Glasnik Matematicki, Vol. 60, No. 1 (2025), 89-106. \( \)
SUMMABILITY OF SOLUTIONS TO SOME DEGENERATE ELLIPTIC EQUATIONS
Aiping Zhang, Pengzhen Tian and Hongya Gao
College of Mathematics and Information Science, Hebei University, Baoding, 071002, China
e-mail:zhangaiping015@163.com
College of Mathematics and Information Science, Hebei University, Baoding, 071002, China
e-mail:pengzhentian0415@163.com
College of Mathematics and Information Science, Hebei University, Baoding, 071002, China
e-mail:ghy@hbu.cn
Abstract.
This paper deals with boundary value problems for elliptic equations with degenerate coercivity whose prototype is
\[
\left\{\begin{array}{ll}
-\mbox {div} \left( a(x)|\nabla u (x)|^{p-2} \nabla u(x)\right) = f(x), & x \in \Omega, \\
u(x) = 0, & x \in {\partial \Omega},
\end{array}\right.
\]
with \(0\lt a(x) \le \beta\). Some summability properties of solutions are given.
2020 Mathematics Subject Classification. 35J70
Key words and phrases. Elliptic equation, degenerate coercivity, weak solution, entropy solution.
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.60.1.06
References:
-
P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, An \(L^1\)-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 241–273.
MathSciNet
Link
-
L. Boccardo, Marcinkiewicz estimates for solutions of some elliptic problems with nonregular data, Ann. Mat. Pura Appl. (4) 188 (2009), 591–601.
MathSciNet
CrossRef
-
L. Boccardo and G. Croce, Elliptic partial differential equations, De Gruyter, Berlin, 2014.
MathSciNet
-
L. Boccardo, A. Dall'Aglio and L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 51–81.
MathSciNet
-
P. Bella and M. Schäffner, Local boundedness and Harnack inequality for solutions of linear nonuniformly elliptic equations, Comm. Pure Appl. Math. 74 (2021), 453–477.
MathSciNet
CrossRef
-
P. Bella and M. Schäffner, Local boundedness for \(p\)-Laplacion with degenerate coefficients, Math. Eng 5 (2023), paper 81.
MathSciNet
-
G. R. Cirmi and M. M. Porzio, \(L^{\infty}\)-solutions for some nonlinear degenerate elliptic and parabolic equations, Ann. Mat. Pura Appl. (4) 169 (1995), 67–86.
MathSciNet
CrossRef
-
L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, 1992.
MathSciNet
-
H. Y. Gao, H. Deng, M. M. Huang and W. Ren, Generalizations of Stampacchia lemma and applications to quasilinear elliptic systems, Nonlinear Anal. 208 (2021), paper 112297.
MathSciNet
CrossRef
-
H. Y. Gao, M. M. Huang and W. Ren, Regularity for entropy solutions to degenerate elliptic equations, J. Math. Anal. Appl 491 (2020), paper 124251.
MathSciNet
CrossRef
-
H. Y. Gao, F. Leonetti and L. H. Wang, Remarks on Stampacchia lemma, J. Math. Anal. Appl 458 (2018), 112–122.
MathSciNet
CrossRef
-
H. Y. Gao, A. P. Zhang and M. M. Huang, Regularity for entropy solutions to degenerate elliptic equations with a convection term, Rocky Mountain J. Math. 53 (2023), 1469–1487.
MathSciNet
CrossRef
-
D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1998.
MathSciNet
-
J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Univ. Press, Oxford, 1993.
MathSciNet
-
T. Kilpeläinen and G. Li, Estimates for \(p\)-Poisson equations, Differential Integral Equations 13 (2000), 791–800.
MathSciNet
-
O. A. Ladyženskaya and N. N.Ural'ceva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968.
MathSciNet
-
M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate-elliptic operators, Ann. Mat. Pura Appl. (4) 80 (1968), 1–122.
MathSciNet
CrossRef
-
N S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27 (1973), 265–308.
MathSciNet
-
G. Stampacchia, Équations elliptiques du second ordre á cofficients discontinus, Les Presses de l'Université de Montréal, Montreal, 1966.
MathSciNet
Glasnik Matematicki Home Page