Glasnik Matematicki, Vol. 60, No. 1 (2025), 107-125. \( \)
THE LAPLACE TRANSFORM ON THE CONES OF LATTICE-STRUCTURED BANACH SPACES
Diana Hunjak
Faculty of Transport and Traffic Sciences, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:diana.hunjak@fpz.unizg.hr
Abstract.
Characterizations of positive definite functions defined on convex cones using the Laplace transform of a measure are commonly referred to as Nussbaum-type theorems. This paper establishes a Nussbaum-type theorem in the context where the domain of a \(B(\mathcal{H})\)-valued positive definite function is a positive cone within a Banach space that is also a vector lattice, but not necessarily a Banach lattice. Such spaces include examples like Sobolev spaces \(W^{1,p}(\Omega)\). Utilizing the Berg-Maserick theorem, we prove that the unique representing measure is Radon measure concentrated on a subset of the topological dual.
2020 Mathematics Subject Classification. 43A35, 44A10, 46A40
Key words and phrases. Positive definite function, integral representation, Laplace transform, \(\alpha\)-boundedness, Banach lattice.
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.60.1.07
References:
-
R. A. Adams, Sobolev spaces, Academic Press, New York-London, 1975.
MathSciNet
-
C. D. Aliprantis and K. C. Border, Infinite dimensional analysis, Springer, Berlin, 2006.
MathSciNet
-
C. D. Aliprantis and R. Tourky, Cones and duality, American Mathematical Society, Providence, 2007.
MathSciNet
CrossRef
-
C. Berg, J. P. R. Christensen and P. Ressel, Harmonic analysis on semigroups, Springer-Verlag, New York, 1984.
MathSciNet
CrossRef
-
C. Berg and P.H. Maserick, Exponentially bounded positive definite functions, Illinois J. Math. 28 (1984), 162–179.
MathSciNet
Link
-
S. Bochner, Harmonic analysis an the theory of probability, University of California Press, Berkeley-Los Angeles, 1955.
MathSciNet
-
E. Dettweiler, The Laplace transform of measures on the cone of a vector lattice, Math. Scand. 45 (1979), 311–333.
MathSciNet
CrossRef
-
P. J. Fitzsimmons Construction and regularity of measure-valued branching processes, Israel J. Math. 64 (1988), 337–361.
MathSciNet
CrossRef
-
H. E. Gessesse and V. G. Troitsky, Invariant subspaces of positive quasinilpotent operators on ordered Banach spaces, Positivity 12(2) (2008), 193–208.
MathSciNet
CrossRef
-
H. Glöckner, Positive definite functions on infinite-dimensional convex cones, Mem. Amer. Math. Soc. 166 (2003), no. 789.
MathSciNet
CrossRef
-
J. Hoffmann-Jørgensen and P. Ressel, On completely monotone functions on \(C_+(X)\), Math. Scand. 40 (1977), 79–93.
MathSciNet
CrossRef
-
K.-H. Neeb, Holomorphy and convexity in Lie theory, Walter de Gruyter & Co., Berlin, 2000.
MathSciNet
CrossRef
-
K.-H. Neeb, Operator-valued positive definite kernels on tubes, Monatsh. Math. 126 (1998), 125–160.
MathSciNet
CrossRef
-
K.-H. Neeb, Representations of involutive semigroups, Semigroup Forum 48 (1994), 197–218.
MathSciNet
CrossRef
-
A. E. Nussbaum, The Hausdorff-Bernstein-Widder theorem for semi-groups in locally compact Abelian groups, Duke Math. J. 22 (1955), 573–582.
MathSciNet
Link
-
P. Ressel and W. J. Ricker, Vector-valued positive definite functions, the Berg-Maserick theorem, and applications, Math. Scand. 90 (2002), 289–319.
MathSciNet
CrossRef
-
H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, New York-Heidelberg, 1974.
MathSciNet
-
H. Šikić, Nonlinear perturbations of positive semigroups, Semigroup Forum 48 (1994), 273–302.
MathSciNet
CrossRef
-
H. Šikić, Positive definite functions on separable function spaces, Glas. Mat. Ser. III 31(51) (1996), 151–158.
MathSciNet
Glasnik Matematicki Home Page