Glasnik Matematicki, Vol. 60, No. 1 (2025), 39-58. \( \)

ON THE EULER-STIELTJES CONSTANTS FOR FUNCTIONS FROM THE GENERALIZED SELBERG CLASS

Almasa Odžak and Medina Zubača

Department of Mathematics and Computer Sciences, University of Sarajevo, Zmaja od Bosne 35, 71 000 Sarajevo, Bosnia and Herzegovina
e-mail:almasa.odzak@pmf.unsa.ba

Department of Mathematics and Computer Sciences, University of Sarajevo, Zmaja od Bosne 35, 71 000 Sarajevo, Bosnia and Herzegovina
e-mail:medina.zubaca@pmf.unsa.ba


Abstract.   The class \(\mathcal{S}^{\sharp \flat }(\sigma_0, \sigma_1)\) is a very broad class of \(L\) functions that contains the Selberg class, the class of all automorphic \(L\) functions and the Rankin–Selberg \(L\) functions, as well as products of suitable shifts of those functions. In this paper, we consider generalized Euler-Stieltjes constants \(\gamma_n(F)\) attached to functions \(F(s)\) from the class \(\mathcal{S}^{\sharp \flat }(\sigma_0, \sigma_1)\). These are coefficients in Laurent series expansion of function \(F(s)\) at its pole. We derive an integral representation and an upper bound for these constants. The application of the obtained results in the case of product of suitable shifts of the Riemann zeta function is presented.

2020 Mathematics Subject Classification.   11M26, 11S40

Key words and phrases.   Euler-Stieltjes constants, \(L\)-functions, class \(\mathcal{S}^{\sharp \flat }(\sigma_0, \sigma_1)\).


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.60.1.03


References:

  1. J. A. Adell, Asymptotic estimates for Stieltjes constants: a probabilistic approach, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), 954–963.
    MathSciNet    CrossRef

  2. M. Avdispahić and L. Smajlović, Euler constants for a Fuchsian group of the first kind, Acta Arith. 131 (2008), 125–143.
    MathSciNet    CrossRef

  3. B. C. Berndt, On the Hurwitz zeta function, Rocky Mountain J. Math. 2 (1972), 151–157.
    MathSciNet    CrossRef

  4. S. Biswajyoti, Multiple Stieltjes constants and Laurent type expansion of the multiple zeta functions at integer points, Selecta Math. (N.S.) 28 (2022), article 6.
    MathSciNet    CrossRef

  5. I. V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in \(\pi^{-2}\) and into the formal enveloping series with rational coefficients only, J. Number Theory 158 (2016), 365–396.
    MathSciNet    CrossRef

  6. E. Bombieri and J. C. Lagarias, Complements to Li's criterion for the Riemann hypothesis, J. Number Theory 77 (1999), 274–287.
    MathSciNet    CrossRef

  7. W. E. Briggs, Some constants associated with the Riemann zeta-function, Michigan Math. J. 3 (1955/56), 117–121.
    MathSciNet    Link

  8. W. E. Briggs and S. Chowla, The power series coefficients of \(\zeta(s)\), Amer. Math. Monthly 62 (1955), 323–325.
    MathSciNet    CrossRef

  9. T. Chatterjee and S. Garg, On \(q\)-analogue of Euler-Stieltjes constants, Proc. Amer. Math. Soc. 151 (2023), 2011–2022.
    MathSciNet    CrossRef

  10. M. W. Coffey, New results on the Stieltjes constants: asymptotic and exact evaluation, J. Math. Anal. Appl. 317 (2006), 603–612.
    MathSciNet    CrossRef

  11. M. W. Coffey, Series representations for the Stieltjes constants, Rocky Mountain J. Math. 44 (2014), 443–477.
    MathSciNet    CrossRef

  12. A.-M. Ernvall-Hytönen, A. Odžak, L. Smajlović and M. Sušić, On the modified Li criterion for a certain class of \(L\)-functions, J. Number Theory 156 (2015), 340–367.
    MathSciNet    CrossRef

  13. L. Euler, De progressionibus harmonicis observationes, Comment. acad. sci. Petrop. 7 (1740), 150–161. (Opera Omnia, Series 1, Vol. 14, 87–100.)
    Link

  14. R. E. Farr, S. Pauli and F. Saidak, Approximating and bounding fractional Stieltjes constants, Funct. Approx. Comment. Math. 64 (2021), 7–22.
    MathSciNet    CrossRef

  15. Y. Hashimoto, The Euler-Selberg constants for non-uniform lattices of rank one symmetric spaces, Kyushu J. Math. 57 (2003), 347–370.
    MathSciNet    CrossRef

  16. Y. Hashimoto, Y. Iijima, N. Kurokawa and M. Wakayama, Euler's constants for the Selberg and the Dedekind zeta functions, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), 493–516.

  17. C. Hermite and T. J. Stieltjes, Correspondance d'Hermite et de Stieltjes, I & II, edited by B. Baillaud and H. Bourget, Gauthier-Villars, Paris, 1905.
    MathSciNet    CrossRef

  18. S. Inoue, S. Saad Eddin and A. I. Suriajaya, Stieltjes constants of L-functions in the extended Selberg class, Ramanujan J. 55 (2021), 609–621.
    MathSciNet    CrossRef

  19. F. Johansson and I. Blagouchine, Computing Stieltjes constants using complex integration, Math. Comp. 88 (2019), 1829–1850.
    MathSciNet    CrossRef

  20. L. Kargın, A. Dil, M. Cenkci and M. Can, On the Stieltjes constants with respect to harmonic zeta functions, J. Math. Anal. Appl. 525 (2023), article 127302.
    MathSciNet    CrossRef

  21. C. Knessl and M. W. Coffey, An asymptotic form for the Stieltjes constants \(\gamma_k(a)\) and for a sum \(S_{\gamma}(n)\) appearing under the Li criterion, Math. Comp. 80 (2011), 2197–2217.
    MathSciNet    CrossRef

  22. Y. L. Luke, The special functions and their approximations, Academic Press, New York-London, 1969.
    MathSciNet

  23. K. Maślanka, Li's criterion for the Riemann hypothesis–numerical approach, Opuscula Math. 24 (2004), 103–114.
    MathSciNet

  24. K. Matsumoto, T. Onozuka and I. Wakabayashi, Laurent series expansions of multiple zeta functions of Euler-Zagier type at integer points, Math. Z. 295 (2020), 623–642.
    MathSciNet    CrossRef

  25. Y. Matsuoka, Generalized Euler constants associated with the Riemann zeta function, Number Theory and Combinatorics, Japan 1984, World Scientific, Singapore, 1985, 279–295.
    MathSciNet

  26. A. Odžak and L. Smajlović, Euler-Stieltjes constants for the Rankin-Selberg \(L\)-functions and weighted Selberg orthogonality, Glas. Mat. Ser. III 51(71) (2016), 23–44.
    MathSciNet    CrossRef

  27. A. Odžak and L. Smajlović, On the generalized Euler-Stieltjes constants for the Rankin-Selberg L-function, Int. J. Number Theory 13 (2017), 1363–1379.
    MathSciNet    CrossRef

  28. M. Overholt, A course in analytic number theory, American Mathematical Society, Providence, 2014.
    MathSciNet    CrossRef

  29. S. Pauli and F. Saidak, A bound for Stieltjes constants, J. Number Theory 257 (2024), 112–123.
    MathSciNet    CrossRef

  30. M. Prévost and T. Rivoal, New convergent sequences of approximations to Stieltjes' constants, J. Math. Anal. Appl. 524 (2023), article 127091.
    MathSciNet    CrossRef

  31. S. Saad Eddin, The signs of the Stieltjes constants associated with the Dedekind zeta function, Proc. Japan Acad. Ser. A Math. Sci. 94 (2018), 93–96.
    MathSciNet    CrossRef

  32. S. Saad Eddin, Explicit upper bounds for the Stieltjes constants, J. Number Theory 133 (2013), 1027–1044.
    MathSciNet    CrossRef

  33. L. Smajlović, On Li's criterion for the Riemann hypothesis for the Selberg class, J. Number Theory 130 (2010), 828–851.
    MathSciNet    CrossRef

  34. E. M. Stein and R. Shakarchi, Complex analysis, Princeton University Press, Princeton, 2003.
    MathSciNet

  35. E. C. Titchmarsh, The theory of functions, Oxford University Press, Oxford, 1958.
    MathSciNet

  36. E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge University Press, Cambridge, 2021.
    MathSciNet

  37. N. Y. Zhang and K. S. Williams, Some results on the generalized Stieltjes constants, Analysis 14 (1994), 147–162.
    MathSciNet

  38. M. Zubača, On the boundedness of Euler-Stieltjes constants for the Rankin-Selberg \(L\)-function, Glas. Mat. Ser. III 59(79) (2024), 33–49.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page