Glasnik Matematicki, Vol. 60, No. 1 (2025), 21-38. \( \)
A NOTE ON SOME POLYNOMIAL-FACTORIAL DIOPHANTINE EQUATIONS
Saša Novaković
Hochschule Fresenius University of applied Sciences, 40476 Düsseldorf, Germany
e-mail:sasa.novakovic@hs-fresenius.de
Abstract.
In 1876 Brocard, and independently in 1913 Ramanujan, asked to find all integer solutions for the equation
\(n!=x^2-1\). It is conjectured that this equation has only three solutions, but up to now this is an open problem. Overholt
observed that a weak form of Szpiro's-conjecture implies that Brocard's equation has finitely many integer solutions. More
generally, assuming the ABC-conjecture, Luca showed that equations of the form \(n!=P(x)\) where \(P(x)\in\mathbb{Z}[x]\) of
degree \(d\geq 2\) have only finitely many integer solutions with \(n\gt 0\). And if \(P(x)\) is irreducible, Berend and Harmse proved
unconditionally that \(P(x)=n!\) has only finitely many integer solutions. In this note we study Diophantine equations of the
form \(g(x_1,\ldots,x_r)=P(x)\) where \(P(x)\in\mathbb{Z}[x]\) of degree \(d\geq 2\) and \(g(x_1,\ldots,x_r)\in \mathbb{Z}[x_1,\ldots,x_r]\)
where for the \(x_i\) one may also plug in \(A^{n}\) or the Bhargava factorial \(n!_S\). We want to understand when there are
finitely many or infinitely many integer solutions.
Moreover, we study Diophantine equations of the form \(g(x_1,\ldots,x_r)=f(x,y)\) where \(f(x,y)\in\mathbb{Z}[x,y]\) is
a homogeneous polynomial of degree \(\geq2\).
2020 Mathematics Subject Classification. 11D61, 11D72, 11D59, 14G05
Key words and phrases. Diophantine equations, factorials, polynomials
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.60.1.02
References:
-
D. Berend and J. E. Harmse, On polynomial-factorial Diophantine equations, Trans. Amer. Math. Soc. 358 (2006), 1741–1779.
MathSciNet
CrossRef
-
D. Berend and C. F. Osgood, On the equation \(P(x)=n!\) and a question of Erdős, J. Number Theory 42 (1992), 189–193.
MathSciNet
CrossRef
-
B. C. Berndt and W. F. Galeway, On the Brocard-Ramanujan Diophantine equation \(n!+1=m^2\), Ramanujan J. 4 (2000), 41–42.
MathSciNet
CrossRef
-
M. Bhargava, P-orderings and polynimial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997), 101–127.
MathSciNet
CrossRef
-
H. Brocard, Question 1532, Nouv. Ann. Math. 4 (1885), 391.
-
Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential and Diophantine equations II. The Lebesgue–Nagel equation, Compos. Math. 142 (2006), 31–62.
MathSciNet
CrossRef
-
H. M. Bui, K. Pratt and A. Zaharescu, Power savings for counting solutions to polynomial-factorial equations, Adv. Math. 422 (2023), Paper No. 109021, 32 pp.
MathSciNet
CrossRef
-
A. Da̧browski, On the Diophantine equation \(x!+A=y^2\), Nieuw Arch. Wisk. 14 (1996), 321–324.
MathSciNet
-
A. Da̧browski, On the Brocard–Ramanujan problem and generalizations, Colloq. Math. 126 (2012), 105–110.
MathSciNet
CrossRef
-
A. Da̧browski and M. Ulas, Variations on the Brocard–Ramanujan equation, J. Number Theory 133 (2013), 1168–1185.
MathSciNet
CrossRef
-
A. Epstein and J. Glickman, 2020, .
-
P. Erdős and R. Obláth, Über Diophantische Gleichungen der Form \(n!=x^p \pm y^p\) und \(n!\pm m!= x^p\), Acta Szeged. 8 (1937), 241–255.
-
O. Kihel and F. Luca, Variants of the Brocard–Ramanujan equation, J. Théor. Nombres Bordeaux 20 (2008), 353–363.
MathSciNet
CrossRef
-
S. Lang, Old and new conjectured Diophantine inequalities, Bull. Amer. Math. Soc. 23 (1990), 37–75.
MathSciNet
CrossRef
-
F. Luca, The Diophantine equation \(P(x)=n!\) and a result of M. Overholt, Glas. Mat. Ser. III 37(57) (2002), 269–273.
MathSciNet
-
R. D. Matson, Brocard's problem 4th solution search utilizing quadratic residues, Unsolved Problems in Number Theory, Logic and Cryptography (2017), available at http://unsolvedproblems.org/S99.pdf
-
M. Overholt, The Diophantine equation \(n!+1=m^2\), Bull. London. Math. Soc. 25 (1993), 104.
MathSciNet
CrossRef
-
R. M. Pollack and H. N. Shapiro, The next to last case of a factorial Diophantine equation, Comm. Pure Appl. Math. 26 (1973), 313–325.
MathSciNet
CrossRef
-
S. Ramanujan, Question 469, J. Indian Math. Soc. 5 (1913), 59.
-
T. N. Shorey, Diophantine approximations, Diophantine equations, transcendence and applications, Indian J. Pure Appl. Math. 37 (2006), 9–39.
MathSciNet
-
T. N. Shorey and R. Tijdeman, Exponential Diophantine equations, Cambridge Tracts in Math. 87, Cambridge University Press, Cambridge, 1986.
MathSciNet
CrossRef
-
S. Siksek, Diophantine equations after Fermat's last theorem, J. Théor. Nombres Bordeaux 21 (2009), 425–436.
MathSciNet
Link
-
W. Takeda, On the finiteness of solutions for polynomial-factorial Diophantine equations, Forum Math. 33 (2021), 361–374.
MathSciNet
CrossRef
-
M. Ulas, Some observations on the Diophantine equation \(y^2=x!+A\) and related results, Bull. Aust. Math. Soc. 86 (2012), 377–388.
MathSciNet
CrossRef
-
M. Ulas, Some experiments with Ramanujan–Nagell type Diophantine equations, Glas. Mat. Ser. III 49(69) (2014), 287–302.
MathSciNet
CrossRef
-
T. Yamada, A generalization of the Ramanujan–Nagell equation, Glasg. Math. J. 61 (2019), 535–544.
MathSciNet
CrossRef
Glasnik Matematicki Home Page