Glasnik Matematicki, Vol. 60, No. 1 (2025), 167-182. \( \)
DATKO TYPE CHARACTERIZATIONS FOR UNIFORM DICHOTOMY IN MEAN WITH GROWTH RATES FOR REVERSIBLE STOCHASTIC SKEW-EVOLUTION SEMIFLOWS IN BANACH SPACES
Tímea Melinda Személy Fülöp
Department of Mathematics, West University of Timişoara, Timişoara, România
e-mail:timea.moraru@e-uvt.ro
Abstract.
The main aim of this paper is to give characterizations of Datko type for the uniform dichotomy in mean with growth rates concept for reversible stochastic skew-evolution semiflows in Banach spaces. As particular cases, we obtain integral characterizations for uniform exponential dichotomy in mean. The obtained results are generalizations of well-known theorems about uniform \(h\)-dichotomy of variational systems in deterministic case.
2020 Mathematics Subject Classification. 93D20, 37L55, 34D05
Key words and phrases. Growth rate, reversible stochastic skew-evolution semiflows, uniform \( h \)-dichotomy in mean
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.60.1.10
References:
-
L. Arnold, Random dynamical systems, Springer-Verlag, Berlin, 1998.
MathSciNet
CrossRef
-
A. M. Ateiwi, About bounded solutions of linear stochastic Ito systems, Math. Notes. (Miskolc) 3 (2002), 3–12.
MathSciNet
-
L. Barreira and C. Valls, Polynomial growth rates, Nonlinear Anal. 71 (2009), 5208–5219.
MathSciNet
CrossRef
-
A. J. G. Bento and C.M. Silva, Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal. 257 (2009), 122–148.
MathSciNet
CrossRef
-
R. Boruga and M. Megan, On some characterizations for uniform dichotomy of evolution operators in Banach spaces, Mathematics, 10 (19) (2022), article 3704.
-
R. Boruga and M. Megan, Datko type characterizations for nonuniform polynomial dichotomy, Carpathian J. Math., 37 (2021), 45–51.
MathSciNet
-
T. Caraballo, J. Duan, K. Lu and B. Schmalfuß, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Stud. 10 (2010), 23–52.
MathSciNet
CrossRef
-
J. L. Daleckii and M. G. Krein, Stability of solutions of differential equations in Banach spaces, Amer. Math. Soc., Providence, 1974.
MathSciNet
-
H. Damak, On uniform \(h\)-stability of non-autonomous evolution equations in Banach spaces, Bull. Malays. Math. Sci. Soc. 44 (2021), 4367–4381.
MathSciNet
CrossRef
-
D. Dragičević, A version of a theorem of R. Datko for stability in average, Systems Control Lett. 96 (2016), 1–6.
MathSciNet
CrossRef
-
D. Dragičević, A. L. Sasu and B. Sasu, On polynomial dichotomies of discrete nonautonomous systems on the half-line, Carpathian J. Math. 38 (2022), 663–680.
MathSciNet
CrossRef
-
R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal. 3 (1972), 428–445.
MathSciNet
CrossRef
-
P. V. Hai, Polynomial behavior in mean of stochastic skew-evolution semiflows, arXiv:1902.04214 (2019).
-
N. Lupa and M. Megan, Exponential dichotomies of evolution operators in Banach spaces, Monatsh. Math. 174 (2014), 265–284.
MathSciNet
CrossRef
-
J. L. Massera and J. J. Schäffer, Linear differential equations and function spaces, Academic Press, New York-London, 1966.
MathSciNet
-
M. Megan, A L. Sasu and B. Sasu, Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows, Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 1–21.
MathSciNet
Link
-
M. Megan and C. Stoica, Exponential instability of skew-evolution semiflows in Banach spaces, Studia Univ. Babeş-Bolyai Math. 53 (2008), 17–24.
MathSciNet
-
M. Megan and C. Stoica, Concepts of dichotomy for skew-evolution semiflows in Banach spaces, Ann. Acad. Rom. Sci. Ser. Math. Appl. 2 (2010), 125–140.
MathSciNet
-
M. Megan, C. Stoica and L. Buliga, On asymptotic behaviors for linear skew-evolution semiflows in Banach spaces, Carpathian J. Math. 23 (2007), 117–125.
MathSciNet
-
C. L. Mihiţ and M. Megan, Integral characterizations for the \((h, k)\)-splitting of skew-evolution semiflows, Stud. Univ. Babeş-Bolyai Math. 62 (2017), 353–365.
MathSciNet
CrossRef
-
M. Pinto, Asymptotic integration of a system resulting from the perturbation of an \(h\)-system, J. Math. Anal. Appl. 131 (1988), 194–216.
MathSciNet
CrossRef
-
O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z. 32 (1930), 703–728.
MathSciNet
CrossRef
-
G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge, 1992.
MathSciNet
CrossRef
-
C. Stoica, An approach to evolution cocycles from a stochastic point of view, AIP Conf. Proc. 2425 (2022), 420029.
-
D. Stoica, Stochastic evolution cocycles, International Symposium Research and Education in Inovation Era, \(2^{nd}\) Edition, Arad, 20-21 November. 2065-2569 (2008), 147–154.
-
D. Stoica, Uniform exponential dichotomy of stochastic cocycles, Stochastic Process. Appl. 120 (2010), 1920–1928.
MathSciNet
CrossRef
-
T. M. Személy Fülöp, On uniform dichotomy in mean of stochastic skew-evolution semiflows in Banach spaces, An. Univ. Vest Timiş. Ser. Mat.-Inform. 59 (2023), 92–104.
MathSciNet
CrossRef
-
T. Yue, Datko type characterizations for exponential instability in average of cocycles, Hiroshima Math. J. 54 (2024), 219–232.
MathSciNet
CrossRef
-
T. Yue, On uniform instability in mean of stochastic skew-evolution semiflows, Glas. Mat. Ser. III. 59(79) (2024), 107–123.
MathSciNet
Glasnik Matematicki Home Page