Glasnik Matematicki, Vol. 60, No. 1 (2025), 59-72. \( \)

PARTITIONS INTO TRIPLES WITH EQUAL PRODUCTS AND FAMILIES OF ELLIPTIC CURVES

Ahmed El Amine Youmbai, Arman Shamsi Zargar and Maksym Voznyy

LABTHOP Laboratory, Mathematics Department, Faculty of Exact Sciences, University of El Oued, PO Box 789, 39000 Echott El Oued, Algeria
e-mail:youmbai-amine@univ-eloued.dz

Department of Mathematics and Applications, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
e-mail:zargar@uma.ac.ir

Department of Technology, Stephen Leacock CI, Toronto District School Board, Toronto, Canada
e-mail:maksym.voznyy@tdsb.on.ca


Abstract.   Let \({\mathcal{S}_{\ell}}(M,N)\) denote a set of \(\ell\) (distinct) triples of positive integers having the same sum \(M\) and the same product \(N\). For each \(2\leq\ell\leq 4\) we establish a connection between a subset of \({\mathcal{S}_{\ell}}(M,N)\) with (integral) parametric elements and a family of elliptic curves. When \(\ell=2\) and \(3\), we use certain known subsets of \({\mathcal{S}_{\ell}}(M,N)\) with parametric elements and respectively find families of elliptic curves of generic rank \(\geq 5\) and \(\geq 6\), while for \(\ell=4\) we first obtain a subset of \({\mathcal{S}_{\ell}}(M,N)\) with parametric elements, then construct a family of elliptic curves of generic rank \(\geq 8\). Finally, we perform a computer search within these families to find specific curves with rank \(\geq 11\) and in particular we found two curves of rank \(14\).

2020 Mathematics Subject Classification.   14H52, 11D25, 11D09, 05A17

Key words and phrases.   Triples of integers, equal sum of integers, equal products, Diophantine equation, partition, parametric solution, elliptic curve


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.60.1.04


References:

  1. J. Aguirre and J. C. Peral, Sums of biquadrates and elliptic curves, Glas. Mat. Ser. III 48(68) (2013), 49–58.
    MathSciNet    CrossRef

  2. U. Bini, Sopra alcune proprieta delle forme binarie cubiche, Interméd. Math. 16 (1909), 41–43.

  3. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235–265.
    MathSciNet    CrossRef

  4. B. Cha, A. Claman, J. Harrington, Z. Liu, B. Maldonado, A. Miller, A. Palma, T. W. H. Wong and H. Yi, An investigation on partitions with equal products, Int. J. Number Theory 15 (2019), 1731–1744.
    MathSciNet    CrossRef

  5. A. Choudhry, Symmetric Diophantine systems, Acta Arith. 59 (1991), 291–307.
    MathSciNet    CrossRef

  6. A. Choudhry, On triads of squares with equal sums and equal products, Ganita 49 (1998), 101–106.
    MathSciNet

  7. A. Choudhry, Triads of cubes with equal sums and equal products, Math. Student 70 (2001), 137–143.
    MathSciNet

  8. A. Choudhry, Triads of biquadrates with equal sums and equal products, Math. Student 70 (2001), 149–152.
    MathSciNet

  9. A. Choudhry, Some Diophantine problems concerning equal sums of integers and their cubes, Hardy–Ramanujan J. 33 (2010), 59–70.
    MathSciNet    CrossRef

  10. A. Choudhry, Triads of integers with equal sums and equal products, Math. Student 81 (2012), 185–188.
    MathSciNet

  11. A. Choudhry, Equal sums of like powers and equal products of integers, Rocky Mountain J. Math. 43 (2013), 763–792.
    MathSciNet    CrossRef

  12. A. Choudhry, Equal sums of like powers with minimum number of terms, Integers 16 (2016), Paper No. A77, 11.
    MathSciNet    Link

  13. A. Choudhry, A diophantine problem on biquadrates revisited, Math. Student 87 (2018), 129–132.
    MathSciNet

  14. A. Choudhry, Symmetric diophantine systems and families of elliptic curves of high rank, Rocky Mountain J. Math. 49 (2019), 1419–1447.
    MathSciNet    CrossRef

  15. A. Choudhry, New solutions of the Tarry–Escott problem of degrees \(2\), \(3\) and \(5\), J. Integer Seq. 24 (2021), Art. 21.8.1.
    MathSciNet

  16. A. Choudhry, Ideal solutions of the Tarry–Escott problem of degree seven, Integers 22 (2022), Paper No. A115.
    MathSciNet

  17. A. Choudhry and A. Shamsi Zargar, An octic diophantine equation and related families of elliptic curves, Int. J. Number Theory 19 (2023), 1967–1976.
    MathSciNet    CrossRef

  18. A. Choudhry and J. Wróblewski, Triads of integers with equal sums of squares and equal products and a related multigrade chain, Acta Arith. 178 (2017), 87-100.
    MathSciNet    CrossRef

  19. L. E. Dickson, History of the theory of numbers II, Chelsea Publishing Company, New York, 1920.

  20. A. Dujella, An example of elliptic curve over \(\mathbf{Q}\) with rank equal to \(15\), Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), 109–111.
    MathSciNet    Link

  21. A. Dujella, Diophantine \(m\)-tuples and elliptic curves, Springer, Cham, 2024.
    MathSciNet    CrossRef

  22. A. Gloden, Mehrgradige Gleichungen, Noordhoff, Groningen, 1944.
    MathSciNet

  23. R. K. Guy, Unsolved problems in number theory, Springer-Verlag, New York, 1994.
    MathSciNet    CrossRef

  24. J. B. Kelly, Partitions with equal products (II), Proc. Amer. Math. Soc. 107 (1989), 887–893.
    MathSciNet    CrossRef

  25. J. B. Kelly, Two equal sums of three squares with equal products, Amer. Math. Monthly 98 (1991), 527–529.
    MathSciNet    CrossRef

  26. J. G. Mauldon, Problem E 2872, Amer. Math. Monthly 88 (1981), 148.

  27. J. F. Mestre, Construction d'une courbe elliptique de rang \(\geq 12\), C. R. Acad. Sci. Paris Sér. I. 295 (1982), 643–644.
    MathSciNet

  28. A. Moessner, Verschiedene Diophantische Probleme und numerische Identitäten, Tohoku Math. J. 47 (1940), 188–200.
    MathSciNet

  29. L. J. Mordell, Diophantine equations, Academic Press, London-New York, 1969.
    MathSciNet    CrossRef

  30. K. Nagao, An example of elliptic curve over \(Q\) with rank \(\geq 20\), Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 291–293.
    MathSciNet    CrossRef

  31. M. Sadek and N. El-Sissi, Partitions with equal products and elliptic curves, Osaka J. Math. 52 (2015), 515–525.
    MathSciNet    Link

  32. Sage Developers, SageMath, Sage mathematics software system (ver. 9.3), 2021, available at

  33. A. Schinzel, Triples of positive integers with the same sum and the same product, Serdica Math. J. 22 (1996), 587–588.
    MathSciNet

  34. J. H. Silverman, The arithmetic of elliptic curves, Springer, Dordrecht, 2009.
    MathSciNet    CrossRef

  35. D. Zeitlin, Abstracts presented to American Mathematical Society57 (1988), #843-11-50.

  36. Y. Zhang and T. Cai, \(n\)-tuples of positive integers with the same sum and the same product, Math. Comp. 82 (2013), 617–623.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page