Glasnik Matematicki, Vol. 60, No. 1 (2025), 167-182. \( \)

DATKO TYPE CHARACTERIZATIONS FOR UNIFORM DICHOTOMY IN MEAN WITH GROWTH RATES FOR REVERSIBLE STOCHASTIC SKEW-EVOLUTION SEMIFLOWS IN BANACH SPACES

Tímea Melinda Személy Fülöp

Department of Mathematics, West University of Timişoara, Timişoara, România
e-mail:timea.moraru@e-uvt.ro


Abstract.   The main aim of this paper is to give characterizations of Datko type for the uniform dichotomy in mean with growth rates concept for reversible stochastic skew-evolution semiflows in Banach spaces. As particular cases, we obtain integral characterizations for uniform exponential dichotomy in mean. The obtained results are generalizations of well-known theorems about uniform \(h\)-dichotomy of variational systems in deterministic case.

2020 Mathematics Subject Classification.   93D20, 37L55, 34D05

Key words and phrases.   Growth rate, reversible stochastic skew-evolution semiflows, uniform \( h \)-dichotomy in mean


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.60.1.10


References:

  1. L. Arnold, Random dynamical systems, Springer-Verlag, Berlin, 1998.
    MathSciNet    CrossRef

  2. A. M. Ateiwi, About bounded solutions of linear stochastic Ito systems, Math. Notes. (Miskolc) 3 (2002), 3–12.
    MathSciNet

  3. L. Barreira and C. Valls, Polynomial growth rates, Nonlinear Anal. 71 (2009), 5208–5219.
    MathSciNet    CrossRef

  4. A. J. G. Bento and C.M. Silva, Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal. 257 (2009), 122–148.
    MathSciNet    CrossRef

  5. R. Boruga and M. Megan, On some characterizations for uniform dichotomy of evolution operators in Banach spaces, Mathematics, 10 (19) (2022), article 3704.

  6. R. Boruga and M. Megan, Datko type characterizations for nonuniform polynomial dichotomy, Carpathian J. Math., 37 (2021), 45–51.
    MathSciNet

  7. T. Caraballo, J. Duan, K. Lu and B. Schmalfuß, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Stud. 10 (2010), 23–52.
    MathSciNet    CrossRef

  8. J. L. Daleckii and M. G. Krein, Stability of solutions of differential equations in Banach spaces, Amer. Math. Soc., Providence, 1974.
    MathSciNet

  9. H. Damak, On uniform \(h\)-stability of non-autonomous evolution equations in Banach spaces, Bull. Malays. Math. Sci. Soc. 44 (2021), 4367–4381.
    MathSciNet    CrossRef

  10. D. Dragičević, A version of a theorem of R. Datko for stability in average, Systems Control Lett. 96 (2016), 1–6.
    MathSciNet    CrossRef

  11. D. Dragičević, A. L. Sasu and B. Sasu, On polynomial dichotomies of discrete nonautonomous systems on the half-line, Carpathian J. Math. 38 (2022), 663–680.
    MathSciNet    CrossRef

  12. R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal. 3 (1972), 428–445.
    MathSciNet    CrossRef

  13. P. V. Hai, Polynomial behavior in mean of stochastic skew-evolution semiflows, arXiv:1902.04214 (2019).

  14. N. Lupa and M. Megan, Exponential dichotomies of evolution operators in Banach spaces, Monatsh. Math. 174 (2014), 265–284.
    MathSciNet    CrossRef

  15. J. L. Massera and J. J. Schäffer, Linear differential equations and function spaces, Academic Press, New York-London, 1966.
    MathSciNet

  16. M. Megan, A L. Sasu and B. Sasu, Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows, Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 1–21.
    MathSciNet    Link

  17. M. Megan and C. Stoica, Exponential instability of skew-evolution semiflows in Banach spaces, Studia Univ. Babeş-Bolyai Math. 53 (2008), 17–24.
    MathSciNet

  18. M. Megan and C. Stoica, Concepts of dichotomy for skew-evolution semiflows in Banach spaces, Ann. Acad. Rom. Sci. Ser. Math. Appl. 2 (2010), 125–140.
    MathSciNet

  19. M. Megan, C. Stoica and L. Buliga, On asymptotic behaviors for linear skew-evolution semiflows in Banach spaces, Carpathian J. Math. 23 (2007), 117–125.
    MathSciNet

  20. C. L. Mihiţ and M. Megan, Integral characterizations for the \((h, k)\)-splitting of skew-evolution semiflows, Stud. Univ. Babeş-Bolyai Math. 62 (2017), 353–365.
    MathSciNet    CrossRef

  21. M. Pinto, Asymptotic integration of a system resulting from the perturbation of an \(h\)-system, J. Math. Anal. Appl. 131 (1988), 194–216.
    MathSciNet    CrossRef

  22. O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z. 32 (1930), 703–728.
    MathSciNet    CrossRef

  23. G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge, 1992.
    MathSciNet    CrossRef

  24. C. Stoica, An approach to evolution cocycles from a stochastic point of view, AIP Conf. Proc. 2425 (2022), 420029.

  25. D. Stoica, Stochastic evolution cocycles, International Symposium Research and Education in Inovation Era, \(2^{nd}\) Edition, Arad, 20-21 November. 2065-2569 (2008), 147–154.

  26. D. Stoica, Uniform exponential dichotomy of stochastic cocycles, Stochastic Process. Appl. 120 (2010), 1920–1928.
    MathSciNet    CrossRef

  27. T. M. Személy Fülöp, On uniform dichotomy in mean of stochastic skew-evolution semiflows in Banach spaces, An. Univ. Vest Timiş. Ser. Mat.-Inform. 59 (2023), 92–104.
    MathSciNet    CrossRef

  28. T. Yue, Datko type characterizations for exponential instability in average of cocycles, Hiroshima Math. J. 54 (2024), 219–232.
    MathSciNet    CrossRef

  29. T. Yue, On uniform instability in mean of stochastic skew-evolution semiflows, Glas. Mat. Ser. III. 59(79) (2024), 107–123.
    MathSciNet

Glasnik Matematicki Home Page