Glasnik Matematicki, Vol. 59, No. 2 (2024), 351-405. \( \)

THE DEGENERATE PRINCIPAL SERIES REPRESENTATIONS OF EXCEPTIONAL GROUPS OF TYPE \(E_8\) OVER \(p\)-ADIC FIELDS

Hezi Halawi and Avner Segal

School of Mathematics, Ben Gurion University of the Negev, POB 653, Be'er Sheva 84105, Israel
e-mail:halawi@post.bgu.ac.il

Mathematics Department, Shamoon College of Engineering, 56 Bialik St., Beer-Sheva 84100, Israel
e-mail:avnerse@sce.ac.il


Abstract.   In this paper, we study the reducibility of degenerate principal series of the split, simple, simply-connected exceptional group of type \(E_8\). Furthermore, we calculate the maximal semi-simple subrepresentation and quotient of these representations for almost all cases.

2020 Mathematics Subject Classification.   22E50, 20G41, 20G05

Key words and phrases.   \(p\)-adic groups, degenerate principal series


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.59.2.06


References:

  1. D. Ban, The Aubert involution and R-groups, Ann. Sci. École Norm. Sup. (4) 35 (2002), 673–693.
    MathSciNet    CrossRef

  2. D. Ban and C. Jantzen, Degenerate principal series for even-orthogonal groups, Represent. Theory 7 (2003), 440–480.
    MathSciNet    CrossRef

  3. D. Ban and C. Jantzen, Jacquet modules and the Langlands classification, Michigan Math. J. 56 (2008), 637–653.
    MathSciNet    CrossRef

  4. I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group \(GL(n,F),\) where \(F\) is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), 5–70.
    MathSciNet

  5. I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive \({\mathfrak p}\)-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441–472.
    MathSciNet    Link

  6. W. Casselman, Introduction to the theory of admissible representations of \(p\)-adic reductive groups, 1974.
    Link

  7. S. Choi and C. Jantzen, Degenerate principal series for the exceptional \(p\)-adic groups of type \(F_4\), J. Lie Theory 20 (2010), 785–806.
    MathSciNet

  8. S. S. Gelbart and A. W. Knapp, Irreducible constituents of principal series of \({\rm SL}_{n}(k)\), Duke Math. J. 48 (1981), 313–326.
    MathSciNet    Link

  9. N. Gurevich and A. Segal, Poles of the standard \(\mathcal{L}\)-function of \(G_2\) and the Rallis-Schiffmann lift, Canad. J. Math. 71 (2019), 1127–1161.
    MathSciNet    CrossRef

  10. W. T. Gan and G. Savin, On minimal representations definitions and properties, Represent. Theory 9 (2005), 46–93.
    MathSciNet    CrossRef

  11. H. Halawi and A. Segal, Poles, residues and Siegel-Weil identities of degenerate Eisenstein series on split exceptional groups of type \({E_n}\), preprint.

  12. H. Halawi and A. Segal, The degenerate principal series representations of exceptional groups of type \(E_6\) over \(p\)-adic fields, Israel J. Math. 238 (2020), 537–569.
    MathSciNet    CrossRef

  13. H. Halawi and A. Segal, The degenerate principal series representations of exceptional groups of type \(E_7\) over \(p\)-adic fields, Pacific J. Math. 310, (2021), 115–157.
    MathSciNet    CrossRef

  14. C. Jantzen, Degenerate principal series for symplectic groups, Mem. Amer. Math. Soc. 102, AMS, 1993.
    MathSciNet    CrossRef

  15. C. Jantzen, On the Iwahori-Matsumoto involution and applications, Ann. Sci. École Norm. Sup. (4) 28 (1995), 527–547.
    MathSciNet    Link

  16. C. Jantzen, Degenerate principal series for symplectic and odd-orthogonal groups, Mem. Amer. Math. Soc. 124, AMS, 1996.
    MathSciNet    CrossRef

  17. C. Jantzen, Some remarks on degenerate principal series, Pacific J. Math. 186 (1998), 67–87.
    MathSciNet    CrossRef

  18. M.A.A. Leeuwen, van, A.M. Cohen and B. Lisser, Lie: a package for Lie group computations, Centrum voor Wiskunde en Informatica, 1992.

  19. G. Muić and F. Shahidi, Irreducibility of standard representations for Iwahori-spherical representations, Math. Ann. 312 (1998), 151–165.
    MathSciNet    CrossRef

  20. T. Nam, A. Segal and L. Silberman, Singularities of intertwining operators and decompositions of principal series representations, J. Lie Theory 30 (2020), 939–964.
    MathSciNet

  21. A. Segal, The degenerate Eisenstein series attached to the Heisenberg parabolic subgroups of quasi-split forms of \(Spin_8\), Trans. Amer. Math. Soc. 370 (2018), 5983–6039.
    MathSciNet    CrossRef

  22. A. Segal, The degenerate residual spectrum of quasi-split forms of \(Spin_8\) associated to the Heisenberg parabolic subgroup, Trans. Amer. Math. Soc. 372 (2019), 6703–6754.
    MathSciNet    CrossRef

  23. F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for \(p\)-adic groups, Ann. of Math. (2) 132 (1990), 273–330.
    MathSciNet    CrossRef

  24. R. Steinberg, Lectures on Chevalley groups, Notes prepared by John Faulkner and Robert Wilson, Yale University, New Haven, 1968.
    MathSciNet

  25. M. Tadić, Notes on representations of non-Archimedean \({\rm SL}(n)\), Pacific J. Math. 152 (1992), 375–396.
    MathSciNet    Link

  26. M. Tadić, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29–91.
    MathSciNet    CrossRef

  27. The Sage Developers, SageMath, the Sage mathematics software system (Version 9.5), 2022.
    Link

Glasnik Matematicki Home Page