Glasnik Matematicki, Vol. 59, No. 2 (2024), 479-505. \( \)
MINIMAL DYNAMICAL SYSTEMS WITH CLOSED RELATIONS
Iztok Banič, Goran Erceg, Rene Gril Rogina and Judy Kennedy
Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, SI-2000 Maribor, Slovenia, Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia, Andrej Marušič Institute, University of Primorska, Muzejski trg 2, SI-6000 Koper, Slovenia
e-mail:iztok.banic@um.si
Faculty of Science, University of Split, Rudera Boškovića 33, Split, Croatia
e-mail:goran.erceg@pmfst.hr
Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, SI-2000 Maribor, Slovenia
e-mail:rene.gril@student.um.si
Lamar University, 200 Lucas Building, P.O. Box 10047, Beaumont, TX 77710, USA
e-mail:kennedy9905@gmail.com
Abstract.
We introduce dynamical systems \((X,G)\) with closed relations \(G\) on compact metric spaces \(X\) and discuss different types of minimality of such dynamical systems, all of them generalizing minimal dynamical systems \((X,f)\) with continuous function \(f\) on a compact metric space \(X\).
2020 Mathematics Subject Classification. 54C60, 54F15, 54F17
Key words and phrases. Closed relations, dynamical systems, minimal dynamical systems, \(CR\)-dynamical systems, minimal \(CR\)-dynamical systems, backward minimal \(CR\)-dynamical systems, invariant sets, forward orbits, backward orbits, omega limit sets, alpha limit sets, topological conjugations
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.59.2.10
References:
-
E. Akin, General topology of dynamical systems, American Mathematical Society, Providence, 1993.
MathSciNet
CrossRef
-
I. Banič, G. Erceg and J. Kennedy, Closed relations with non-zero entropy that generate no periodic points, Discrete Contin. Dyn. Syst. 42 (2022), 5137–5166.
MathSciNet
CrossRef
-
I. Banič, G. Erceg, S. Greenwood and J. Kennedy, Transitive points in CR-dynamical systems, Topology Appl. 326 (2023), No. 108407.
MathSciNet
CrossRef
-
G. D. Birkhoff, Quelques theoremes sur le mouvement des systemes dynamiques, Bull. Soc. Math. France 40 (1912), 305–323.
MathSciNet
Link
-
L. Christiano and S. Harrison, Chaos, sunspots and automatic stabilizers, J. Monetary Economics 44 (1999), 3–31.
-
W. Cordeiro and M. J. Pacfico, Continuum-wise expansiveness and specification for set-valued functions and topological entropy, Proc. Amer. Math. Soc. 144 (2016), 4261–4271.
MathSciNet
CrossRef
-
K. Kawamura and J. Kennedy, Shift maps and their variants on inverse limits with set-valued functions, Topology Appl. 239 (2018), 92–114.
MathSciNet
CrossRef
-
S. Kolyada and L. Snoha, Minimal dynamical systems, Scholarpedia 4 (2009), 5803.
CrossRef
-
S. Kolyada, L. Snoha and S. Tromchuk, Noninvertible minimal maps, Fund. Math. 168 (2001), 141–163.
MathSciNet
CrossRef
-
W. T. Ingram, An introduction to inverse limits with set-valued functions, Springer, New York, 2012.
MathSciNet
CrossRef
-
W. T. Ingram and W. S. Mahavier, Inverse limits of upper semi-continuous set valued functions, Houston J. Math. 32 (2006), 119–130.
MathSciNet
-
I. D. Woods and J. P. Kelly, Chaotic dynamics in family of set-valued functions, Minnesota Journal of Undergraduate Mathematics 3 (2018), 1–19.
Link
-
J. A. Kennedy, and V. Nall, Dynamical properties of shift maps on Inverse limits with a set valued map, Ergodic Theory Dynam. Systems 38 (2018), 1499–1524.
MathSciNet
CrossRef
-
A. Loranty and R. J. Pawlak, On the transitivity of multifunctions and density of orbits in generalized topological spaces, Acta Math. Hungar. 135 (2012), 56–66.
MathSciNet
CrossRef
-
J. Li, K. Yan, and X. Ye, Recurrence properties and disjointness on the induced spaces, Discrete Contin. Dyn. Syst. 35 (2015), 1059–1073.
MathSciNet
CrossRef
-
G. Liao, L. Wang, and Y. Zhang, Transitivity, mixing and chaos for a class of set-valued mappings, Sci. China Ser. A 49 (2006), 1–8.
MathSciNet
CrossRef
-
P. Maličky, Backward orbits of transitive maps, J. Difference Equ. Appl. 18 (2012), 1193–1203.
MathSciNet
CrossRef
-
W. S. Mahavier, Inverse limits with subsets of \([0,1]\times [0,1]\), Topology Appl. 141 (2004), 225–231.
MathSciNet
CrossRef
-
R. Metzger, C. A. Morales Rojas and P. Thieullen, Topological stability in set-valued dynamics, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), 1965–1975.
MathSciNet
CrossRef
-
H. Román-Flores, A note on transitivity in set-valued discrete systems, Chaos Solitons Fractals 17 (2003), 99–104.
MathSciNet
CrossRef
-
K. Sang Wong, and Z. Salleh, Topologically transitive and mixing properties of set-valued dynamical systems, Abstr. Appl. Anal. (2021), no. 5541105.
MathSciNet
CrossRef
Glasnik Matematicki Home Page