Glasnik Matematicki, Vol. 60, No. 1 (2025), 127-145. \( \)
THE LIMITING CASE IN THE SOBOLEV EMBEDDING THEOREM AND RADIAL-SYMMETRIC FUNCTIONS
Peter Grandits
Institute for Mathematical Methods in Economics, TU Wien, Wiedner HauptstraĂźe 8-10, 1040 Wien, Austria
e-mail:pgrand@fam.tuwien.ac.at
Abstract.
Denoting by
\(B_{r_0}\) the open ball with radius \(r_0\), centered at the origin,
we consider the so called “limiting case” in the Sobolev embedding theorem,
\(
W^{j+m,p}(B_{r_0})\to W^{j,q}(B_{r_0}),
\)
namely the case \(mp=n\), \(1\lt p\leq q\), where the embedding for \(q=\infty\) does not hold.
We show that in the case \(j=1\), contrary to the case \(j=0\), radial-symmetric counterexamples,
that is radial-symmetric functions in \(W^{m+1,p}(B_{r_0}) \setminus W^{1,\infty}(B_{r_0})\)
do not exist, if one assumes \(C^2\)-regularity away from the origin. Moreover, we characterize in dimension \(n=2\) the set
\(W^{m+1,p}(B_{r_0}) \setminus W^{1,\infty}(B_{r_0})\), i.e.
\(W^{2,2}(B_{r_0}) \setminus W^{1,\infty}(B_{r_0})\)
within a reasonable large class of functions.
2020 Mathematics Subject Classification. 46E35
Key words and phrases. Sobolev embedding theorem, limiting case, radial-symmetric functions, regular variation
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.60.1.08
References:
-
R. A. Adams and J. J. F Fournier, Sobolev spaces, Second edition, Elsevier/Academic Press, Amsterdam, 2003.
MathSciNet
-
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, U. S. Government Printing Office, Washington, 1964.
MathSciNet
-
N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular variation, Cambridge University Press, Cambridge, 1987.
MathSciNet
CrossRef
-
H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations 5 (1980), 773–789.
MathSciNet
CrossRef
-
E. DiBenedetto, Partial differential equations, Birkhäuser, Boston, 1995.
MathSciNet
CrossRef
-
Maplesoft, Version 2022.
-
J. Maly and L. Pick, An elementary proof of sharp Sobolev embeddings, Proc. Amer. Math. Soc. 130 (2002), 555–563.
MathSciNet
CrossRef
-
W. Rudin, Functional analysis, McGraw-Hill, New York, 1991.
MathSciNet
-
N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483.
MathSciNet
CrossRef
-
W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989.
MathSciNet
CrossRef
Glasnik Matematicki Home Page