Glasnik Matematicki, Vol. 59, No. 2 (2024), 327-349. \( \)

GENERIC IRREDUCIBILITY OF PARABOLIC INDUCTION FOR REAL REDUCTIVE GROUPS

David Renard

Centre de mathématiques Laurent Schwartz, Ecole Polytechnique, 91128 Palaiseau Cedex, France
e-mail:david.renard@polytechnique.edu


Abstract.   Let \(G\) be a real reductive linear group in the Harish-Chandra class. Suppose that \(P\) is a parabolic subgroup of \(G\) with Langlands decomposition \(P=MAN\). Let \(\pi\) be an irreducible representation of the Levi factor \(L=MA\). We give sufficient conditions on the infinitesimal character of \(\pi\) for the induced representation \(i_P^G(\pi)\) to be irreducible. In particular, we prove that if \(\pi_M\) is an irreducible representation of \(M\), then, for a generic character \(\chi_\nu\) of \(A\), the induced representation \(i_P^G(\pi_M\boxtimes \chi_\nu)\) is irreducible. Here the parameter \(\nu\) is in \(\mathfrak{a}^*=(\mathrm{Lie}(A)\otimes_{\mathbb{R}} {\mathbb{C}})^*\) and generic means outside a countable, locally finite union of hyperplanes which depends only on the infinitesimal character of \(\pi\). Notice that there is no other assumption on \(\pi\) or \(\pi_M\) than being irreducible, so the result is not limited to generalised principal series or standard representations, for which the result is already well known.

2020 Mathematics Subject Classification.   20G05, 22E45

Key words and phrases.   Representation of real reductive groups, generic irreducibility of parabolic induction, Kazhdan-Lusztig-Vogan algorithm


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.59.2.05


References:

  1. J. Adams, D. Barbasch and D. Vogan, The Langlands classification and irreducible characters for real reductive groups, Birkhäuser Boston, Inc., Boston, 1992.
    MathSciNet    CrossRef

  2. J. F. Dat, Représentations lisses \(p\)-tempérées des groupes \(p\)-adiques, Amer. J. Math. 131 (2009), 227–255.
    MathSciNet    CrossRef

  3. W. T. Gan and A. Ichino, On the irreducibility of some induced representations of real reductive Lie groups, Tunis. J. Math. 1 (2019), 73–107.
    MathSciNet    CrossRef

  4. T. Hirai, Invariant eigendistributions of Laplace operators on real simple Lie groups. II. General theory for semisimple Lie groups, Japan. J. Math. 2 (1976), 27–89.
    MathSciNet    CrossRef

  5. A. Knapp and D. Vogan, Cohomological induction and unitary representations, Princeton University Press, Princeton, 1995.
    MathSciNet    CrossRef

  6. N. Matringe, O. Offen and C. Yang, On local intertwining periods, J. Funct. Anal. 286 (2024), Paper No. 110293.
    MathSciNet   

  7. H. Matumoto, On the representations of \(Sp(p,q)\) and \(SO^{*}(2n)\) unitarily induced from derived functor modules, Compos. Math. 140 (2004), 1059–1096.
    MathSciNet    CrossRef

  8. C. Moeglin and D. Renard, Sur les paquets d'Arthur des groupes classiques réels, J. Eur. Math. Soc. 22 (2020), 1827–1892.
    MathSciNet    CrossRef

  9. C. Moeglin and D. Renard, Sur les paquets d'Arthur des groupes unitaires et quelques conséquences pour les groupes classiques, Pacific J. Math. 299 (2019), 53–88.
    MathSciNet    CrossRef

  10. F. Sauvageot, Principe de densité pour les groupes réductifs, Compositio Math. 108 (1997), 151–184.
    MathSciNet    CrossRef

  11. D. Vogan, Representations of real reductive Lie groups, Birkhäuser, Boston, 1981.
    MathSciNet

  12. D. Vogan, Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-Lusztig conjecture in the integral case, Invent. Math. 71 (1983), 381–417.
    MathSciNet    CrossRef

  13. D. Vogan, Irreducible characters of semisimple Lie groups. IV. Character-multiplicity duality, Duke Math. J. 49 (1982), 943–1073.
    MathSciNet    CrossRef

  14. D. Vogan, Understanding the unitary dual, in: Lie group representations, I, College Park, Md., 1982/83, Lecture Notes in Math. 1024, Springer-Verlag, Berlin, 1983, 264–286.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page