L2

(
(0, T );L2(R

d)
)

as n → ∞. Then

un(t, x) := E[un
0 (x−Xt)] +

∫ t

0

E[fn(s, x+Xt −Xs]ds (2.10)

satisfies

un
t (t, x) = aij(t)un

xixj (t, x) + fn(t, x) (t, x) ∈ (0, T )×Rd

un(0, x) = un
0 (x).
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Due to (2.6), un becomes a Cauchy sequence in

C
(
[0, T ];L2(R

d)
)
∩ L2

(
[0, T ];H2

2 (R
d)
)

and thus there exists u such that un → u in

C
(
[0, T ];L2(R

d)
)
∩ L2

(
[0, T ];H2

2 (R
d)
)
.

Since

un
0 → u0 in L2 and fn → f in L2

(
[0, T ];L2(R

d)
)
,

one can easily check that u is a solution to equation (0.1).

Part III. (Uniqueness) We already showed that any solution

u ∈ C
(
[0, T ];L2(R

d)
)
∩ L2

(
[0, T ];H2

2 (R
d)
)
.

to equation (0.1) satisfies (2.6). Therefore, the uniqueness is obvious. □

Remark 2.8. By taking the limit to both sides in (2.10), we have

u(t, x) = E[u0(x−Xt)] +

∫ t

0

E[f(s, x+Xt −Xs]ds (2.11)

for almost every (t, x) ∈ [0, T ]×Rd even though u0 and f are merely contained in
L2 and L2

(
[0, T ];L2(R

d)
)
, respectively, without smoothness.

Remark 2.9. Theorem 2.7 holds even if p ̸= 2 and p ∈ (1,∞). Classically, this
theorem can be proved on basis of singular integral theory. But these days, lots of
kernel free estimates are developed. Since Lp-theories are beyond the scope of this
lecture, I am not going to give details.

3. A Stochastic L2-theory

Let (Ω,F , P ) be a probability space and wt be a Brownian motion relative to
a filtration Ft, i.e. wt is Ft-measurable and wt − ws is independent of Fs for all
0 ≤ s < t. Each Ft contains all null sets of F . By P, we denote the predictable
σ-algebra, i.e. P is the smallest σ-algebra on Ω × [0,∞) containing all sets of the
form of A × [s, t), where 0 ≤ s < t and A ∈ Fs. For T ∈ (0,∞), a stochastic
process u(t) defined on Ω× [0, T ] is called predictable if u(t)1[0,T ](t) is predictable
on Ω× [0,∞). For p ∈ [1,∞) and n ∈ N, define stochastic Banach spaces as follows

Lp(T ) := Lp

(
Ω× [0, T ],P, dP × dt;Lp(R

d)
)

and

Hn
p (T ) := Lp

(
Ω× [0, T ],P, dP × dt;Hn

p (R
d)
)
.

H∞
0 :=

{ j∑
i=1

1(τi−1,τi](t)g
i(x) :

j ∈ N, gi ∈ C∞
c (Rd), τi are bounded stopping times

}
.
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Then it is well-known that for all T > 0, p ∈ [1,∞), and n ∈ N, H∞
0 is dense in

Hn
p (T ), i.e. for any g ∈ Hn

p (T ), there exists a sequence of gn ∈ H∞
0 such that

∥g − gn∥pHn
p (T ) := E

∫ T

0

∥g(t, ·)∥p
Hn

p (Rd)
dt → 0 (3.1)

as n → ∞ (see [1, Theorem 3.11]).

Definition 3.1 ((Stochastic) weak solution). u ∈ Lp(T ) is a solution to (0.1) iff
for each ϕ ∈ C∞

c (Rd), there exists a Ω′ ⊂ Ω such that P (Ω′) = 1 and

(u(ω, t, ·), ϕ) = (u0(ω, ·), ϕ) +
∫ t

0

(
aij(ω, s)uxixj (ω, s, ·), ϕ

)
ds+

∫ t

0

(f(ω, s, ·), ϕ) ds

+

∫ t

0

(g(ω, s, ·), ϕ) dws

for all ω ∈ Ω′ and t ∈ [0, T ]. Simply, we say that u is a solution to (0.1) iff for
each ϕ ∈ C∞

c (Rd),

(u(t, ·), ϕ) = (u0, ϕ) +

∫ t

0

(
u(s, ·), aij(s)ϕxixj

)
ds+

∫ t

0

(f(s, ·), ϕ) ds

+

∫ t

0

(g(s, ·), ϕ) dws (3.2)

holds for all t ∈ [0, T ] with probability one.

Remark 3.2. (i) Assume that g = 0 in (0.1) and let u be a weak solution to (0.1).
Then due to Definition 3.2, for each fixed ω ∈ Ω′, u(ω, t, x) becomes a weak
solution in the sense of Definition 2.6 to the equation

ut(ω, t, x) = aij(ω, t)uxixj (ω, t, x) + f(ω, t, x) (t, x) ∈ (0, T ]×Rd

u(ω, 0, x) = u0(ω, x).

(ii) For each p ∈ [1,∞), there exists a countable subset of C∞
c (Rd) which is

dense in Lp(R
d). Thus we may assume that the equality in (3.2) holds for all

ϕ ∈ C∞
c (Rd) and t ∈ [0, T ] with probability one.

From now on, the variable ω is usually omitted for the notational convenience.
For instance, we use u(t, x) instead of u(ω, t, x).

Consider the following simple stochastic equation:

du(t, x) = ∆u(t, x)dt+ g(t, x)dwt (t, x) ∈ (0, T ]×Rd

u(0, x) = 0. (3.3)

We give a naive idea to obtain a solution representation to equation (3.3). As-
sume that u and g are very nice. Differentiating both sides of (3.3) with respect to
t. Then

du

dt
(t, x) = ∆u(t, x) + g(t, x)

dwt

dt
(t, x) ∈ (0, T ]×Rd.

Here dwt

dt is not a usual RadonNikodym derivative since wt is not differentiable with
respect to t. Assume that there exists a kind of a random measure called “white
noisy” satisfying ∫ t

s

dwt

dt
= wt − ws.



10 ILDOO KIM

Thus by (2.2),

u(t, x) =

∫ t

0

∫
Rd

p(t− s, x− y)g(s, y)
dws

ds
dyds

=

∫ t

0

∫
Rd

p(t− s, x− y)g(s, y)dydws,

where

p(t, x) :=

{
(4πt)−d/2 exp

(
−|x|2/(4t)

)
if t > 0

p(0, x) = δ0(x).

Our next step is to check that

u(t, x) :=

∫ t

0

∫
Rd

p(t− s, x− y)g(s, y)dydws (3.4)

is indeed a solution to equation (3.3), i.e. it suffices to check that u satisfies

u(t, x) =

∫ t

0

∆u(s, x)ds+

∫ t

0

g(s, x)dws (t, x) ∈ [0, T ]×Rd (3.5)

with probability one. By (stochastic) Fubini’s theorem, the property of the kernel
p that pt(t, x) = ∆p(t, x), and the fundamental theorem of calculus, (formally)∫ t

0

∆u(s, x)ds =

∫ t

0

∫ s

0

∫
Rd

∆p(s− r, x− y)g(r, y)dydBrds

=

∫ t

0

∫
Rd

∫ t

0

1r<s∂s (p(s− r, x− y)) dsg(r, y)dydBr

=

∫ t

0

∫
Rd

∫ t

0

1r<s∂s (p(s− r, x− y)) dsg(r, y)dydBr

=

∫ t

0

∫
Rd

(p(t− r, x− y)− δ0(x− y)) g(r, y)dydBr

= u(t, x)−
∫ t

0

g(r, x)dBr. (3.6)

Therefore u defined by (3.5) is a solution to (3.3) at least formally. Indeed, this is
true if g ∈ H∞

0 (T ). Now we are ready to obtain an L2-theory for stochastic partial
differential equations.

Theorem 3.3 (L2-theory for a model equation). Let T ∈ (0,∞). Then for all
g ∈ L2(T ), there exists a unique solution

u ∈ L2

(
Ω,F ;C

(
[0, T ];L2(R

d)
))

∩H1
2 (T )

to equation (3.3) such that

sup
t∈[0,T ]

E∥u(t, ·)∥2L2(Rd) + E
∫ T

0

∥ux(t, ·)∥2L2(Rd)dt ≤ N

∫ T

0

∥g(t, ·)∥2L2(Rd)dt, (3.7)

where N depends only on p and T .

Proof. Part I (A priori estimate) Assume that there exists a solution

u ∈ L2

(
Ω,F ;C

(
[0, T ];L2(R

d)
))

∩H1
2 (T )
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to equation (3.3). Fix ϕ ∈ C∞
c (Rd) which is nonnegative and has a unit integral.

For each ε > 0 and x ∈ Rd, denote ϕε(x) = ε−dϕ(ε−1x), gε(s, x) = g(s, ·) ∗ φε(x)
and uε(t, x) = u(t, ·) ∗ ϕε(x). Then from (3.2),

uε(t, x) = uε
0(x) +

∫ t

0

∆uε(s, x)ds+

∫ t

0

gε(s, x)dws

for all (t, x) ∈ [0, T ]×Rd with probability one. By Ito’s formula,

|uε(t, x)|2 = |uε
0(x)|2 + 2

∫ t

0

uε(s, x)∆uε(s, x)ds

+ 2

∫ t

0

uε(s, x)gε(s, x)dws + 2

∫ t

0

|gε(s, x)|2ds

for all (t, x) ∈ [0, T ]×Rd with probability one. Taking the integration with respect
to x and applying Fubini’s theorem and the integration by parts, we have∫

Rd

|uε(t, x)|2dx+ 2

∫ t

0

∫
Rd

|uε
x(s, x)|2dxds

=

∫
Rd

|uε
0(x)|2dx+ 2

∫ t

0

∫
Rd

uε(s, x)gε(s, x)dxdws + 2

∫ t

0

∫
Rd

|gε(s, x)|2dxds

Taking the supt≤T , and the expectation and applying Burkholder-Davis-Gundy
inequality , we have

E sup
t≤T

∫
Rd

|uε(t, x)|2dx+ 2E
∫ T

0

∫
Rd

|uε
x(s, x)|2dsdx

≤
∫
Rd

|uε
0(x)|2dx+N(p)E

(∫ T

0

(∫
Rd

|uε(s, x)gε(s, x)|dx
)2

ds

)1/2

+ 2E
∫ T

0

∫
Rd

|gε(s, x)|dxds.

Note that for all δ > 0, applying Cauchy-Bunyakovsky-Schwarz inequality and
arithmetic-geometric mean inequality,

E

(∫ T

0

(∫
Rd

|uε(s, x)gε(s, x)|dx
)2

ds

)1/2

≤ E

(∫ T

0

∥uε(s, ·)∥2L2(Rd)∥g
ε(s, ·)∥2L2(Rd)ds

)1/2

≤ E

(
sup
t≤T

∥uε(t, ·)∥2L2(Rd)

∫ T

0

∥gε(s, ·)∥2L2(Rd)ds

)1/2

≤ δ

2
E sup

t≤T
∥uε(t, ·)∥2L2(Rd) +

δ−1

2
E
∫ T

0

∥gε(s, ·)∥2L2(Rd)ds
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Thus taking δ > 0 small enough, we have

E sup
t≤T

∫
Rd

|uε(t, x)|2dx+ 2E
∫ T

0

∫
Rd

|uε(s, x)|2dsdx

≤ N

(
E
∫
Rd

|uε
0(x)|2dx+ 2E

∫ T

0

∫
Rd

|gε(s, x)|dxds

)
.

Due to the linearity, for all n,m ∈ N,

E sup
t≤T

∫
Rd

|u1/n(t, x)− u1/m(t, x)|2dx+ 2E
∫ T

0

∫
Rd

|u1/n(s, x)− u1/m(s, x)|2dsdx

≤ N

(
E
∫
Rd

|u1/n
0 − u

1/m
0 (x)|2dx+ 2E

∫ T

0

∫
Rd

|g1/m − g1/m(s, x)|dxds

)
.

Thus the sequence u1/n is a Cauchy sequence in

L2

(
Ω,F ;C

(
[0, T ];L2(R

d)
))

∩H2
2 (T )

and taking n → ∞, we have (3.7) if a solution u exists. Uniqueness easily obtained
from the above estimate or it also can be obtained from Theorem 2.7.

If g ∈ H∞
0 (T ), then u defined by (3.4) is indeed a solution. In other words, one

can easily check that (3.6) holds if g ∈ H∞
0 (T ). For general g ∈ Lp(T ), we use an

approximation sequence gn ∈ H∞
0 (T ) so that (3.1) holds. □

Theorem 3.4 (L2-theory for general equations). Let T ∈ (0,∞). Assume that
a(t) = a(ω, t) is predictable and satisfies the ellipticity condition

κ|ξ|2 ≤ aij(t)ξiξj ≤ κ−1|ξ|2 ∀(ω, t, ξ) ∈ Ω× [0, T ]×Rd

with a positive constant κ > 0. Then for all u0 ∈ L2

(
Ω,F0;H

1
2 (R

d)
)
, f ∈ Lp(T ),

g ∈ H1
2(T ), there exists a unique solution

u ∈ L2

(
Ω,F ;C

(
[0, T ];L2(R

d)
))

∩H2
2 (T )

to equation (0.1) such that

sup
t∈[0,T ]

E∥u(t, ·)∥2H1
2 (R

d) + E
∫ T

0

∥uxx(t, ·)∥2L2(Rd)dt

≤ N

(
E∥u0∥2H1

2 (R
d) + E

∫ T

0

∥f(t, ·)∥2L2(Rd)dt+ E
∫ T

0

∥g(t, ·)∥2H1
2 (R

d)dt

)
,

where N depends only on p, κ, and T .

Proof. Since equation (0.1) is linear, we can obtain this theorem from Theorem 2.7
and Theorem 3.3. We left this to reader as an exercise. □
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