Glasnik Matematicki, Vol. 60, No. 1 (2025), 127-145. \( \)

THE LIMITING CASE IN THE SOBOLEV EMBEDDING THEOREM AND RADIAL-SYMMETRIC FUNCTIONS

Peter Grandits

Institute for Mathematical Methods in Economics, TU Wien, Wiedner HauptstraĂźe 8-10, 1040 Wien, Austria
e-mail:pgrand@fam.tuwien.ac.at


Abstract.   Denoting by \(B_{r_0}\) the open ball with radius \(r_0\), centered at the origin, we consider the so called “limiting case” in the Sobolev embedding theorem, \( W^{j+m,p}(B_{r_0})\to W^{j,q}(B_{r_0}), \) namely the case \(mp=n\), \(1\lt p\leq q\), where the embedding for \(q=\infty\) does not hold. We show that in the case \(j=1\), contrary to the case \(j=0\), radial-symmetric counterexamples, that is radial-symmetric functions in \(W^{m+1,p}(B_{r_0}) \setminus W^{1,\infty}(B_{r_0})\) do not exist, if one assumes \(C^2\)-regularity away from the origin. Moreover, we characterize in dimension \(n=2\) the set \(W^{m+1,p}(B_{r_0}) \setminus W^{1,\infty}(B_{r_0})\), i.e. \(W^{2,2}(B_{r_0}) \setminus W^{1,\infty}(B_{r_0})\) within a reasonable large class of functions.

2020 Mathematics Subject Classification.   46E35

Key words and phrases.   Sobolev embedding theorem, limiting case, radial-symmetric functions, regular variation


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.60.1.08


References:

  1. R. A. Adams and J. J. F Fournier, Sobolev spaces, Second edition, Elsevier/Academic Press, Amsterdam, 2003.
    MathSciNet

  2. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, U. S. Government Printing Office, Washington, 1964.
    MathSciNet

  3. N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular variation, Cambridge University Press, Cambridge, 1987.
    MathSciNet    CrossRef

  4. H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations 5 (1980), 773–789.
    MathSciNet    CrossRef

  5. E. DiBenedetto, Partial differential equations, Birkhäuser, Boston, 1995.
    MathSciNet    CrossRef

  6. Maplesoft, Version 2022.

  7. J. Maly and L. Pick, An elementary proof of sharp Sobolev embeddings, Proc. Amer. Math. Soc. 130 (2002), 555–563.
    MathSciNet    CrossRef

  8. W. Rudin, Functional analysis, McGraw-Hill, New York, 1991.
    MathSciNet

  9. N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483.
    MathSciNet    CrossRef

  10. W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page