Glasnik Matematicki, Vol. 59, No. 2 (2024), 461-478. \( \)

REAL HYPERSURFACES WITH SEMI-PARALLEL NORMAL JACOBI OPERATOR IN THE REAL GRASSMANNIANS OF RANK TWO

Hyunjin Lee and Young Jin Suh

Department of Mathematics Education, Chosun University, Gwangju 61452, Republic of Korea
e-mail:lhjibis@hanmail.net

Department of Mathematics & RIRCM, Kyungpook National University, Daegu 41566, Republic of Korea
e-mail:yjsuh@knu.ac.kr


Abstract.   In this paper, we introduce the notion of a semi-parallel normal Jacobi operator for a real hypersurface in the real Grassmannian of rank two, denoted by \(\mathbb Q^{m}(\varepsilon)\), where \(\varepsilon=\pm 1\). Here, \(\mathbb Q^{m}(\varepsilon)\) represents the complex quadric \(\mathbb Q^{m}(1)=SO_{m+2}/SO_{m}SO_{2}\) for \(\varepsilon=1\) and \(\mathbb Q^{m}(-1)=SO_{m,2}^{0}/SO_{m}SO_{2}\) for \(\varepsilon =-1\), respectively. In general, the notion of semi-parallel is weaker than the notion of parallel normal Jacobi operator. In this paper we prove that the unit normal vector field of a Hopf real hypersurface in \({\mathbb Q^{m}(\varepsilon)}\), \(m \geq 3\), with semi-parallel normal Jacobi operator is singular. Moreover, the singularity of the normal vector field gives a nonexistence result for Hopf real hypersurfaces in \(\mathbb Q^{m}(\varepsilon)\), \(m \geq 3\), admitting a semi-parallel normal Jacobi operator.

2020 Mathematics Subject Classification.   53C40, 53C55

Key words and phrases.   Semi-parallelism, normal Jacobi operator, \(\mathfrak A\)-isotropic, \(\mathfrak A\)-principal, real hypersurfaces, real Grassmannian of rank two, complex quadric, complex hyperbolic quadric


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.59.2.09


References:

  1. T.A. Ivey and P.J. Ryan, The structure Jacobi operator for real hypersurfaces in \(\mathbb C P^{2}\) and \(\mathbb C H^{2}\), Results Math. 56 (2009), 473–488.
    MathSciNet    CrossRef

  2. I. Jeong, C. J. G. Machado, J. D. Pérez and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with \(\mathfrak D^{\bot}\)-parallel structure Jacobi operator, Internat. J. Math. 22 (2011), 655–673.
    MathSciNet    CrossRef   

  3. I. Jeong, J. D. Pérez and Y. J. Suh, Recurrent Jacobi operator of real hypersurfaces in complex two-plane Grassmannians, Bull. Korean Math. Soc. 50 (2013), 525–536.
    MathSciNet    CrossRef

  4. S. Klein, Totally geodesic submanifolds of the complex quadric, Differential Geom. Appl. 26 (2008), 79–96.
    MathSciNet    CrossRef

  5. S. Klein and Y. J. Suh, Contact real hypersurfaces in the complex hyperbolic quadric, Ann. Mate. Pura Appl. (4) 198 (2019), 1481–1494.
    MathSciNet    CrossRef

  6. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, John Wiley & Sons, Inc., New York, 1996.
    MathSciNet

  7. H. Lee, J. Pérez, and Y. J. Suh, Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric, Bull. London Math. Soc. 52 (2020), 1122–1133.
    MathSciNet    CrossRef

  8. H. Lee and Y. J. Suh, Real hypersurfaces with recurrent normal Jacobi operator in the complex quadric, J. Geom. Phys. 123 (2018), 463–474.
    MathSciNet    CrossRef

  9. H. Lee and Y. J. Suh, Real hypersurfaces with quadratic Killing normal Jacobi operator in the real Grassmannians of rank two, Results Math. 76 (2021), Paper No. 113, 19 pp.
    MathSciNet    CrossRef

  10. H. Lee and Y. J. Suh, A new classification on parallel Ricci tensor for real hypersurfaces in the complex quadric, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), 1846–1868.
    MathSciNet    CrossRef

  11. H. Lee and Y. J. Suh, Semi-parallel Hopf real hypersurfaces in the complex quadric, Glas. Mat. Ser. III 58(78) (2023), 101–124.
    MathSciNet    CrossRef

  12. H. Lee, Y. J. Suh, and C. Woo, Cyclic parallel structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians, Proc. Roy. Soc. Edinburgh Sect. A 152 (2022), 939–964.
    MathSciNet    CrossRef

  13. C. J. G. Machado, J. D. Pérez, I. Jeong and Y. J. Suh, \(\mathcal D\)-parallelism of normal and structure Jacobi operators for hypersurfaces in complex two-plane Grassmannians, Ann. Mat. Pura Appl. (4) 193 (2014), 591–608.
    MathSciNet    CrossRef

  14. M. Ortega, J. D. Pérez and F. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math. 36 (2006), 1603–1613.
    MathSciNet    CrossRef

  15. J. D. Pérez, Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space, Ann. Mat. Pura Appl. (4) 194 (2015), 1781–1794.
    MathSciNet    CrossRef

  16. J. D. Pérez, Commutativity of torsion and normal Jacobi operators on real hypersurfaces in the complex quadric, Publ. Math. Debrecen 95 (2019), 157–168.
    MathSciNet    CrossRef

  17. J. D. Pérez, Some real hypersurfaces in complex and complex hyperbolic quadrics, Bull. Malays. Math. Sci. Soc. 43 (2020), 1709–1718.
    MathSciNet    CrossRef

  18. J. D. Pérez, D. Pérez-López and Y.J. Suh, On the structure Lie operator of a real hypersurface in the complex quadric, Math. Slovaca 73 (2023), 1569–1576.
    MathSciNet    CrossRef

  19. J. D. Pérez and F. G. Santos, Real hypersurfaces in complex projective space with recurrent structure Jacobi operator, Differential Geom. Appl. 26 (2008), 218–223.
    MathSciNet    CrossRef

  20. J. D. Pérez, F. G. Santos and Y. J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie \(\xi\)-parallel, Differential Geom. Appl. 22 (2005), 181–188.
    MathSciNet    CrossRef

  21. J. D. Pérez and Y. J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie \(\mathcal D\)-parallel, Canad. Math. Bull. 56 (2013), 306–316.
    MathSciNet    CrossRef

  22. J. D. Pérez and Y. J. Suh, New conditions on normal Jacobi operator of real hypersurfaces in the complex quadric, Bull. Malays. Math. Sci. Soc. 44 (2021), 891–903.
    MathSciNet    CrossRef

  23. H. Reckziegel, On the geometry of the complex quadric, in: Geometry and topology of submanifolds, VIII (ed. F. Dillen, B. Komrakov, U. Simon, I. Van de Woestyne and L. Verstraelen, Eds.), World Sci. Publ., River Edge, 1996, 302–315.
    MathSciNet

  24. A. Romero, Some examples of indefinite complete complex Einstein hypersurfaces not locally symmetric, Proc. Amer. Math. Soc. 98 (1986), 283–286.
    MathSciNet    CrossRef

  25. A. Romero, On a certain class of complex Einstein hypersurfaces in indefinite complex space forms, Math Z 192 (1986), 627–635.
    MathSciNet    CrossRef

  26. B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. (2) 85 (1967), 246–266.
    MathSciNet    CrossRef

  27. B. Smyth, Homogeneous complex hypersurfaces, J. Math. Soc. Japan 20 (1968), 643–647.
    MathSciNet    CrossRef

  28. Y. J. Suh, Real hypersurfaces in the complex quadric with parallel structure Jacobi operator, Differential Geom. Appl. 51 (2017), 33–48.
    MathSciNet    CrossRef

  29. Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadric with isometric Reeb flow, Commun. Contemp. Math. 20 (2018), 1750031, 20 pp.
    MathSciNet    CrossRef

  30. Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadric with parallel normal Jacobi operator, Mediterr. J. Math. 15 (2018), Paper No. 159, 14 pp.
    MathSciNet    CrossRef

  31. Y. Wang, Nonexistence of Hopf hypersurfaces in complex two-plane Grassmannians with GTW parallel normal Jacobi operator, Rocky Mountain J. Math. 49 (2019), 2375–2393.
    MathSciNet    CrossRef

  32. Y. Wang, Real hypersurfaces in \(\mathbb C P^{2}\) with constant Reeb sectional curvature, Differential Geom. Appl. 73 (2020), 101683, 10 pp.
    MathSciNet    CrossRef

  33. Y. Wang and P. Wang, GTW parallel structure Jacobi operator of real hypersurfaces in nonflat complex space forms, J. Geom. Phys. 192 (2023), Paper No. 104925, 9 pp.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page