Glasnik Matematicki, Vol. 60, No. 1 (2025), 39-58. \( \)
ON THE EULER-STIELTJES CONSTANTS FOR FUNCTIONS FROM THE GENERALIZED SELBERG CLASS
Almasa Odžak and Medina Zubača
Department of Mathematics and Computer Sciences, University of Sarajevo, Zmaja od Bosne 35, 71 000 Sarajevo, Bosnia and Herzegovina
e-mail:almasa.odzak@pmf.unsa.ba
Department of Mathematics and Computer Sciences, University of Sarajevo, Zmaja od Bosne 35, 71 000 Sarajevo, Bosnia and Herzegovina
e-mail:medina.zubaca@pmf.unsa.ba
Abstract.
The class \(\mathcal{S}^{\sharp \flat }(\sigma_0, \sigma_1)\) is a very broad class of \(L\) functions that contains the Selberg class, the class of all automorphic \(L\) functions and the Rankin–Selberg \(L\) functions, as well as products of suitable shifts of those functions. In this paper, we consider generalized Euler-Stieltjes constants \(\gamma_n(F)\) attached to functions \(F(s)\) from the class \(\mathcal{S}^{\sharp \flat }(\sigma_0, \sigma_1)\). These are coefficients in Laurent series expansion of function \(F(s)\) at its pole. We derive an integral representation and an upper bound for these constants. The application of the obtained results in the case of product of suitable shifts of the Riemann zeta function is presented.
2020 Mathematics Subject Classification. 11M26, 11S40
Key words and phrases. Euler-Stieltjes constants, \(L\)-functions, class \(\mathcal{S}^{\sharp \flat }(\sigma_0, \sigma_1)\).
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.60.1.03
References:
-
J. A. Adell, Asymptotic estimates for Stieltjes constants: a probabilistic approach, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), 954–963.
MathSciNet
CrossRef
-
M. Avdispahić and L. Smajlović, Euler constants for a Fuchsian group of the first kind, Acta Arith. 131 (2008), 125–143.
MathSciNet
CrossRef
-
B. C. Berndt, On the Hurwitz zeta function, Rocky Mountain J. Math. 2 (1972), 151–157.
MathSciNet
CrossRef
-
S. Biswajyoti, Multiple Stieltjes constants and Laurent type expansion of the multiple zeta functions at integer points, Selecta Math. (N.S.) 28 (2022), article 6.
MathSciNet
CrossRef
-
I. V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in \(\pi^{-2}\) and into the formal enveloping series with rational coefficients only, J. Number Theory 158 (2016), 365–396.
MathSciNet
CrossRef
-
E. Bombieri and J. C. Lagarias, Complements to Li's criterion for the Riemann hypothesis, J. Number Theory 77 (1999), 274–287.
MathSciNet
CrossRef
-
W. E. Briggs, Some constants associated with the Riemann zeta-function, Michigan Math. J. 3 (1955/56), 117–121.
MathSciNet
Link
-
W. E. Briggs and S. Chowla, The power series coefficients of \(\zeta(s)\), Amer. Math. Monthly 62 (1955), 323–325.
MathSciNet
CrossRef
-
T. Chatterjee and S. Garg, On \(q\)-analogue of Euler-Stieltjes constants, Proc. Amer. Math. Soc. 151 (2023), 2011–2022.
MathSciNet
CrossRef
-
M. W. Coffey, New results on the Stieltjes constants: asymptotic and exact evaluation, J. Math. Anal. Appl. 317 (2006), 603–612.
MathSciNet
CrossRef
-
M. W. Coffey, Series representations for the Stieltjes constants, Rocky Mountain J. Math. 44 (2014), 443–477.
MathSciNet
CrossRef
-
A.-M. Ernvall-Hytönen, A. Odžak, L. Smajlović and M. Sušić, On the modified Li criterion for a certain class of \(L\)-functions, J. Number Theory 156 (2015), 340–367.
MathSciNet
CrossRef
-
L. Euler, De progressionibus harmonicis observationes, Comment. acad. sci. Petrop. 7 (1740), 150–161. (Opera Omnia, Series 1, Vol. 14, 87–100.)
Link
-
R. E. Farr, S. Pauli and F. Saidak, Approximating and bounding fractional Stieltjes constants, Funct. Approx. Comment. Math. 64 (2021), 7–22.
MathSciNet
CrossRef
-
Y. Hashimoto, The Euler-Selberg constants for non-uniform lattices of rank one symmetric spaces, Kyushu J. Math. 57 (2003), 347–370.
MathSciNet
CrossRef
-
Y. Hashimoto, Y. Iijima, N. Kurokawa and M. Wakayama, Euler's constants for the Selberg and the Dedekind zeta functions, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), 493–516.
-
C. Hermite and T. J. Stieltjes, Correspondance d'Hermite et de Stieltjes, I & II, edited by B. Baillaud and H. Bourget, Gauthier-Villars, Paris, 1905.
MathSciNet
CrossRef
-
S. Inoue, S. Saad Eddin and A. I. Suriajaya, Stieltjes constants of L-functions in the extended Selberg class, Ramanujan J. 55 (2021), 609–621.
MathSciNet
CrossRef
-
F. Johansson and I. Blagouchine, Computing Stieltjes constants using complex integration, Math. Comp. 88 (2019), 1829–1850.
MathSciNet
CrossRef
-
L. Kargın, A. Dil, M. Cenkci and M. Can, On the Stieltjes constants with respect to harmonic zeta functions, J. Math. Anal. Appl. 525 (2023), article 127302.
MathSciNet
CrossRef
-
C. Knessl and M. W. Coffey, An asymptotic form for the Stieltjes constants \(\gamma_k(a)\) and for a sum \(S_{\gamma}(n)\) appearing under the Li criterion, Math. Comp. 80 (2011), 2197–2217.
MathSciNet
CrossRef
-
Y. L. Luke, The special functions and their approximations, Academic Press, New York-London, 1969.
MathSciNet
-
K. Maślanka, Li's criterion for the Riemann hypothesis–numerical approach, Opuscula Math. 24 (2004), 103–114.
MathSciNet
-
K. Matsumoto, T. Onozuka and I. Wakabayashi, Laurent series expansions of multiple zeta functions of Euler-Zagier type at integer points, Math. Z. 295 (2020), 623–642.
MathSciNet
CrossRef
-
Y. Matsuoka, Generalized Euler constants associated with the Riemann zeta function, Number Theory and Combinatorics, Japan 1984, World Scientific, Singapore, 1985, 279–295.
MathSciNet
-
A. Odžak and L. Smajlović, Euler-Stieltjes constants for the Rankin-Selberg \(L\)-functions and weighted Selberg orthogonality, Glas. Mat. Ser. III 51(71) (2016), 23–44.
MathSciNet
CrossRef
-
A. Odžak and L. Smajlović, On the generalized Euler-Stieltjes constants for the Rankin-Selberg L-function, Int. J. Number Theory 13 (2017), 1363–1379.
MathSciNet
CrossRef
-
M. Overholt, A course in analytic number theory, American Mathematical Society, Providence, 2014.
MathSciNet
CrossRef
-
S. Pauli and F. Saidak, A bound for Stieltjes constants, J. Number Theory 257 (2024), 112–123.
MathSciNet
CrossRef
-
M. Prévost and T. Rivoal, New convergent sequences of approximations to Stieltjes' constants, J. Math. Anal. Appl. 524 (2023), article 127091.
MathSciNet
CrossRef
-
S. Saad Eddin, The signs of the Stieltjes constants associated with the Dedekind zeta function, Proc. Japan Acad. Ser. A Math. Sci. 94 (2018), 93–96.
MathSciNet
CrossRef
-
S. Saad Eddin, Explicit upper bounds for the Stieltjes constants, J. Number Theory 133 (2013), 1027–1044.
MathSciNet
CrossRef
-
L. Smajlović, On Li's criterion for the Riemann hypothesis for the Selberg class, J. Number Theory 130 (2010), 828–851.
MathSciNet
CrossRef
-
E. M. Stein and R. Shakarchi, Complex analysis, Princeton University Press, Princeton, 2003.
MathSciNet
-
E. C. Titchmarsh, The theory of functions, Oxford University Press, Oxford, 1958.
MathSciNet
-
E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge University Press, Cambridge, 2021.
MathSciNet
-
N. Y. Zhang and K. S. Williams, Some results on the generalized Stieltjes constants, Analysis 14 (1994), 147–162.
MathSciNet
-
M. Zubača, On the boundedness of Euler-Stieltjes constants for the Rankin-Selberg \(L\)-function, Glas. Mat. Ser. III 59(79) (2024), 33–49.
MathSciNet
CrossRef
Glasnik Matematicki Home Page