Glasnik Matematicki, Vol. 60, No. 1 (2025), 1-19. \( \)

ON A CONJECTURE OF LEVESQUE AND WALDSCHMIDT

Tobias Hilgart and Volker Ziegler

Department of Mathematics, University of Salzburg, 5020 Salzburg, Austria
e-mail:tobias.hilgart@plus.ac.at

Department of Mathematics, University of Salzburg, 5020 Salzburg, Austria
e-mail:volker.ziegler@plus.ac.at


Abstract.   One of the first parametrised Thue equations, \[ \hspace{-18ex}\left| X^3 - (n-1)X^2 Y - (n+2) XY^2 - Y^3 \right| = 1, \] over the integers was solved by E. Thomas in 1990. If we interpret this as a norm-form equation, we can write this as \[ \hspace{-18ex} \left| N_{K/\mathbb{Q}}\left( X - \lambda_0 Y \right) \right| = \left| \left( X-\lambda_0 Y \right) \left( X-\lambda_1 Y \right) \left( X-\lambda_2 Y \right) \right| =1 \] if \(\lambda_0, \lambda_1, \lambda_2\) are the roots of the defining irreducible polynomial, and \(K\) is the corresponding number field. Levesque and Waldschmidt twisted this norm-form equation by an exponential parameter \(s\) and looked, among other things, at the equation \[ \hspace{-18ex} \left| N_{K/\mathbb{Q}}\left( X - \lambda_0^s Y \right) \right| = 1. \] They solved this effectively and conjectured that introducing a second exponential parameter \(t\) and looking at \(\left| N_{K/\mathbb{Q}}\left( X - \lambda_0^s\lambda_1^t Y \right) \right| = 1\) does not change the effective solvability. We want to partially confirm this if \[ \hspace{-18ex} \min\left\{ \left| 2s-t \right|, \left| 2t-s \right|, \left| s+t \right| \right\} \gt \varepsilon \cdot \max\left\{ \left|s\right|, \left|t\right| \right\} \gt 2, \] i.e., the two exponents do not almost cancel in specific cases.

2020 Mathematics Subject Classification.   11D25, 11D57

Key words and phrases.   Parametrised Thue equations, exponential Diophantine equations


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.60.1.01


References:

  1. A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1967/68), 173–191.
    MathSciNet    CrossRef

  2. A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19–62.
    MathSciNet    Link

  3. E. Bombieri, On the Thue-Siegel-Dyson theorem, Acta Math. 148 (1982), 255–296.
    MathSciNet    CrossRef

  4. Y. Bugeaud and K. Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arith. 74 (1996), 273–292.
    MathSciNet    CrossRef

  5. G. Lettl, A. Pethő and P. Voutier, Simple families of Thue inequalities, Trans. Amer. Math. Soc. 351 (1999), 1871–1894.
    MathSciNet    CrossRef

  6. C. Levesque and M. Waldschmidt, A family of Thue equations involving powers of units of the simplest cubic fields, J. Théor. Nombres Bordeaux 27 (2015), 537–563.
    MathSciNet    CrossRef

  7. C. Smyth, The Mahler measure of algebraic numbers: a survey, London Math. Soc. Lecture Note Ser. 352 (2008), 322–349.
    MathSciNet    CrossRef

  8. E. Thomas, Fundamental units for orders in certain cubic number fields, J. Reine Angew. Math. 310 (1979), 33–55.
    MathSciNet

  9. E. Thomas, Complete solutions to a family of cubic Diophantine equations, J. Number Theory 34 (1990), 235–250.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page