Glasnik Matematicki, Vol. 60, No. 1 (2025), 147-165. \( \)
SPHERICAL GENERALIZED HELICES IN 3-DIMENSIONAL LORENTZ-MINKOWSKI SPACE
Ivana Filipan, Željka Milin Šipuš and Ljiljana Primorac Gajčić
Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:ivana.filipan@rgn.unizg.hr
Department of mathematics, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:milin@math.hr
School of Applied Mathematics and Informatics, University of Osijek, 31 000 Osijek, Croatia
e-mail:ljiljana.primorac@mathos.hr
Abstract.
In this paper we analyze generalized helices lying on the non-degenerated quadric surfaces in 3-dimensional Lorentz-Minkowski space, i.e. on a pseudosphere and in a
hyperbolic plane. We provide their characterizations in terms of curvature and torsion and analyze their projections onto planes orthogonal to their axes. We show that these projections appear as Euclidean or Lorentzian cycloidal curves, so we also introduce natural equations and parametrizations of Lorentzian cycloidal curves.
2020 Mathematics Subject Classification. 53A35, 53B30
Key words and phrases. Lorentz-Minkowski space, generalized helix, spherical curve, cycloidal curve.
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.60.1.09
References:
-
A. T. Ali and R. López, Slant helices in Minkowski space \(\mathbf{E}^3_1\), J. Korean Math. Soc. 48 (2011), 159–167.
MathSciNet
CrossRef
-
I. Bruce, Some properties of cycloid trajectories, Amer. J. Phys. 65 (1997), 1164-–1167.
MathSciNet
CrossRef
-
I. T. Couto and A. Lymberopoulos, Introduction to Lorentz geometry: curves and surfaces, Taylor & Francis Group, New York, 2021.
MathSciNet
CrossRef
-
K. L. Duggal and D. H. Jin, Null curves and hypersurfaces of semi-Riemannian manifolds, World Scientific, Hackensack, 2007.
MathSciNet
CrossRef
-
F. Fabricius-Bjerre, Über zykloidale Kurven in der Ebene und im Raum, Danske Vid. Selsk. Mat. Fys. Medd. 26 (1951), 75pp.
MathSciNet
-
I. Filipan, Ž. Milin Šipuš, Lj. Primorac Gajčić, Curves in lightlike planes in three-dimensional Lorentz-Minkowski space, Mathematics 11 (2023), 4880.
CrossRef
-
A. Gray, Modern differential geometry of curves and surfaces, CRC Press, Boca Raton, 1993.
MathSciNet
-
D. J. Griffiths, Introduction to electrodynamics, Prentice Hall, Upper Saddle River, New York, 1999.
-
J. Inoguchi and S. Lee, Null curves in Minkowski 3-space, Int. Electron. J. Geom. 1 (2008), 40–83.
MathSciNet
-
D. C. Johnston, Cycloidal paths in physics as superpositions of translational and rotational motions, Am. J. Phys. 87 (2019), 802–814.
CrossRef
-
L. Kula and Y. Yayli, On slant helix and its spherical indicatrix, Appl. Math. Comput. 169 (2005), 600–607.
MathSciNet
CrossRef
-
X. Li and Y. Zhang, Meshing characteristic analysis of a cycloid drive with epitrochoid profile and its conjugate envelope, Forsch Ingenieurwes 84 (2020), 333–343.
CrossRef
-
R. López, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom. 7 (2014), 44–107.
MathSciNet
CrossRef
-
Ž. Milin Šipuš, Lj. Primorac Gajčić and I. Protrka, Generalized helices on a lightlike cone in 3-dimensional Lorentz-Minkowski space, KoG. 24 (2020), 41–46.
CrossRef
-
E. Nešović, M. Petrović-Torgašev and L. Verstraelen, Curves in Loretzian spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 8 (2005), 685–696.
MathSciNet
-
U. Pekmen and S. Pasali, Some characterizations of the Lorentzian spherical space-like curves, Math. Morav. 3 (1999), 33–337.
-
M. Petrović-Torgašev and E. Šućurović, Some characterizations of the Lorentzian spherical spacelike with the timelike and the null principal normals, Math. Morav. 4 (2000), 83–92.
CrossRef
-
M. Petrović-Torgašev and E. Šućurović, Some characterizations of the Lorentzian spherical timelike and null curves, Mat. Vesnik 53 (2001), 21–27.
MathSciNet
-
M. Petrović-Torgašev and E. Šućurović, Some characterizations of the spacelike, the timelike and the null curves on the pseudohyperbolic space \(H_0\) in \(\mathbf{E}^3_1\), Kragujevac J. Math. 22 (2000), 71–82.
MathSciNet
-
A. Ravankar, A. A. Ravankar, Y. Kobayashi, Y. Hoshino and C. C. Peng, Path smoothing techniques in robot navigation: state-of-the-art, current and future challenges, Sensors 18 (2019), 3170.
CrossRef
Glasnik Matematicki Home Page