Glasnik Matematicki, Vol. 59, No. 2 (2024), 461-478. \( \)
REAL HYPERSURFACES WITH SEMI-PARALLEL NORMAL JACOBI OPERATOR IN THE REAL GRASSMANNIANS OF RANK TWO
Hyunjin Lee and Young Jin Suh
Department of Mathematics Education, Chosun University, Gwangju 61452, Republic of Korea
e-mail:lhjibis@hanmail.net
Department of Mathematics & RIRCM, Kyungpook National University, Daegu 41566, Republic of Korea
e-mail:yjsuh@knu.ac.kr
Abstract.
In this paper, we introduce the notion of a semi-parallel normal Jacobi operator for a real hypersurface in the real Grassmannian of rank two, denoted by \(\mathbb Q^{m}(\varepsilon)\), where \(\varepsilon=\pm 1\). Here, \(\mathbb Q^{m}(\varepsilon)\) represents the complex quadric \(\mathbb Q^{m}(1)=SO_{m+2}/SO_{m}SO_{2}\) for \(\varepsilon=1\) and \(\mathbb Q^{m}(-1)=SO_{m,2}^{0}/SO_{m}SO_{2}\) for \(\varepsilon =-1\), respectively. In general, the notion of semi-parallel is weaker than the notion of parallel normal Jacobi operator. In this paper we prove that the unit normal vector field of a Hopf real hypersurface in \({\mathbb Q^{m}(\varepsilon)}\), \(m \geq 3\), with semi-parallel normal Jacobi operator is singular. Moreover, the singularity of the normal vector field gives a nonexistence result for Hopf real hypersurfaces in \(\mathbb Q^{m}(\varepsilon)\), \(m \geq 3\), admitting a semi-parallel normal Jacobi operator.
2020 Mathematics Subject Classification. 53C40, 53C55
Key words and phrases. Semi-parallelism, normal Jacobi operator, \(\mathfrak A\)-isotropic, \(\mathfrak A\)-principal, real hypersurfaces, real Grassmannian of rank two, complex quadric, complex hyperbolic quadric
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.59.2.09
References:
-
T.A. Ivey and P.J. Ryan, The structure Jacobi operator for real hypersurfaces in \(\mathbb C P^{2}\) and \(\mathbb C H^{2}\), Results Math. 56 (2009), 473–488.
MathSciNet
CrossRef
-
I. Jeong, C. J. G. Machado, J. D. Pérez and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with \(\mathfrak D^{\bot}\)-parallel structure Jacobi operator, Internat. J. Math. 22 (2011), 655–673.
MathSciNet
CrossRef
-
I. Jeong, J. D. Pérez and Y. J. Suh, Recurrent Jacobi operator of real hypersurfaces in complex two-plane Grassmannians, Bull. Korean Math. Soc. 50 (2013), 525–536.
MathSciNet
CrossRef
-
S. Klein, Totally geodesic submanifolds of the complex quadric, Differential Geom. Appl. 26 (2008), 79–96.
MathSciNet
CrossRef
-
S. Klein and Y. J. Suh, Contact real hypersurfaces in the complex hyperbolic quadric, Ann. Mate. Pura Appl. (4) 198 (2019), 1481–1494.
MathSciNet
CrossRef
-
S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, John Wiley & Sons, Inc., New York, 1996.
MathSciNet
-
H. Lee, J. Pérez, and Y. J. Suh, Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric, Bull. London Math. Soc. 52 (2020), 1122–1133.
MathSciNet
CrossRef
-
H. Lee and Y. J. Suh, Real hypersurfaces with recurrent normal Jacobi operator in the complex quadric, J. Geom. Phys. 123 (2018), 463–474.
MathSciNet
CrossRef
-
H. Lee and Y. J. Suh, Real hypersurfaces with quadratic Killing normal Jacobi operator in the real Grassmannians of rank two, Results Math. 76 (2021), Paper No. 113, 19 pp.
MathSciNet
CrossRef
-
H. Lee and Y. J. Suh, A new classification on parallel Ricci tensor for real hypersurfaces in the complex quadric, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), 1846–1868.
MathSciNet
CrossRef
-
H. Lee and Y. J. Suh, Semi-parallel Hopf real hypersurfaces in the complex quadric, Glas. Mat. Ser. III 58(78) (2023), 101–124.
MathSciNet
CrossRef
-
H. Lee, Y. J. Suh, and C. Woo, Cyclic parallel structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians, Proc. Roy. Soc. Edinburgh Sect. A 152 (2022), 939–964.
MathSciNet
CrossRef
-
C. J. G. Machado, J. D. Pérez, I. Jeong and Y. J. Suh, \(\mathcal D\)-parallelism of normal and structure Jacobi operators for hypersurfaces in complex two-plane Grassmannians, Ann. Mat. Pura Appl. (4) 193 (2014), 591–608.
MathSciNet
CrossRef
-
M. Ortega, J. D. Pérez and F. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math. 36 (2006), 1603–1613.
MathSciNet
CrossRef
-
J. D. Pérez, Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space, Ann. Mat. Pura Appl. (4) 194 (2015), 1781–1794.
MathSciNet
CrossRef
-
J. D. Pérez, Commutativity of torsion and normal Jacobi operators on real hypersurfaces in the complex quadric, Publ. Math. Debrecen 95 (2019), 157–168.
MathSciNet
CrossRef
-
J. D. Pérez, Some real hypersurfaces in complex and complex hyperbolic quadrics, Bull. Malays. Math. Sci. Soc. 43 (2020), 1709–1718.
MathSciNet
CrossRef
-
J. D. Pérez, D. Pérez-López and Y.J. Suh, On the structure Lie operator of a real hypersurface in the complex quadric, Math. Slovaca 73 (2023), 1569–1576.
MathSciNet
CrossRef
-
J. D. Pérez and F. G. Santos, Real hypersurfaces in complex projective space with recurrent structure Jacobi operator, Differential Geom. Appl. 26 (2008), 218–223.
MathSciNet
CrossRef
-
J. D. Pérez, F. G. Santos and Y. J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie \(\xi\)-parallel, Differential Geom. Appl. 22 (2005), 181–188.
MathSciNet
CrossRef
-
J. D. Pérez and Y. J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie \(\mathcal D\)-parallel, Canad. Math. Bull. 56 (2013), 306–316.
MathSciNet
CrossRef
-
J. D. Pérez and Y. J. Suh, New conditions on normal Jacobi operator of real hypersurfaces in the complex quadric, Bull. Malays. Math. Sci. Soc. 44 (2021), 891–903.
MathSciNet
CrossRef
-
H. Reckziegel, On the geometry of the complex quadric, in: Geometry and topology of submanifolds, VIII (ed. F. Dillen, B. Komrakov, U. Simon, I. Van de Woestyne and L. Verstraelen, Eds.), World Sci. Publ., River Edge, 1996, 302–315.
MathSciNet
-
A. Romero, Some examples of indefinite complete complex Einstein hypersurfaces not locally symmetric, Proc. Amer. Math. Soc. 98 (1986), 283–286.
MathSciNet
CrossRef
-
A. Romero, On a certain class of complex Einstein hypersurfaces in indefinite complex space forms, Math Z 192 (1986), 627–635.
MathSciNet
CrossRef
-
B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. (2) 85 (1967), 246–266.
MathSciNet
CrossRef
-
B. Smyth, Homogeneous complex hypersurfaces, J. Math. Soc. Japan 20 (1968), 643–647.
MathSciNet
CrossRef
-
Y. J. Suh, Real hypersurfaces in the complex quadric with parallel structure Jacobi operator, Differential Geom. Appl. 51 (2017), 33–48.
MathSciNet
CrossRef
-
Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadric with isometric Reeb flow, Commun. Contemp. Math. 20 (2018), 1750031, 20 pp.
MathSciNet
CrossRef
-
Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadric with parallel normal Jacobi operator, Mediterr. J. Math. 15 (2018), Paper No. 159, 14 pp.
MathSciNet
CrossRef
-
Y. Wang, Nonexistence of Hopf hypersurfaces in complex two-plane Grassmannians with GTW parallel normal Jacobi operator, Rocky Mountain J. Math. 49 (2019), 2375–2393.
MathSciNet
CrossRef
-
Y. Wang, Real hypersurfaces in \(\mathbb C P^{2}\) with constant Reeb sectional curvature, Differential Geom. Appl. 73 (2020), 101683, 10 pp.
MathSciNet
CrossRef
-
Y. Wang and P. Wang, GTW parallel structure Jacobi operator of real hypersurfaces in nonflat complex space forms, J. Geom. Phys. 192 (2023), Paper No. 104925, 9 pp.
MathSciNet
CrossRef
Glasnik Matematicki Home Page