Glasnik Matematicki, Vol. 60, No. 1 (2025), 107-125. \( \)

THE LAPLACE TRANSFORM ON THE CONES OF LATTICE-STRUCTURED BANACH SPACES

Diana Hunjak

Faculty of Transport and Traffic Sciences, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:diana.hunjak@fpz.unizg.hr


Abstract.   Characterizations of positive definite functions defined on convex cones using the Laplace transform of a measure are commonly referred to as Nussbaum-type theorems. This paper establishes a Nussbaum-type theorem in the context where the domain of a \(B(\mathcal{H})\)-valued positive definite function is a positive cone within a Banach space that is also a vector lattice, but not necessarily a Banach lattice. Such spaces include examples like Sobolev spaces \(W^{1,p}(\Omega)\). Utilizing the Berg-Maserick theorem, we prove that the unique representing measure is Radon measure concentrated on a subset of the topological dual.

2020 Mathematics Subject Classification.   43A35, 44A10, 46A40

Key words and phrases.   Positive definite function, integral representation, Laplace transform, \(\alpha\)-boundedness, Banach lattice.


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.60.1.07


References:

  1. R. A. Adams, Sobolev spaces, Academic Press, New York-London, 1975.
    MathSciNet

  2. C. D. Aliprantis and K. C. Border, Infinite dimensional analysis, Springer, Berlin, 2006.
    MathSciNet

  3. C. D. Aliprantis and R. Tourky, Cones and duality, American Mathematical Society, Providence, 2007.
    MathSciNet    CrossRef

  4. C. Berg, J. P. R. Christensen and P. Ressel, Harmonic analysis on semigroups, Springer-Verlag, New York, 1984.
    MathSciNet    CrossRef

  5. C. Berg and P.H. Maserick, Exponentially bounded positive definite functions, Illinois J. Math. 28 (1984), 162–179.
    MathSciNet    Link

  6. S. Bochner, Harmonic analysis an the theory of probability, University of California Press, Berkeley-Los Angeles, 1955.
    MathSciNet

  7. E. Dettweiler, The Laplace transform of measures on the cone of a vector lattice, Math. Scand. 45 (1979), 311–333.
    MathSciNet    CrossRef

  8. P. J. Fitzsimmons Construction and regularity of measure-valued branching processes, Israel J. Math. 64 (1988), 337–361.
    MathSciNet    CrossRef

  9. H. E. Gessesse and V. G. Troitsky, Invariant subspaces of positive quasinilpotent operators on ordered Banach spaces, Positivity 12(2) (2008), 193–208.
    MathSciNet    CrossRef

  10. H. Glöckner, Positive definite functions on infinite-dimensional convex cones, Mem. Amer. Math. Soc. 166 (2003), no. 789.
    MathSciNet    CrossRef

  11. J. Hoffmann-Jørgensen and P. Ressel, On completely monotone functions on \(C_+(X)\), Math. Scand. 40 (1977), 79–93.
    MathSciNet    CrossRef

  12. K.-H. Neeb, Holomorphy and convexity in Lie theory, Walter de Gruyter & Co., Berlin, 2000.
    MathSciNet    CrossRef

  13. K.-H. Neeb, Operator-valued positive definite kernels on tubes, Monatsh. Math. 126 (1998), 125–160.
    MathSciNet    CrossRef

  14. K.-H. Neeb, Representations of involutive semigroups, Semigroup Forum 48 (1994), 197–218.
    MathSciNet    CrossRef

  15. A. E. Nussbaum, The Hausdorff-Bernstein-Widder theorem for semi-groups in locally compact Abelian groups, Duke Math. J. 22 (1955), 573–582.
    MathSciNet    Link

  16. P. Ressel and W. J. Ricker, Vector-valued positive definite functions, the Berg-Maserick theorem, and applications, Math. Scand. 90 (2002), 289–319.
    MathSciNet    CrossRef

  17. H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, New York-Heidelberg, 1974.
    MathSciNet

  18. H. Šikić, Nonlinear perturbations of positive semigroups, Semigroup Forum 48 (1994), 273–302.
    MathSciNet    CrossRef

  19. H. Šikić, Positive definite functions on separable function spaces, Glas. Mat. Ser. III 31(51) (1996), 151–158.
    MathSciNet

Glasnik Matematicki Home Page