Glasnik Matematicki, Vol. 60, No. 1 (2025), 89-106. \( \)

SUMMABILITY OF SOLUTIONS TO SOME DEGENERATE ELLIPTIC EQUATIONS

Aiping Zhang, Pengzhen Tian and Hongya Gao

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China
e-mail:zhangaiping015@163.com

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China
e-mail:pengzhentian0415@163.com

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China
e-mail:ghy@hbu.cn


Abstract.   This paper deals with boundary value problems for elliptic equations with degenerate coercivity whose prototype is \[ \left\{\begin{array}{ll} -\mbox {div} \left( a(x)|\nabla u (x)|^{p-2} \nabla u(x)\right) = f(x), & x \in \Omega, \\ u(x) = 0, & x \in {\partial \Omega}, \end{array}\right. \] with \(0\lt a(x) \le \beta\). Some summability properties of solutions are given.

2020 Mathematics Subject Classification.   35J70

Key words and phrases.   Elliptic equation, degenerate coercivity, weak solution, entropy solution.


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.60.1.06


References:

  1. P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, An \(L^1\)-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 241–273.
    MathSciNet    Link

  2. L. Boccardo, Marcinkiewicz estimates for solutions of some elliptic problems with nonregular data, Ann. Mat. Pura Appl. (4) 188 (2009), 591–601.
    MathSciNet    CrossRef

  3. L. Boccardo and G. Croce, Elliptic partial differential equations, De Gruyter, Berlin, 2014.
    MathSciNet

  4. L. Boccardo, A. Dall'Aglio and L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 51–81.
    MathSciNet

  5. P. Bella and M. Schäffner, Local boundedness and Harnack inequality for solutions of linear nonuniformly elliptic equations, Comm. Pure Appl. Math. 74 (2021), 453–477.
    MathSciNet    CrossRef

  6. P. Bella and M. Schäffner, Local boundedness for \(p\)-Laplacion with degenerate coefficients, Math. Eng 5 (2023), paper 81.
    MathSciNet

  7. G. R. Cirmi and M. M. Porzio, \(L^{\infty}\)-solutions for some nonlinear degenerate elliptic and parabolic equations, Ann. Mat. Pura Appl. (4) 169 (1995), 67–86.
    MathSciNet    CrossRef

  8. L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, 1992.
    MathSciNet

  9. H. Y. Gao, H. Deng, M. M. Huang and W. Ren, Generalizations of Stampacchia lemma and applications to quasilinear elliptic systems, Nonlinear Anal. 208 (2021), paper 112297.
    MathSciNet    CrossRef

  10. H. Y. Gao, M. M. Huang and W. Ren, Regularity for entropy solutions to degenerate elliptic equations, J. Math. Anal. Appl 491 (2020), paper 124251.
    MathSciNet    CrossRef

  11. H. Y. Gao, F. Leonetti and L. H. Wang, Remarks on Stampacchia lemma, J. Math. Anal. Appl 458 (2018), 112–122.
    MathSciNet    CrossRef

  12. H. Y. Gao, A. P. Zhang and M. M. Huang, Regularity for entropy solutions to degenerate elliptic equations with a convection term, Rocky Mountain J. Math. 53 (2023), 1469–1487.
    MathSciNet    CrossRef

  13. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1998.
    MathSciNet

  14. J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Univ. Press, Oxford, 1993.
    MathSciNet

  15. T. Kilpeläinen and G. Li, Estimates for \(p\)-Poisson equations, Differential Integral Equations 13 (2000), 791–800.
    MathSciNet

  16. O. A. Ladyženskaya and N. N.Ural'ceva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968.
    MathSciNet

  17. M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate-elliptic operators, Ann. Mat. Pura Appl. (4) 80 (1968), 1–122.
    MathSciNet    CrossRef

  18. N S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27 (1973), 265–308.
    MathSciNet

  19. G. Stampacchia, Équations elliptiques du second ordre á cofficients discontinus, Les Presses de l'Université de Montréal, Montreal, 1966.
    MathSciNet

Glasnik Matematicki Home Page