Glasnik Matematicki, Vol. 59, No. 2 (2024), 351-405. \( \)
THE DEGENERATE PRINCIPAL SERIES REPRESENTATIONS OF EXCEPTIONAL GROUPS OF TYPE \(E_8\) OVER \(p\)-ADIC FIELDS
Hezi Halawi and Avner Segal
School of Mathematics, Ben Gurion University of the Negev, POB 653, Be'er Sheva 84105, Israel
e-mail:halawi@post.bgu.ac.il
Mathematics Department, Shamoon College of Engineering, 56 Bialik St., Beer-Sheva 84100, Israel
e-mail:avnerse@sce.ac.il
Abstract.
In this paper, we study the reducibility of degenerate principal series of the split, simple, simply-connected exceptional group of type \(E_8\).
Furthermore, we calculate the maximal semi-simple subrepresentation and quotient of these representations for almost all cases.
2020 Mathematics Subject Classification. 22E50, 20G41, 20G05
Key words and phrases. \(p\)-adic groups, degenerate principal series
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.59.2.06
References:
-
D. Ban, The Aubert involution and R-groups, Ann. Sci. École Norm. Sup. (4) 35 (2002), 673–693.
MathSciNet
CrossRef
-
D. Ban and C. Jantzen, Degenerate principal series for even-orthogonal groups, Represent. Theory 7 (2003), 440–480.
MathSciNet
CrossRef
-
D. Ban and C. Jantzen, Jacquet modules and the Langlands classification, Michigan Math. J. 56 (2008), 637–653.
MathSciNet
CrossRef
-
I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group \(GL(n,F),\) where \(F\) is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), 5–70.
MathSciNet
-
I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive \({\mathfrak p}\)-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441–472.
MathSciNet
Link
-
W. Casselman, Introduction to the theory of admissible representations of \(p\)-adic reductive groups, 1974.
Link
-
S. Choi and C. Jantzen, Degenerate principal series for the exceptional \(p\)-adic groups of type \(F_4\), J. Lie Theory 20 (2010), 785–806.
MathSciNet
-
S. S. Gelbart and A. W. Knapp, Irreducible constituents of principal series of \({\rm SL}_{n}(k)\), Duke Math. J. 48 (1981), 313–326.
MathSciNet
Link
-
N. Gurevich and A. Segal, Poles of the standard \(\mathcal{L}\)-function of \(G_2\) and the Rallis-Schiffmann lift, Canad. J. Math. 71 (2019), 1127–1161.
MathSciNet
CrossRef
-
W. T. Gan and G. Savin, On minimal representations definitions and properties, Represent. Theory 9 (2005), 46–93.
MathSciNet
CrossRef
-
H. Halawi and A. Segal, Poles, residues and Siegel-Weil identities of degenerate Eisenstein series on split exceptional groups of type \({E_n}\), preprint.
-
H. Halawi and A. Segal, The degenerate principal series representations of exceptional groups of type \(E_6\) over \(p\)-adic fields, Israel J. Math. 238 (2020), 537–569.
MathSciNet
CrossRef
-
H. Halawi and A. Segal, The degenerate principal series representations of exceptional groups of type \(E_7\) over \(p\)-adic fields, Pacific J. Math. 310, (2021), 115–157.
MathSciNet
CrossRef
-
C. Jantzen, Degenerate principal series for symplectic groups, Mem. Amer. Math. Soc. 102, AMS, 1993.
MathSciNet
CrossRef
-
C. Jantzen, On the Iwahori-Matsumoto involution and applications, Ann. Sci. École Norm. Sup. (4) 28 (1995), 527–547.
MathSciNet
Link
-
C. Jantzen, Degenerate principal series for symplectic and odd-orthogonal groups, Mem. Amer. Math. Soc. 124, AMS, 1996.
MathSciNet
CrossRef
-
C. Jantzen, Some remarks on degenerate principal series, Pacific J. Math. 186 (1998), 67–87.
MathSciNet
CrossRef
-
M.A.A. Leeuwen, van, A.M. Cohen and B. Lisser, Lie: a package for Lie group computations, Centrum voor Wiskunde en Informatica, 1992.
-
G. Muić and F. Shahidi, Irreducibility of standard representations for Iwahori-spherical representations, Math. Ann. 312 (1998), 151–165.
MathSciNet
CrossRef
-
T. Nam, A. Segal and L. Silberman, Singularities of intertwining operators and decompositions of principal series representations, J. Lie Theory 30 (2020), 939–964.
MathSciNet
-
A. Segal, The degenerate Eisenstein series attached to the Heisenberg parabolic subgroups of quasi-split forms of \(Spin_8\), Trans. Amer. Math. Soc. 370 (2018), 5983–6039.
MathSciNet
CrossRef
-
A. Segal, The degenerate residual spectrum of quasi-split forms of \(Spin_8\) associated to the Heisenberg parabolic subgroup, Trans. Amer. Math. Soc. 372 (2019), 6703–6754.
MathSciNet
CrossRef
-
F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for \(p\)-adic groups, Ann. of Math. (2) 132 (1990), 273–330.
MathSciNet
CrossRef
-
R. Steinberg, Lectures on Chevalley groups, Notes prepared by John Faulkner and Robert Wilson, Yale University, New Haven, 1968.
MathSciNet
-
M. Tadić, Notes on representations of non-Archimedean \({\rm SL}(n)\), Pacific J. Math. 152 (1992), 375–396.
MathSciNet
Link
-
M. Tadić, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29–91.
MathSciNet
CrossRef
-
The Sage Developers, SageMath, the Sage mathematics software system (Version 9.5), 2022.
Link
Glasnik Matematicki Home Page